遥感数据预处理
《遥感导论》Erdas上机课件-(3.数据预处理)

仿射变换前后的图像对比
4
图像的拼接处理(Mosaic Image)
ห้องสมุดไป่ตู้
图像拼接处理是要将具有地理参考的若干相邻图像合并成一幅图 像或一组图像,需要拼接的输入图像必须含有地图投影信息,或 者说输入图像必须经过几何校正处理(Rectified)或进行过校正 标定(Calibrated)。虽然所有的输入图像可以具有不同的投影 类型、不同的像元大小,但必须具有相同的波段数。在进行图像 拼接时,需要确定一幅参考图像,参考图像将作为输出拼接图像 的基准,决定拼接图像的对比度匹配以及输出图像的地图投影、 像元大小和数据类型。
,进入设
—>打开Matching Option对话框
第四步:运行Mosaic工具
第二步:加载Mosaic图像
第三步:图像匹配设置(Image Matching)
Mosaic Tool视窗菜单条:Edit—>Image Matching —>打开Matching Option对话框
Mosaic Tool视窗工具条:点击Set Input Model图标 置输入图像模式
—>点击Image Matching图标
选择1,必须是已经打开了需要进 行几何校正的图像。
—>打开Set Geometric Model对话框
—>选择几何校正计算模型(Select Geometric Model) —>OK
—>打开校正模型参数与投影参数设置对话框 —>定义校正模型参数与投影参数—>Apply —>Close —>打开GCP Tool Reference Setup 对话框 —>确定采点模式,采点校正….
第三章 数据预处理
测绘技术中的遥感数据处理方法与分析技巧

测绘技术中的遥感数据处理方法与分析技巧遥感技术是现代测绘技术中的关键组成部分,它通过无线电、红外线、激光和雷达等传感器获取地表及大气信息。
遥感数据处理和分析是利用这些获取到的数据进行测绘与地理信息系统应用的重要环节。
本文将介绍几种常用的遥感数据处理方法与分析技巧。
首先,遥感数据的预处理是数据处理的基础。
预处理包括数据校正、辐射校正和几何校正等过程。
数据校正是将原始数据进行去除噪声、填补无效值和纠正异常点等操作,以提高数据质量。
辐射校正是将原始数据转化为物理量,如反射率和温度等。
几何校正是校正图像的几何畸变,以保证图像的几何精度。
这些预处理操作能够提高遥感数据的可靠性和可用性。
其次,遥感图像分类是遥感数据处理的重要环节。
图像分类是将遥感图像像素分成不同的类别,如水体、植被、建筑和裸土等。
常见的分类方法有基于统计学的最大似然分类、支持向量机分类和神经网络分类等。
最大似然分类是根据每个类别在样本中的分布情况,使用概率统计方法进行分类。
支持向量机分类是通过寻找一个最优的超平面将不同类别的样本分开。
神经网络分类使用多层感知机模型进行图像分类。
这些分类方法能够帮助我们从遥感图像中提取出感兴趣的地物信息。
此外,遥感数据变化检测是遥感数据处理的重要应用之一。
变化检测可以用于监测城市扩张、农田变化和森林砍伐等。
常见的变化检测方法有单时相变化检测和多时相变化检测。
单时相变化检测是对同一地区的不同时间的遥感图像进行比较,通过像素级别的差异检测来获取变化信息。
多时相变化检测是对多个时间序列的遥感图像进行比较,通过时间序列分析和统计学方法来获取变化信息。
这些变化检测方法为我们提供了探索地表变化的重要手段。
最后,遥感数据的空间分析是遥感数据处理的重要内容之一。
空间分析是对遥感数据进行空间模式分析和定量化分析的过程。
常见的空间分析方法有地物对象提取、泥沙径流模拟和土地覆盖变化分析等。
地物对象提取是根据遥感图像进行地物类型的提取,如建筑物提取、植被提取和水体提取等。
测绘技术中的遥感数据的获取与处理方法

测绘技术中的遥感数据的获取与处理方法遥感技术在测绘领域的应用日益广泛,其能够获取大范围、高分辨率的地表信息,为地理空间数据的获取和处理提供了有力支持。
