线性代数第四章自测题

合集下载

(完整版)线性代数第四章线性方程组试题及答案

(完整版)线性代数第四章线性方程组试题及答案

第四章 线性方程组1.线性方程组的基本概念(1)线性方程组的一般形式为:其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量(k 1,k 2, …,k n )(称为解向量),它满足当每个方程中的未知数x 用k i 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解. b 1=b 2=…=b m =0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只有零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. (2) 线性方程组的其他形式 线性方程组除了通常的写法外,还常用两种简化形式: 向量式 x 1α1+x 2α2+…+n x n α= β, (齐次方程组x 1α1+x 2α2+…+n x n α=0).即[]n a a ,,a 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21=β 全部按列分块,其中β,,21n a a a 如下⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=121111m a a a α ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=222122m a a a α,………,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn n n n a a a 21α, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β 显然方程组有解的充要条件是向量β可由向量组n ααα,,21 线性表示。

矩阵式 AX =β,(齐次方程组AX =0).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X 21 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m b b b 21β其中A 为m n ⨯矩阵,则:① m 与方程的个数相同,即方程组AX =β有m 个方程; ② n 与方程组的未知数个数相同,方程组AX =β为n 元方程。

(完整版)线性代数练习册第四章习题及答案

(完整版)线性代数练习册第四章习题及答案

第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。

当0D ≠时,非齐次线性方程组只有唯一解;B 。

当0D ≠时,非齐次线性方程组有无穷多解;C 。

若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。

2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。

【最新试题库含答案】线性代数练习册第四章习题及答案

【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。

线性代数第四章练习题答案

线性代数第四章练习题答案

线性代数第四章练习题答案第一篇:线性代数第四章练习题答案第四章二次型练习4、11、写出下列二次型的矩阵2(1)f(x1,x2,x3)=2x12-x2+4x1x3-2x2x3;(2)f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4。

解:(1)因为⎛2f(x1,x2,x3)=(x1,x2,x3) 0 2⎝⎛2 所以二次型f(x1,x2,x3)的矩阵为: 0 2⎝0-1-10-1-12⎫⎪-1⎪0⎪⎭⎛x1 x2 x⎝3⎫⎪⎪, ⎪⎭2⎫⎪-1⎪。

0⎪⎭(2)因为⎛0 f(x1,x2,x3,x4)=(x1,x2,x3,x4) 1 1⎝⎛0 1所以二次型f(x1,x2,x3,x4)的矩阵为: 1 1⎝***11⎫⎪0⎪1⎪⎪0⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪,⎪⎪⎭1⎫⎪0⎪。

⎪1⎪0⎪⎭2、写出下列对称矩阵所对应的二次型:⎛1 1(1) -2 1 ⎝212⎛01⎫⎪2⎪1 -2⎪;(2)2 ⎪-1⎪2⎪⎭0⎝12-11212-112012⎫0⎪⎪1⎪2⎪。

1⎪⎪2⎪1⎪⎪⎭-0-2T解:(1)设X=(x1,x2,x3),则⎛1 f(x1,x2,x3)=XTAX=(x1,x2,x3) -2 1 ⎝2-120-21⎫⎪2⎪-2⎪⎪⎪2⎪⎭⎛x1 x2 x⎝3⎫⎪⎪⎪⎭=x12+2x32-x1x2+x1x3-4x2x3。

(2)设X=(x1,x2,x3,x4)T,则⎛0 1f(x1,x2,x3,x4)=XTAX=(x1,x2,x3,x4)2 -1 0⎝12-11212-11201 2⎫0⎪⎪1⎪2⎪1⎪⎪2⎪1⎪⎪⎭⎛x1 x2 x 3 x⎝4⎫⎪⎪⎪⎪⎪⎭2=-x2+x4+x1x2-2x1x3+x2x3+x2x4+x3x4。

