遥感影像处理步骤

合集下载

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤

目录01下载影像02波段组合03影像拼接04影像裁切05对裁切的影像进行监督分类06矢量化07修改图斑08注意*说明:按住Ctrl键点击以上超链接可以直接到达该步骤一、下载影像通过与全国矢量边界叠加检验影像是否下载完整,该操作在arcGIS中完成。

如下图:若想去掉背景值(影像周围黑色区域),只需选中对应影像——右键——properties在弹出对话框里选择去除按钮如图所示点击应用即可消除背景值。

二、波段组合打开ENVI单击file——Open Image File如下图:单击RGB Color(红线框)先后单击该影像的4、3、4、波段单击load RGB,在弹出窗口中选择File——Save image As——image File选择路径保存即可。

三、影像的拼接用ENVI将要拼接的影像全部打开操作步骤:单击file——Open Image File打开所有要拼接的影像。

(我们是分省拼接的)选择Map→Mosaicking→Georeferenced打开拼接窗口在弹出窗口选择Import→ImportFiles选中要拼接的影像如图所示:单击OK如下图,该操作并没有去掉背景值,有很多黑色的三角,要去掉背景值需选中要去除背景值的影像右键——Edit Entry弹出对话框如下图,在红色框位置输入0,即可消除背景值,因为遥感影像中背景值的对应数值就是0;另外Lower Image to bottom和Lower Image to position可调整影像层次关系,将云多或质量较差的影像放在底层。

点击File菜单下的Apply命令,在弹出对话框中单击choose选择输出路径完成镶嵌。

四、影像的裁切1、单击file——Open Image File打开拼接好的影像,与镶嵌相同。

2、单击file——Open Vector File 打开裁切影像的矢量边界,因为我们用的矢量边界是shape 文件,所以打开时注意选择显示的文件为*.sap3、在弹出窗口中选择Memory 再选择OK4、选中边界文件,File——Export layer to ROI;此处可以选择多个矢量边界一起转为ROI(右图),ENVI裁切的直接工具是ROI文件,选择多个矢量边界裁切出来的区域是边界之和裁切出的对应区域。