本文将探讨测绘技术中遥感数据的获取与处理方法。
一、遥感数据的获取遥感数据的获取主要通过卫星、飞机等载体,采集地球表面的电磁辐射信息。
卫星遥感数据具有广覆盖、周期性获取、持续监测等优势,而航空遥感数据则具有高分辨率、重复性强等特点。
1. 卫星遥感数据的获取卫星遥感数据的获取通常分为光学遥感和微波遥感两类。
光学遥感通过装载在卫星上的传感器,记录地表反射、发射和散射的光谱信息,推测出地表特征。
而微波遥感则利用微波辐射与地表物质的相互作用,获取地表的散射、吸收和反射等信息。
2. 航空遥感数据的获取航空遥感通过飞机搭载的传感器,采集地表的高分辨率影像数据。
航空遥感数据获取灵活,能够根据需要选取特定区域进行拍摄,获取更精确的地理信息。
二、遥感数据的处理方法遥感数据处理是对获取的原始遥感数据进行预处理、分类、提取等工作,以获得具有科学和实用价值的产品和信息。
1. 遥感数据的预处理遥感数据的预处理主要包括几何校正、辐射校正和大气校正等。
几何校正校正了数据获取过程中的几何变形,使其与地球表面实际对应;辐射校正消除了传感器自身的误差和对地球表面的辐射强度;大气校正则通过模型和反演方法消除大气对遥感数据的扰动。
2. 遥感数据的分类遥感数据的分类是将遥感图像中的像元分成不同的类别,常用的分类方法包括有监督分类和无监督分类。
有监督分类通过已知的训练样本进行分类器训练,然后将分类器应用于整个图像;无监督分类则不需要先验知识,通过聚类方法将图像像元自动分类。
3. 遥感数据的特征提取遥感数据的特征提取是从遥感图像中提取出地物的特征属性,如形状、纹理、光谱等。
特征提取可以利用像元级的单一特征或多特征组合进行,常用的方法有主成分分析、小波变换、纹理分析等。
4. 遥感数据的信息提取遥感数据的信息提取是根据特定的需求,通过应用特定的算法,提取出地物的相关信息。
建筑物倾斜监测中的遥感数据处理方法

建筑物倾斜监测中的遥感数据处理方法建筑物倾斜监测是建筑工程中非常重要的环节之一,通过有效的监测可以及时发现建筑物的倾斜情况,保障建筑物的稳定性和安全性。
而在建筑物倾斜监测中,遥感数据的处理方法起到至关重要的作用。
本文将介绍建筑物倾斜监测中常用的遥感数据处理方法。
一、遥感数据获取在建筑物倾斜监测中,首先需要获取建筑物的遥感数据。
遥感数据可以通过航空遥感或卫星遥感获取,其中卫星遥感更为成熟和常用。
卫星遥感可以通过定期采集建筑物的高分辨率影像数据,获得建筑物二维的空间信息。
二、遥感数据预处理在获得建筑物的遥感数据后,需要进行一系列的预处理操作,以便后续的倾斜监测分析。
遥感数据预处理的主要步骤包括:1. 图像校正:校正遥感影像中的几何畸变,使其能够反映真实的地物形态和位置。
2. 图像配准:将不同时期的遥感影像进行精确的配准,以便进行建筑物倾斜的比较和分析。
3. 影像增强:通过图像增强算法,提高遥感影像的对比度和清晰度,便于后续的倾斜监测分析。
4. 影像分割:将遥感影像中的建筑物和背景进行分割,以便后续的建筑物倾斜角度计算。
三、建筑物倾斜角度计算在进行建筑物倾斜监测时,需要计算建筑物的倾斜角度。
倾斜角度的计算方法一般有两种:1. 基于特征点匹配的方法:通过提取建筑物影像中的特征点,采用特征点匹配的方法,计算建筑物倾斜角度。
2. 基于影像分析的方法:通过对建筑物影像进行几何变换和分析,利用数学模型计算建筑物倾斜角度。
四、倾斜角度变化监测在倾斜监测中,不仅需要计算建筑物的倾斜角度,还需要监测倾斜角度的变化情况。
倾斜角度变化监测可以通过两种方法实现:1. 基于遥感影像时间序列的方法:通过采集和比对建筑物在不同时期的遥感影像数据,计算倾斜角度的变化情况。
2. 基于连续监测数据的方法:安装倾斜监测仪器,实时连续监测建筑物的倾斜角度,并进行数据分析和处理。
五、倾斜监测结果分析与报告最后,在完成建筑物倾斜监测后,需要对监测结果进行分析和报告撰写。
基于深度学习的遥感遥测数据处理与分析