练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。

22(1)f(x1,x2,x3)=2x1+x2-4x1x2-4x2x3;(2)f(x1,x2,x3)=2x1x2-2x2x3;222(3)f(x1,x2,x3)=x1+2x2+3x3-4x1x2-4x2x3。

线代第4章习题答案

线代第4章习题答案

第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。

线性代数__第四单元测试

线性代数__第四单元测试

线性代数练习题 第四章 向量组的线性相关性专业 班 姓名 学号一 判断题1.若m ααα,,,21 线性相关,则对于任一组不全为零的数m k k k ,,,21 总有 011=+m m k k αα ( × ) 2..若m ααα,,,21 线性相关,则其中每一个向量都是其余向量的线性组合。

( × ) 3.含有非零向量的组向量的最大无关组是唯一; ( × ) 4..向量组与其自身的任一最大无关组等价。

( √ ) 5.有非零解的齐次线性方程组的基础解系是唯一; ( × ) 6.有无穷多个解的非齐次线性方程组的通解的形式不唯一; (√ ) 7集合},,,032),,{(321321321R x x x x x x x x x V ∈=++=是一个向量空间; (√) 8、有非零解的齐次线性方程组的基础解系是唯一; ( × )二.选择题1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关(C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有唯一解 (D )设),,,(s A ααα 21=,A 的行秩 < s .解:由相关的充要条件:向量组相关R s(⇔<稚向量的个数)2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 解: 由γβα,,线性无关⇒αβ,无关(整体无关,部分无关),而δβα,,线性相关⇒δαβ可由,线性表示,且表示唯一(表示唯一性定理)⇒δαβγ可由,,线性表示(只需γ前得系数取0)3..设向量组{}m A ααα,,,21 =,则下列说法不正确的是(C )A 、若m ααα,,,21 中有一个是零向量,则向量组A 线性相关,B 、若m ααα,,,21 线性无关,则其中任意向量不能由其余向量线性表示C 、若1α可由m αα,,2 线性表示,则表示式必不唯一D 、零向量必可由m ααα,,,21 线性表示。