遥感影像快速处理与智能解译系统

遥感影像快速处理与智能解译系统

遥感影像快速处理与智能解译系统随着空间科学技术的快速发展,遥感影像的获取和分析已成为地理信息系统(GIS)、环境监测、城市规划、土地资源调查等领域的重要工具。

然而,遥感影像的解析往往面临处理量大、处理速度慢以及解译精度不高等问题。

为了解决这些问题,本文将介绍一种遥感影像快速处理与智能解译系统。

一、遥感影像快速处理系统遥感影像快速处理系统主要包括以下四个步骤:数据预处理、图像融合、图像分类和图像分割。

1、数据预处理:这个步骤主要是对原始数据进行质量检查、格式转换和噪声去除等操作,以确保数据的准确性和一致性。

2、图像融合:通过将多源遥感影像进行融合,可以获取更全面和准确的信息。

常用的图像融合方法包括基于波段融合、基于空间融合和基于光谱融合等。

3、图像分类:这个步骤主要是利用计算机视觉和深度学习技术对遥感影像进行自动分类,以实现快速、准确的数据处理。

4、图像分割:对于一些特定的应用场景,可能需要对遥感影像进行更精细的处理,例如目标检测、边缘检测等,这时就需要用到图像分割技术。

二、智能解译系统智能解译系统是遥感影像解析的关键部分,它主要包括以下三个步骤:特征提取、分类识别和结果输出。

1、特征提取:从遥感影像中提取有用的特征是智能解译系统的第一步。

这些特征可以包括颜色、形状、纹理等,具体提取哪些特征需要根据实际应用场景来确定。

2、分类识别:在提取出有用的特征之后,就需要利用这些特征来进行分类识别。

常用的分类识别方法包括支持向量机(SVM)、随机森林(RF)、神经网络等。

3、结果输出:智能解译系统需要将分类识别的结果以易于理解的方式输出,例如生成报告、绘制图表等。

三、总结遥感影像快速处理与智能解译系统是遥感技术发展的重要方向,它可以大大提高遥感影像的处理速度和解译精度,从而为各领域的决策提供更准确、更及时的数据支持。

虽然现有的系统已经取得了很大的进展,但是仍存在一些挑战和问题需要解决,例如如何进一步提高处理速度和解译精度,如何更好地适应各种复杂的应用场景等。

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤

目录01下载影像02波段组合03影像拼接04影像裁切05对裁切的影像进行监督分类06矢量化07修改图斑08注意*说明:按住Ctrl键点击以上超链接可以直接到达该步骤一、下载影像通过与全国矢量边界叠加检验影像是否下载完整,该操作在arcGIS中完成。

如下图:若想去掉背景值(影像周围黑色区域),只需选中对应影像——右键——properties在弹出对话框里选择去除按钮如图所示点击应用即可消除背景值。

二、波段组合打开ENVI单击file——Open Image File如下图:单击RGB Color(红线框)先后单击该影像的4、3、4、波段单击load RGB,在弹出窗口中选择File——Save image As——image File选择路径保存即可。

三、影像的拼接用ENVI将要拼接的影像全部打开操作步骤:单击file——Open Image File打开所有要拼接的影像。

(我们是分省拼接的)选择Map→Mosaicking→Georeferenced打开拼接窗口在弹出窗口选择Import→ImportFiles选中要拼接的影像如图所示:单击OK如下图,该操作并没有去掉背景值,有很多黑色的三角,要去掉背景值需选中要去除背景值的影像右键——Edit Entry弹出对话框如下图,在红色框位置输入0,即可消除背景值,因为遥感影像中背景值的对应数值就是0;另外Lower Image to bottom和Lower Image to position可调整影像层次关系,将云多或质量较差的影像放在底层。

点击File菜单下的Apply命令,在弹出对话框中单击choose选择输出路径完成镶嵌。

四、影像的裁切1、单击file——Open Image File打开拼接好的影像,与镶嵌相同。

2、单击file——Open Vector File 打开裁切影像的矢量边界,因为我们用的矢量边界是shape 文件,所以打开时注意选择显示的文件为*.sap3、在弹出窗口中选择Memory 再选择OK4、选中边界文件,File——Export layer to ROI;此处可以选择多个矢量边界一起转为ROI(右图),ENVI裁切的直接工具是ROI文件,选择多个矢量边界裁切出来的区域是边界之和裁切出的对应区域。

遥感卫星影像数据处理步骤

遥感卫星影像数据处理步骤

北京揽宇方圆信息技术有限公司遥感卫星影像处理是遥感应用的第一步,也是非常重要的一步。

目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。

预处理的流程在各个行业、不同数据中有点差异,而且注重点也各有不同。

(一)几何精校正与影像配准引起影像几何变形一般分为两大类:系统性和非系统性。

系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。

(二)影像融合将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的影像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。

(三)影像镶嵌与裁剪(1)镶嵌当研究区超出单幅遥感影像所覆盖的范围时,通常需要将两幅或多幅影像拼接起来形成一幅或一系列覆盖全区的较大的影像。

在进行影像的镶嵌时,需要确定一幅参考影像,参考影像将作为输出镶嵌影像的基准,决定镶嵌影像的对比度匹配、以及输出影像的像元大小和数据类型等。

镶嵌得两幅或多幅影像选择相同或相近的成像时间,使得影像的色调保持一致。

但接边色调相差太大时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻影像的色调不允许平滑,避免信息变异。