基于深度学习的遥感遥测数据处理与分析遥感遥测数据处理与分析是遥感技术的重要应用领域之一,它利用遥感技术获取的遥感数据,通过深度学习方法进行处理和分析,以从数据中提取有用的信息和知识。
本文将介绍基于深度学习的遥感遥测数据处理与分析的方法和应用。
一、深度学习在遥感遥测数据处理中的应用深度学习是一种机器学习方法,通过多层神经网络的组合和训练来实现对数据的自动学习和特征提取。
在遥感遥测数据处理中,深度学习可以应用于以下几个方面:1. 图像分类和目标检测:利用深度学习模型,可以实现对遥感图像中的不同地物和目标进行分类和检测。
通过训练深度卷积神经网络,可以从遥感图像中提取出与地物特征相关的高级语义信息,从而实现自动化的图像分类和目标检测。
2. 地物变化检测:遥感遥测数据可以提供地表不同时刻的图像,通过深度学习方法,可以对这些图像进行比较和分析,从而实现地物变化的检测和监测。
例如,可以利用深度学习模型对不同时期的遥感图像进行特征提取和匹配,以检测出地物的变化情况。
3. 地物分类与识别:利用深度学习模型,可以实现对遥感图像中的地物进行分类和识别。
通过训练深度学习模型,可以学习到地物的特征表示,从而实现对地物的自动化分类和识别。
二、基于深度学习的遥感遥测数据处理与分析方法基于深度学习的遥感遥测数据处理与分析一般包括以下几个步骤:1. 数据预处理:对遥感数据进行预处理,包括数据的去噪、辐射校正、几何校正等操作,以保证数据的质量和可用性。
2. 特征提取:利用深度学习模型对遥感图像进行特征提取,以获取图像中地物和目标的高级语义信息。
常用的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等。
3. 数据分析和处理:利用深度学习模型对提取到的特征进行分析和处理,以实现对遥感数据的应用。
例如,可以利用深度学习模型对遥感图像进行分类和目标检测。
4. 结果评估和验证:对处理和分析得到的结果进行评估和验证,以确保结果的准确性和可靠性。
遥感数据处理的基本步骤与技巧

遥感数据处理的基本步骤与技巧遥感技术作为一种获取地球表面信息的重要手段,被广泛应用于农林牧渔、城市规划、环境监测等领域。
而遥感数据的处理和分析则是有效利用遥感信息的关键环节。
本文将介绍遥感数据处理的基本步骤与技巧,以帮助读者更好地应用遥感数据。
一、数据获取遥感数据的获取是遥感数据处理的第一步。
常用的遥感数据包括航空影像、卫星影像和激光雷达数据。
在选择遥感数据时,需根据具体的研究目标和需求,选择适合的数据类型和分辨率。
而对于不同类型的遥感数据,其获取的方法也有所不同。
例如,航空影像可以通过航拍或无人机获取,卫星影像可以通过遥感卫星获取。
二、数据预处理数据预处理是遥感数据处理的重要环节。
通过对遥感数据进行校正和增强,可以提高数据的质量和可用性。
常见的数据预处理步骤包括辐射校正、大气校正、几何纠正和镶嵌拼接。
辐射校正是将原始遥感数据转化为能量辐射亮度值,大气校正是去除大气散射和吸收的影响,几何纠正是将图像投影到地面坐标系,镶嵌拼接是将多个遥感图像拼接成一个完整的图像。
三、特征提取特征提取是遥感数据处理的关键环节之一。
通过对遥感图像中的特征进行提取和分类,可以获取地表覆盖类型、土地利用状况等信息。
常用的特征提取方法包括阈值分割、数学形态学、边缘检测和纹理分析等。
例如,通过采用基于阈值分割和数学形态学的方法,可以将遥感图像中的建筑物和道路等目标进行提取和分类。
四、数据分析数据分析是利用遥感数据进行研究和应用的重要环节。
通过对遥感数据的统计分析、模型建立和空间分析,可以揭示地表变化、环境演变等规律。
常用的数据分析方法包括主成分分析、分类与回归树、遥感时序分析和地形分析等。
例如,通过主成分分析方法,可以从遥感图像中提取出主要的波段特征,进而分析地表覆盖类型的空间分布和变化趋势。
五、结果验证结果验证是遥感数据处理的最后一步,也是决定数据处理结果可靠性的关键环节。
通过与实地调查和已有数据的对比,可以评估遥感数据处理的准确性和可信度。