线代一至四章自测题兼答案

线代一至四章自测题兼答案

《线性代数》单元自测题第一章 行列式专业 班级 姓名 学号一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有正号的项,则i = ,j = . 2. 在四阶行列式中同时含有元素13a 和31a 的项为__ ___. 3. 各行元素之和为零的n 阶行列式的值等于 .4.已知2333231232221131211=a a a a a a a a a ,则=+++133312321131131211232221333a a a a a a a a a a a a . 5.设)4,3,2,1(2=i A i 是行列式6932987342322212a w a za y a x中元素2i a 的代数余子式,则=+++423222126397A A A A __ ___. 二、 选择题:1.已知,42124011123313)(x x x x x x f --=则)(x f 中4x 的系数为( )(A )1- ; (B )1 ; (C )2- ; (D )2 .2.222111c b a c b a=( ) (A )b c a b c a 222++; (B )))()((b c a c a b ---; (C ))(222a c c b b a ++-; (D ))1)(1)(1(---c b a .3.已知0014321≠=-k c b a , 则063152421-+-+c b a =( )(A ) 0 ; (B )k ; (C )k - ; (D )k 2.4.已知01211421=--λλ,则λ=( ) (A )3-=λ; (B )2-=λ; (C )3-=λ或2; (D )3-=λ或2-. 三、 计算题:1.计算63123112115234231----=D .2.设4321630211118751=D ,求44434241A A A A +++的值.3.计算4443332225432543254325432=D .4.计算abb a b a b a D n 000000000000 =.5.计算2111121111211112----=λλλλ n D .6.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值.《线性代数》单元自测题第二章 矩阵专业 班级 姓名 学号一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则)(A R = .2.设A 是3阶可逆方阵,且m A =,则1--mA = .3.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A .4.设A 为3阶方阵,且3=A ,*A 为A 的伴随矩阵,则=-13A ;=*A ;=--1*73A A .5. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4000003000002000001100041A ,由分块矩阵的方法得=-1A . 二、选择题:1. 设A 、B 为n 阶方阵,则下列命题中正确的是( )(A ) 0=AB 0=⇒A 或0=B ; (B ) TT T A B AB =)(;(C ) B A B A +=+; (D ) 22))((B A B A B A -=-+. 2.设A 为54⨯矩阵,则A 的秩最大为( )(A )2 ; (B )3 ; (C )4 ; (D )5.3.设C B A ,,是n 阶矩阵,且E ABC =,则必有( )(A )E CBA =; (B )E BCA =; (C )E BAC =; (D )E ACB =.4.当=A ( )时,⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a A ⎪⎪⎪⎭⎫⎝⎛---=333231232221331332123111333a a a a a a a a a a a a . (A )⎪⎪⎪⎭⎫⎝⎛-103010001; (B )⎪⎪⎪⎭⎫⎝⎛-100010301; (C ) ⎪⎪⎪⎭⎫ ⎝⎛-101010300; (D ) ⎪⎪⎪⎭⎫ ⎝⎛-130010001. 5.设B A ,均为n 阶方阵,且O E B A =-)(,则( ) (A )O A =或E B =; (B ) BA A =;(C )0=A 或1=B ; (D ) 两矩阵A 与E B -均不可逆.三、计算题:1.设⎪⎪⎪⎭⎫⎝⎛---=221011332A ,求1-A .2. 设⎪⎪⎪⎭⎫ ⎝⎛--=032211123A ,且X A AX 2+=,求X .3.已知矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4553251101413223211a A 的秩为3,求a 的值.4.设Λ=-AP P 1,其中⎪⎪⎭⎫⎝⎛--=1141P , ⎪⎪⎭⎫⎝⎛2001-=Λ, (1)求nA ;(2)设()322+-=x x x f ,求()A f .四、证明题:1、 设A 为n 阶方阵,且有0522=--E A A ,证明E A +可逆,并求其逆.2.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵,证明AB 为反对称矩阵的充分必要条件是BA AB =.《线性代数》单元自测题第三章 向量组的线性相关性专业 班级 姓名 学号一、填空题:1.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=6402α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2101β,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=9741γ,且向量ξ满足βαγβξ-=-+22,则ξ= . 2.已知向量组T)1,1,2,1(1-=α,T T t )0,,0,2(,)2,5,4,0(32==αα的秩为2,则=t . 3.若T)1,1,1(1=α,T)2,3,1(2=α,T b a ),0,(3=α线性相关,则b a ,应满足关系式 . 二、单选题:1.下列向量组中,线性无关的是( )(A )T )4321(,T )5201(-,T )8642(;(B )T )001(-,T )012(,T )423(-;(C )T)111(-,T )202(-,T )313(-;(D )T )001(,T )010(,T )100(,T )101(.2.下列向量组中,线性相关的是( ) (A )T b a)1(,T c b a )222(+;)0(≠c (B )T )0001(;(C )T )0001(,T )1000(,T )0010(; (D )T )001(,T )010(,T )000(.3、设向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=t 01,121,011γβα线性无关,则( )(A )1-=t ; (B )1-≠t ; (C )1=t ; (D )1≠t .4. 设m ααα,,21 ,均为n 维向量,那么下列结论正确的是( ) (A )若为常数),m m m k k k k k k ,,(0212211=+++ααα,则m ααα,,21 ,线性相关;(B )若对任意一组不全为零的数m k k k ,,,21 ,都有02211≠+++m m k k k ααα ,则m ααα,,21 ,线性无关;(C )若m ααα,,21 ,线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有02211=+++m m k k k ααα ;(D )若有一组全为零的数m k k k ,,,21 ,使得02211=+++m m k k k ααα ,则m ααα,,21 ,线性无关.5、设A 是n 阶方阵,且A 的行列式0=A ,则A 中( )(A )必有一列元素全为零; (B )必有两列元素对应成比例;(C )必有一列向量是其余列向量的线性组合; (D )任一列向量是其余列向量的线性组合.三、计算下列各题:1.判断向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=36122α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21013α,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=09244α的线性相关性.2.求向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=40121α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=21012α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=63033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21114α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=40125α的秩和一个最大无关组,并把其余向量用该最大无关组线性表示出来.3、设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0611,231,2211321αααx x ,若此向量组的秩为2,求x 的值。