(2)裁剪影像裁剪的目的是将研究之外的区域去除,常用的是按照行政区划边界或自然区划边界进行影像的分幅裁剪。

(四)大气校正遥感影像在获取过程中,受到如大气吸收与散射、传感器定标、地形等因素的影响,且它们会随时间的不同而有所差异。

因此,在多时相遥感影像中,除了地物的变化会引起影像中辐射值的变化外,不变的地物在不同时相影像中的辐射值也会有差异。

利用多时相遥感影像的光谱信息来检测地物变化状况的动态监测,其重要前提是要消除不变地物的辐射值差异。

辐射校正是消除非地物变化所造成的影像辐射值改变的有效方法,按照校正后的结果可以分为2种,绝对辐射校正方法和相对辐射校正方法。

遥感影像处理技术方案

遥感影像处理技术方案

遥感影像处理技术方案一、引言遥感技术已广泛应用于农业、环境监测、城市规划、交通管理等领域。

遥感影像处理是遥感技术应用的重要环节,通过对遥感影像的预处理、增强、特征提取等操作,实现目标识别、分类、定位等功能。

本文将详细论述遥感影像处理的流程与方法,为相关应用领域提供技术支持和参考。

二、遥感影像预处理遥感影像预处理是后续处理的基础,主要包括辐射定标、大气校正、几何校正等步骤。

1.辐射定标辐射定标是通过对传感器测量到的辐射强度进行标定,将原始影像转换为绝对辐射值。

辐射定标系数是关键参数,可通过传感器制造商提供的校准文件获取。

通过辐射定标,可消除传感器非线性响应的影响,提高影像的准确性。

2.大气校正大气校正主要是消除大气散射、吸收等因素对遥感影像的影响,还原地物真实反射强度。

常见的校正方法有经验模型法、物理模型法等。

经验模型法基于已知的地物反射率,根据实际天气情况进行校正;物理模型法根据大气散射原理,建立大气层与地面反射的数学模型,对影像进行校正。

3.几何校正几何校正主要是消除遥感影像的几何变形,包括平移、旋转、缩放等。

几何校正需要选取一定数量的地面控制点,通过校正公式对整个影像进行校正。

常用的方法有直接线性变换、多项式变换等。

几何校正可提高影像的定位精度,为后续的目标识别、分类等操作提供准确的基础数据。

三、遥感影像增强遥感影像增强旨在提高影像的对比度、清晰度等,以便更好地识别和提取目标信息。

常见的增强方法包括对比度增强、空间滤波、频率域滤波等。

1.对比度增强对比度增强通过拉伸像素强度分布范围,提高影像的对比度。

常见的对比度增强方法有直方图均衡化、反锐化掩膜等。

直方图均衡化通过对像素强度分布进行均衡化处理,提高影像的对比度;反锐化掩膜通过增强高频信息,提高影像的细节表现。

2.空间滤波空间滤波通过在空间域对影像进行平滑或锐化处理,去除噪声或增强边缘信息。

常见的空间滤波方法有均值滤波、中值滤波、高斯滤波等。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤一、影像获取遥感影像预处理的第一步是获取原始影像数据。