使用卫星遥感数据进行测绘的数据处理方法

使用卫星遥感数据进行测绘的数据处理方法导言:随着现代测绘技术的不断发展,卫星遥感数据成为了测绘领域中不可或缺的重要数据源。
卫星遥感数据能够提供高分辨率、大范围的地理信息,帮助测绘工作更加精准、高效。
然而,卫星遥感数据常常需要经过一系列的数据处理方法,以提取有效的地理信息。
本文将介绍一些常用的卫星遥感数据处理方法,以助于更好地利用卫星遥感数据进行测绘。
一、数据预处理1. 图像预处理卫星遥感数据通常经过传感器、通道、大气等多种因素的影响,需要进行图像预处理以去除噪声、纠正图像偏移、增强图像对比度等。
常用的图像预处理方法包括平滑滤波、直方图均衡化、大气校正等。
2. 高程数据处理卫星遥感数据中常包含高程信息,如数字高程模型(DEM)数据。
为了得到地形的准确表达,需要对DEM数据进行降噪、插值、拟合等处理。
常见的方法包括小波降噪、三角网剖分插值等。
二、特征提取1. 目标提取卫星遥感数据可以用于提取地物目标,如道路、建筑、植被等。
常见的目标提取方法包括阈值分割、特征分类、形态学处理等。
这些方法可以帮助测绘工作者有效地在遥感图像中提取出感兴趣的地物目标,并进行后续的测绘工作。
2. 变化检测卫星遥感数据可以用于检测地理环境的变化,如土地利用变化、海岸线变化等。
常用的变化检测方法包括监督分类、无监督分类、基于图像差异的方法等。
通过变化检测,可以了解地理环境的演变情况,为后续的测绘工作提供更准确的数据支持。
三、精度评定与校正1. 精度评定在进行测绘工作时,需要对卫星遥感数据的精度进行评定。
常见的精度评定方法包括地物提取精度评定、高程数据精度评定等。
通过精度评定,可以客观地评价卫星遥感数据的可靠性,为后续的测绘工作提供参考依据。
2. 数据校正卫星遥感数据在获取过程中可能存在校正问题,如几何校正、辐射校正等。
为了获得更准确的地理信息,需要进行相应的数据校正工作。
常见的数据校正方法包括基于地面控制点的几何校正、大气校正等。
高分辨率遥感数据的处理与分析方法

高分辨率遥感数据的处理与分析方法遥感技术的发展日益成熟,高分辨率遥感数据的获取量逐渐增加。
如何处理和分析这些海量数据成为遥感领域的重要研究课题。
本文将介绍高分辨率遥感数据的处理与分析方法,并探讨其在不同领域的应用。
一、数据预处理高分辨率遥感数据的预处理是数据处理的重要步骤,它包括数据去噪、辐射校正、几何校正等内容。
1. 数据去噪:高分辨率遥感数据中常常存在各种噪声,如椒盐噪声、斑点噪声等。
为了减少噪声对后续分析的影响,可以采用滤波算法对数据进行去噪处理,如中值滤波、均值滤波等。
2. 辐射校正:高分辨率遥感数据的辐射校正是将原始数据转换为物理度量的一个过程。
通过影像的辐射校正,可以消除大气、地表反射率等因素对遥感影像的影响,得到准确的反射率信息。
3. 几何校正:高分辨率遥感数据的几何校正是将影像的像素空间坐标与实际地理坐标之间建立映射关系的过程。
通过准确的几何校正,可以保证影像的空间精度,提高后续分析的可靠性。
二、数据分类与特征提取高分辨率遥感数据的分类和特征提取是将遥感影像转化为语义信息的重要工作。
1. 数据分类:数据分类是指将遥感影像中的像素根据其反射率或其他属性进行分类,以获得具有不同意义的地物信息。
常用的分类方法包括基于像元的分类、基于对象的分类和基于深度学习的分类等。
2. 特征提取:特征提取是将遥感影像中不同地物的特征进行提取和描述的过程。
常用的特征提取方法包括纹理特征提取、形状特征提取、光谱特征提取等。
通过特征提取,可以获得地物的几何、纹理和光谱等多维信息,为后续的应用提供基础。
三、数据融合与信息提取高分辨率遥感数据融合与信息提取是将多源数据融合,获取更丰富的地物信息的关键环节。
1. 数据融合:高分辨率遥感数据融合是指将不同源、不同分辨率的遥感数据进行融合,以获取更全面、更准确的地物信息。
常见的数据融合方法包括基于智能算法的融合、基于模型的融合等。