线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案

篇一:线代第四章习题(xítí)解答第四章空间(kōngjiān)与向量运算习题(xítí)4.14-1-1、空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C2,2,1? 〔1〕求向量,,的坐标,并在直角坐标系中作出它们(tā men)的图形;〔2〕求点A与B 之间的间隔.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用(lìyòng)坐标面上和坐标轴上点的坐标的特征,指出以下各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B〔0,4,3〕点在yoz面上C〔3,0,0〕在x轴上 D〔0,-1,0〕在y轴上 4-1-6. 设u?a?b?2c,v3b?c,试用a、b、c表示3u?3v.解:3u-2v=3〔a-b+2c〕-2〔-3b-c〕=3a+3b+8c4-1-7. 试用向量证明:假如平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由AO=OC,DO=OB 因为AB=AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为〔x,y,z〕prjxAB?(2?x0)?4prjyAB?(?1?y)4 prjzAB?(7?z0)?7解得:x2y?3z0?04-1-12. 求以下向量的模与方向(fāngxiàng)余弦,并求与这些向量同方向的单位向量:〔1〕a2,?1,1? ;〔2〕b4,?2,2? ;〔3〕c6,?3,3? ;〔4〕d?2,1,?1? .解:〔1〕a=〔2,-1,1〕a?22?(?1)?122cos22a36cos?1?26cos a6a6〔2〕b=(4,-2,2) b?42?(?2)?2 cos2226? b3cos26?2?b666? cos b0?,?, b6b6b366〔3〕c=(6,-3,3) c?b2?(?4)?3 cos22236?3cos?33?? 6cos23362?6 62〔4〕d=(-2,1,-1)d?(?2)?1?(?1)?6cos?263cos16?d6cos?d0{?,,?66d366与前三向量(xiàngliàng)单位同的d{?6,,?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章(×)1.若向量组123,,ααα线性相关,则3α可由12,αα线性表示. (√)2.若向量组A 可由向量组B 线性表示,则()()R A R B ≤. (×)3.若向量组123,,ααα线性相关,则1α可由23,αα线性表示. (√)4.若向量组A 可由向量组B 线性表示,则()()R A R B ≤.5.若齐次线性方程组0AX =只有零解,则A 的列向量组线性无关.6.等价的向量组具有相同的秩. ( )设A 为n 阶矩阵,则T A 与A 的特征值相同. ( ) 4.非零向量组的最大无关组存在且唯一. ( )5.对于任意参数123,,m m m ,向量组11100m α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,22102m α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,33123m α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭总是线性无关. ( ) 6. 设V =({)}1,,,,,,212121=+++∈=n n Tn x x x R x x x x x x x 满足,则V 是向量空间. ( )7.设21,V V 分别为向量组A ,B 生成的向量空间,且向量组A ,B 等价,则21V V =. 8.若存在一组数120m k k k ==== ,使得 11220m m k k k ααα+++= 成立,则向量组12,,,m ααα ( ).A 线性相关 .B 线性无关 .C 可能线性相关,也可能线性无关 .D 部分线性相关9.已知43⨯的矩阵A 的行向量组线性无关,则=')(A R ( ).A 1;.B 2; .C 4; .D 3.10.向量组12,,,m a a a (2m ≥)线性相关,则 ( ).A 12,,,m a a a 中每一个向量均可由其余向量线性表示; .B 12,,,m a a a 中每一个向量均不可由其余向量线性表示; .C 12,,,m a a a 中至少有一个向量可由其余向量线性表示;.D 12,,,m a a a 中仅有一个向量可由其余向量线性表示.11.下列集合中,可作为向量空间的是( ).A =V {}b Ax x =;.B =V (){}R x x x x x n Tn ∈=,,,,022 ;.C =V (){}R x x x x x n Tn ∈=,,,,122 ;.D =V (){}1,,,.1121=++∈=n n Tn x x R x x x x x x 且.12.