通过卫星、飞机或其他遥感平台获取的影像数据,可以获得不同波段的光谱信息。

二、影像校正影像校正是为了消除由于影像获取过程中产生的各种误差,提高影像质量。

主要包括几何校正和辐射校正两个方面。

几何校正是通过对影像进行几何变换,将其与真实地物的位置和形状相对应。

这样可以消除由于视角、高程等因素引起的形变,使影像与实际地物一一对应。

辐射校正是为了消除由于大气、地表反射等因素引起的辐射差异。

通过对不同波段的辐射通量进行标定和校正,可以得到准确的辐射值。

三、影像配准影像配准是将不同时间、不同传感器或不同分辨率的影像对齐到同一坐标系统中。

通过对影像进行几何变换,使其在空间上一一对应。

这样可以实现影像的叠加和比较。

四、影像增强影像增强是为了提高影像的可视性和解译能力。

通过应用不同的滤波器、变换或增强算法,可以突出地物的特征,减少噪声和干扰,使影像更清晰、更易于分析。

五、影像分类影像分类是将影像像元划分为不同的地物类别。

根据不同的目标和需求,可以使用不同的分类方法,如基于像素的分类、基于对象的分类等。

六、影像融合影像融合是将多源、多尺度或多波段的影像融合成一幅综合影像。

通过融合可以充分利用各种影像的优势,提高地物提取和解译的精度。

七、影像制图影像制图是将处理后的影像转换为地图或图像产品。

通过对影像进行地理参考、投影变换和符号化处理,可以生成各种专题地图和影像产品。

八、影像分析影像分析是对处理后的影像进行定量和定性分析。

通过应用不同的遥感算法和模型,可以提取地物信息、监测变化和预测趋势。

九、结果验证结果验证是对影像分析结果进行验证和评估。

通过与实地调查数据进行比对,可以评估分析结果的准确性和可靠性。

总结:遥感影像预处理是遥感应用的重要环节,它涉及到影像获取、校正、配准、增强、分类、融合、制图、分析和结果验证等多个步骤。

每个步骤都有其独特的作用和意义,对于提高影像质量和分析精度具有重要意义。

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤

遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。

下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。

- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。

- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。

- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。

2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。

- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。

- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。

3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。

- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。

4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。

- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。

- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。

5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。

- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。

6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。

- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。

以上是遥感影像处理的具体操作步骤。

不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤

遥感影像预处理的正确步骤在遥感领域,影像预处理是遥感数据处理的重要环节,对于提高遥感影像的质量和后续分析具有重要意义。

以下是遥感影像预处理的正确步骤:一、数据获取与预处理1.数据获取:遥感影像数据来源于各种遥感卫星、航空遥感等,需要根据研究目的选择合适的数据源。

2.预处理:数据获取后,需要对数据进行预处理,以消除原始数据中的噪声、异常值等问题。

预处理方法包括去除噪声、裁剪、缩放等。

二、几何校正与图像配准1.几何校正:由于遥感影像在采集过程中可能受到传感器本身、地球曲率、大气折射等因素的影响,导致影像几何变形。

几何校正旨在消除这些变形,提高影像质量。

常见的方法有传感器模型校正、基于控制点的几何校正等。

2.图像配准:图像配准是将多幅遥感影像(如多光谱影像和单波段高分辨率影像)进行空间对齐,使其在同一坐标系统下。

配准方法有基于像素的配准、基于变换的配准等。

三、图像融合1.图像融合是将不同分辨率、不同光谱的遥感影像融合为高分辨率、多光谱的影像。

常见的图像融合方法有:(1)IHS变换融合:将高分辨率全色影像与亮度进行直方图匹配,然后去掉亮度,用预处理的高分辨率全色影像代替。

与色度H、饱和度S一起,利用逆变换式变换至RGB系统,得到融合后的影像。

(2)小波变换融合:利用人眼对局部对比度变化敏感的特性,根据一定的融合规则,在多幅原图像中选择最显著的特征(如边缘、线段等),并将这些特征保留在融合后的图像中。

四、影像增强与分割1.影像增强:通过调整亮度、对比度、色彩平衡等参数,提高遥感影像的视觉效果。

常见的增强方法有:直方图均衡化、自适应直方图均衡化、色彩空间转换等。

2.影像分割:将融合后的遥感影像划分为不同的区域,以便进行后续分析。

常见的分割方法有:基于阈值的分割、基于区域的分割、基于边缘的分割、基于深度学习的分割等。

五、特征提取与分析1.特征提取:从遥感影像中提取有意义的特征,如纹理、颜色、形状等。

常见的特征提取方法有:灰度共生矩阵、局部二值模式(LBP)、HOG特征等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.预处理
1.降噪处理
由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。

(1)除周期性噪声和尖锐性噪声
周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。

它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。

一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

(2)除坏线和条带
去除遥感图像中的坏线。

遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。

一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理
由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。

3.阴影处理
由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。

二.几何纠正
通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。

特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。

1.图像配准
为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。

(1)影像对栅格图像的配准
将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

(2)影像对矢量图形的配准
将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。

2.几何粗纠正
这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.
3.几何精纠正
为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。

(1)图像对图像的纠正
利用已有准确地理坐标和投影信息的遥感影像,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

(2)图像对地图(栅格或矢量)
利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

(3)图像对已知坐标点(地面控制点)
利用已有准确地理坐标和投影信息的已知坐标点或地面控制点,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

4.正射纠正
利用已有地理参考数据(影像、地形图和控制点等)和数字高程模型数据(DEM、GDEM),对原始遥感影像进行纠正,可消除或减弱地形起伏带来的影像变形,使得遥感影像具有准确的地面坐标和投影信息。