2. 信息提取:通过数据融合,可以获取到更丰富的地物信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感讲座——遥感影像预处理
据预处理是遥感应用的第一步,也是非常重要的一步。
目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。
预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。
下面是预处理中比较常见的流程。
1、数据预处理一般流程
数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。
各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。
2、数据预处理的各个流程介绍
(一)几何精校正与影像配准
引起影像几何变形一般分为两大类:系统性和非系统性。
系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。
在做几何校正前,先要知道几个概念:
地理编码:把图像矫正到一种统一标准的坐标系。
地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。
图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准
影像几何精校正,一般步骤如下,
(1)GCP(地面控制点)的选取
这是几何校正中最重要的一步。
可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。
选取得控制点有以下特征:
1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等;
2、地面控制点上的地物不随时间而变化。
GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。
卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。
(2)建立几何校正模型
地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。
(3)图像重采样
重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行列号不是或不全是正数关系。
因此需要根据输出图像上的各像元在输入图像中的位置,对原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。
常用的内插方法包括:
1、最邻近法是将最邻近的像元值赋予新像元。
该方法的优点是输出图像仍然保持原来的像元值,简单,处理速度快。
但这种方法最大可产生半个像元的位置偏移,可能造成输出图像中某些地物的不连贯。
2、双线性内插法是使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。
该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值。
3、三次卷积内插法较为复杂,它使用内插点周围的16个像元值,用三次卷积函数进行内插。
这种方法对边缘有所增强,并具有均衡化和清晰化的效果,当它仍然破坏了原来的像元值,且计算量大。
一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。
后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路网、水系、地物边界等。
(二)数字图像镶嵌与裁剪
镶嵌
当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。
在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。
镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。
但接边色调相差太大时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻影像的色调不允许平滑,避免信息变异。
裁剪
图像裁剪的目的是将研究之外的区域去除,常用的是按照行政区划边界或自然区划边界进行图像的分幅裁剪。
它的过程可分为两步:矢量栅格化和掩膜计算(Mask)。
矢量栅格化是将面状矢量数据转化成二值栅格图像文件,文件像元大小与被裁剪图像一致;把二值图像中的裁剪区域的值设为1,区域外取0值,与被裁剪图像做交集运算,计算所得图像就是图像裁剪结果。
(三)大气校正
遥感图像在获取过程中,受到如大气吸收与散射、传感器定标、地形等因素的影响,且它们会随时间的不同而有所差异。
因此,在多时相遥感图像中,除了地物的变化会引起图像中辐射值的变化外,不变的地物在不同时相图像中的辐射值也会有差异。
利用多时相遥感图像的光谱信息来检测地物变化状况的动态监测,其重要前提是要消除不变地物的辐射值差异。
辐射校正是消除非地物变化所造成的图像辐射值改变的有效方法,按照校正后的结果可以分为2种,绝对辐射校正方法和相对辐射校正方法。
绝对辐射校正方法是将遥感图像的DN(Digital Number)值转换为真实地表反射率的方法,它需要获取影像过境时的地表测量数据,并考虑地形起伏等因素来校正大气和传感器的影响,因此这类方法一般都很复杂,目前大多数遥感图像都无法满足上述条件。
相对辐射校正是将一图像作为参考(或基准)图像,调整另一图像的DN值,使得两时相影像上同名的地物具有相同的DN值,这个过程也叫多时相遥感图像的光谱归一化。
这样我们就可以通过分析不同时相遥感图像上的辐射值差异来实现变化监测。
因此,相对辐射校正就是要使相对稳定的同名地物的辐射值在不同时相遥感图像上一致,从而完成地物动态变化的遥感动态监测。
3、ERDAS中的数据预处理介绍
(一)几何精校正与影像配准
(1)选择几何校正模型
ERDAS有大多数商业化卫星的几何校正模型,如Landsat、QuickBird、Ikonos、Spot4、5、P5等。
控制点选择方式也有很多。
选择控制点也非常的方便,包含了误差的结算。
重采样方式包含了四种方法。
(二)数字图像镶嵌与裁剪 镶嵌
在ERDAS IMAIGEN V9.x中,镶嵌模块(mosaic)新增加了三种方式,除了之前的mosaic Tool,新添Mosaic pro、Mosaic Direct和Mosaic Wizard。
ERDAS的Mosaic模块功能比较全,包括了色彩平衡、接边线编辑、输出区域裁减等。
操作也非常简单,流程化操作方式。
多种色彩平衡方法
多种接边线编辑方式。
裁减
在ERDAS中做裁减的方法非常的多,如Dice Image模块,Subset Image,Mask 模块,Mosaic下的裁减,Map Series Tool裁减。
如下图为Dice Image模块下的地图裁减。
打开DatePre→Dice Image模块。
输入分幅影像文件和输出的文件,设置划分间隔,如需要还可以设置重叠区宽度。
在Mosaic中也可以利用矢量文件对影像进行裁减。
打开DatePre→Mosaic Images →Mosaic Tool模块。
加载完分幅影像之后,在Set mode for Output Image下,点开Set Output Option dialog对话框,如图4。
在method列表框下有6个选项,选择Polygon Vector File,之后选择一个分幅的矢量文件,同时还可以选择其中的一个字段作为分幅结果的文件名。
(三)大气校正
ERDAS的大气校正模块为ATCOR。
详细情况参见帖子:/ESRI/viewthread.php?tid=11818&highlight=%B4% F3%C6%F8%D0%A3%D5%FD。