设齐次方程Ax =0的通解为x=c 1102⎛⎫⎪⎪ ⎪⎝⎭+c 2011⎛⎫ ⎪ ⎪ ⎪-⎝⎭,(12,c c R ∈) 则系数矩阵A 为( ) A.()1,1,2- B.⎪⎭⎫⎝⎛-110102 C.⎪⎭⎫ ⎝⎛--110201D. ⎪⎪⎭⎫ ⎝⎛---11022411013. 向量组A :1a ,2a …m a (m ≥3)线性无关的充要条件是( )A. 存在不全为零的数1k ,2k ,…m k ,使02211≠+++m m a k a k a kB. A 组中任意两个向量都线性无关C. A 组中存在一个向量,它不能用其余向量线性表示D. A 组中任意一个向量,都不能用其余向量线性表示14. 设向量组1a ,2a ,3a 线性无关,则下列向量组线性无关的是( )A. 1a +2a ,2a +3a ,3a -1aB. 1a +2a ,2a +3a ,1a +22a +3aC. 1a +22a ,22a +33a ,33a +1aD. 1a +2a +3a ,21a -32a +223a ,31a +52a -53a15.已知向量组A :1α,2α,3α,4α线性无关,则与A 等价的向量组是 ( )A. 1α+2α,2α-3α,3α-4α,4α-1αB. 1α-2α,2α-3α,3α-4α,4α-1αC. 1α+2α,2α-3α,3α+4α,4α-1αD. 1α+2α,2α+3α,3α+4α,4α +1α16.设A 为n 阶矩阵,且()1-=n A R ,1α,2α是A x =0的两个不同的解,k 为任意常数,则A x =0的通解为( )A. 1αkB. 2αkC. k (1α-2α)D. k (1α+2α)17.设向量组A :1α,2α,…,s α,B :1α,2α,…,s α… r s +α则必有( )A. A 相关⇒B 相关;B. A 无关⇒B 无关;C. B 相关⇒A 相关;D. B 相关⇒A 无关.18. 设n 元线性方程组b Ax =,以下说法错误的是( ).(A) b Ax =有解的充分必要条件是0≠A ;(B) b Ax =无解的充分必要条件是),()(b A R A R < ; (C) b Ax =有唯一解的充分必要条件是n b A R A R ==),()(;(D) b Ax =有无穷多解的充分必要条件是n b A R A R <=),()( 19.若A 是n 阶可逆矩阵,下列说法中错误的是( ).A .0≠A ;B .A 的列向量组线性相关;C .()n A R =;D .A 与单位阵E 行等价.20.设b Ax =为非齐次线性方程组,0=Ax 为其对应的齐次线性方程组,下列说法中错误的是( ).A .若1ξ=x ,2ξ=x 为0=Ax 的解,则21ξξ+=x 也是0=Ax 的解;B .若1ξ=x 为0=Ax 的解,k 为实数,则1ξk x =也是0=Ax 的解;C .若1η=x 及2η=x 都是b Ax =的解,则21ηη+=x 也是b Ax =的解;D .若η=x 为b Ax =的解,ξ=x 为0=Ax 的解,则ηξ+=x 是b Ax = 的解. 21.设矩阵()4321,,,a a a a A =,其中432,,a a a 线性无关,3212a a a -=,向量4321a a a a b +++=,则方程b Ax =的通解为:_______.22. 设500013024A ⎛⎫⎪= ⎪ ⎪⎝⎭,33B ⨯的列向量组线性无关,则()R B = 3 ,()R AB =3 .(用行列式 满秩来判断)23. 已知维列向量组所生成的向量空间为, 则的维数dim( );24. 若向量组T 3T 2T 1)0,0,1(,),-12,(,)2,3,1(==-=αααt 线性相关,则t =.25.设齐次线性方程组Ax =0的通解为x=c 1102⎛⎫⎪⎪ ⎪⎝⎭+c 2011⎛⎫ ⎪ ⎪ ⎪-⎝⎭,(12,c c R ∈)则系数矩阵A=26.元非齐次线性方程组的系数矩阵的秩为, 已知是它的个解向量 , 其中, , 则该方程组的通解是27.已知123,,ηηη是三元非齐次线性方程组Ax =b 的解,且R (A )=1及 122313111,,,011001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=+=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ηηηηηη求方程组Ax =b 的通解.28.设四元非齐次方程组的系数矩阵的秩为3,321,,ηηη是它的三个解向 量,且()T54321=η,()T432132=+ηη,则该方程组的通解为:______ _. 29.以()()TTc c x 1042013221-+-= 为通解的一个齐次线性方程组为:_____________.30.已知向量组123,,a a a 线性无关,证明向量组112223313,,b a a b a a b a a =+=+=+也线性无关.31.设向量组123,,ααα线性无关,证明:1123βααα=++,212323βααα=++,312349βααα=++也线性无关.32设r r αααβααβαβ+++=+== 2121211,,,且向量组r ααα,,,21 线性无关,证明向量组r βββ,,,21 线性无关. 33设向量组线性无关 , 问: 常数满足什么条件时, 向量组,,也线性无关。