三.图像增强
为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出,需要对遥感图像进行增强处理。

1.彩色合成
为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。

彩色图像可以分为真彩色图像和假彩色图像。

2.直方图变换
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。

一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。

直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量。

3.密度分割
将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。

4.灰度颠倒
灰度颠倒是将图像的灰度范围先拉伸到显示设备的动态范围(如0~255)到饱和状态,然后再进行颠倒,使正像和负像互换。

5.图像间运算
两幅或多幅单波段图像,空间配准后可进行算术运算,实现图像的增强。

常见的有加法运算、减法运算、比值运算和综合运算。

例如:
减法运算:可突现出两波段差值大的地物,如红外-红,可突现植被信息。

算:常用于计算植被指数、消除地形阴影等。

植被指数:NDVI=(IR-R)/(IR+R)
6.邻域增强
又叫滤波处理,是在被处理像元周围的像元参与下进行的运算处理,邻域的范围取决于滤波器的大小,如3×3或5×5等。

邻区法处理用于去噪声、图像平滑、锐化和相关运算。

7.主成分分析
也叫PCA变换,可以用来消除特征向量中各特征之间的相关性,并进行特征选择。

主成分分析算法还可以用来进行高光谱图像数据的压缩和信息融合。

例如:对LandsatTM 的6个波段的多光谱图像(热红外波段除外)进行主成分分析,然后把得到的第1,2,3主分量图像进行彩色合成,可以获得信息量非常丰富的彩色图像。

8.K-T变换
即Kauth-Thomas变换,又称为“缨帽变换”。

这种变换着眼点在于农作物生长过程而区别于其他植被覆盖,力争抓住地面景物在多光谱空间中的特征。

目前对这个变换的研究主要集中在MSS与TM两种遥感数据的应用分析方面。

9.图像融合
遥感图像信息融合是将多源遥感数据在统一的地理坐标系中,采用一定的算法生成一组新的信息或合成图像的过程。

不同的遥感数据具有不同的空间分辨率、波谱分辨率和时相分辨率,如果能将它们各自的优势综合起来,可以弥息的不足,这样不仅扩大了各自信息的应用范围,而且大大提高了遥感影像分析的精度。

四.图像裁剪
在日常遥感应用中,常常只对遥感影像中的一个特定的范围内的信息感兴趣,这就需要将遥感影像裁减成研究范围的大小。

1.按ROI裁剪
根据ROI(感兴趣区域)范围大小对被裁减影像进行裁剪。

2.按文件裁剪
按照指定影像文件的范围大小对被裁减影像进行裁剪。

3.按地图裁剪根据地图的地理坐标或经纬度的范围对被裁减影像进行裁剪。


1.图像镶嵌
也叫图像拼接,是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。

通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。

2.影像匀色
在实际应用中,我们用来进行图像镶嵌的遥感影像,经常来源于不同传感器、不同时相的遥感数据,在做图象镶嵌时经常会出现色调不一致,这时就需要结合实际情况和整体协调性对参与镶嵌的影像进行匀色。

六.遥感信息提取
遥感图像中目标地物的特征是地物电磁波的辐射差异在遥感影像上的反映。

依据遥感图像上的地物特征,识别地物类型、性质、空间位置、形状、大小等属性的过程即为遥感信息提取。

目前信息提取的方法有:目视判读法和计算机分类法。

其中目视判读是最常用的方法。

1.目视判读
也叫人工解译,即用人工的方法判读遥感影像,对遥感影像上目标地物的范围进行手工勾绘,达到信息提取的目的。

2.图像分类
是依据是地物的光谱特征,确定判别函数和相应的判别准则,将图像所有的像元按性质分为若干类别的过程。

(1)监督分类
在研究区域选有代表性的训练场地作为样本,通过选择特征参数(如亮度的均值、方差等),建立判别函数,对样本进行分类,依据样本的分类特征来识别样本像元的归属类别的方法。

(2)非监督分类
没有先验的样本类别,根据像元间的相似度大小进行归类,将相似度大的归为一类的方法。

(3)其他分类方
包括神经网络分类、分形分类、模糊分类等分类方法,以及他数据挖掘方法如模式识别、人工智能等,在这里不做进一步阐述。

相关文档
最新文档