34设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,1是实数,满足11=++s k k .证明 s s k k x ηη++= 11 也是它的解.35.设矩阵⎪⎪⎪⎭⎫⎝⎛--=0231085235703273812A ,求A 的列向量组的最大无关组并把其余向量用最大无关组线性表示.36. 设()T3,2,1,21=α,()T3,5,1,12-=α,()31,0,2,1T α=-- ,()41,2,9,8Tα=.(1)求()4321,,,ααααR ;(2)找一极大无关组,并用此极大无关组线性表示其余向量.37.求向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4152,0312,1021,12014321αααα的一个最大线性无关组。

38.设⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=141210123140702314321αααα,,,,求:(1)该向量组的秩;(2)39.该向量组的一个极大线性无关组;(3)将其余向量用该极大线性无关组表示。

40.设向量组:T 1)1,1,1(-=α,T 2)2,4,3(-=α,T 3)0,4,2(=α,T 4)1,1,0(=α,试求此向量组秩和一个极大无关组,并将其余向量用极大无关组线性表示.41.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=97963422644121121112A ,求A 的列向量组的最大无关组并把其余向量用最大无关组线性表示.42.设矩阵⎪⎪⎪⎭⎫⎝⎛--=0231085235703273812A ,求A 的列向量组的最大无关组并把其余向量用最大无关组线性表示.43.设线性方程组为12345123452345123451323(*)22635433x x x x x x x x x x ax x x x x x x x x b++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩,(1) 确定a 与b 的值,使线性方程组(*)有解;(2) 在线性方程组(*)有解的情形下,求(*)的通解44. 设112224336⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,求一秩为2的3阶方阵B 使AB =0. 45. 设有下列线性方程组(Ⅰ)和(Ⅱ)(Ⅰ)1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x m x x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-⎩(1) 求方程组(Ⅰ)的通解;(2) 当方程组(Ⅱ)中的参数m,n,t 为何值时,(Ⅰ)与(Ⅱ)同解?46.求齐次线性方程组⎪⎩⎪⎨⎧=---=+-+-=-+-0490243032542143214321x x x x x x x x x x x 的基础解系.。

相关文档
最新文档