一元二次方程的解法直接开平方课件
21-2 解一元二次方程 课件(共33张PPT)

小练习
用公式法解下列一元二次方程:
(3)5x2-3x=x+1
(4)x2+17x=8x
解:方程化为5x2-4x-1=0
解:方程化为x2-8x+17=0
a=5,b=-4,c=-1.
a=1,b=-8,c=17.
Δ=b2-4ac=(-4)2-4×5×(-1)=36>0. Δ=b2-4ac=(-8)2-4×1×17=-4<0.
因式分解,可以考虑配方法;
(4)三项都有,且二次项系数不为1时的,一般可以用公式法。
小练习
例 3:解方程:x2-6x-16=0。
解:原方程变形为(x-8)(x+2)=0。
于是,得x-8=0或x+2=0
∴x1=8,x2=-2
解析:一元二次方程的解法有:配方法,公式法和因式分解法,解题时要
注意选择合适的解题方法。解此一元二次方程选择因式分解法最简单,因
(3)求解b2-4ac的值,如果b2-4ac≥0;
−± 2−4
(4)代入公式x=
,即可求出一元二次方程的根。
2
知识梳理
例 2:用公式法解方程x2-3x-1=0正确的解为( D )
−3± 13
A. x1,2=
2
3± 5
C.x1,2=
2
B.
D.
−3± 5
x1,2=
2
3± 13
x1,2=
2
解析:x2-3x-1=0。这里a=1,b=-3,c=-1。
Δ=b2-4ac=(-4)2-4×1×(-7)=44>0. Δ=b2-4ac=(-2 2)2-4×2×1=0.
−± 2−4
方程有两个不等的实数根x=
2
_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

观察(1)(2)看所填的常 数与一次项系数之间
有什么关系?
(3) x2 4x 22=( x 2 )2
1.会用直接开平方法解形如(x a)2 b(b 0)
的方程. 2.灵活运用因式分解法解一元二次方程. 3.了解转化、降次思想在解方程中的运用。
合理选择直接开平方法和因式分解法较熟练 地解一元二次方程。
a x 1.如果 x2 a(a 0) ,则 就叫做 的 平方根 。
2.如果 x2 a(a 0) , 则x = a
解:(1) χ2=25
(2)移项,得χ2=900
直接开平方,得χ=±5 直接开平方,得χ=±30
∴ χ1=5,χ2=-5
∴χ1=30 χ2=-30
2、利用直接开平方法解下列方程:
(1)(χ+1)2-4=0
(2) 12(20 (2) 12(2-χ)2-9=0
分析:我们可以先把(χ+1)看作一个整体,原方程便可
χ1=-1,χ2=1.
利用因式分解的方法解方程,这种方法 叫做因式分解法。
1、利用因式分解法解下列方程: 1) χ2-3χ=0; 2) 16χ2=25; 3)(2χ+3)2-25=0.
解:1)方程左边分解因式,得χ(χ-3)=0.
∴ χ=0,或χ-3=0,
解得 χ1=0,χ2=3. 2) 方程移项,得16χ2-25=0
问题2 要使一块矩形场地的长比宽多6m,并且
面积为16 m2 , 场地的长和宽应各是多少?
解:设场地的宽xm,长(x+6)m,根据矩形面积
为16 m2 ,列方程
X(x+6)=16
即x2 6x 16 0
怎样解?
想x2一想6x解 1方6 程 0x2 6x 16 0的流程怎样?
一元二次方程的解法1——直接开平方法

小组 探究 3
1、问题 3. 能用直接开平方法解方程 (2x -1) 2=(x -2) 2 吗? 2、分析:观察发现: 如果把 2x-1 看成是( x-2 )2的平 方根,同样可以用直接开平方法求解。 3、解:直接开平方,得 2x-1= ±( x-2 ) ∴2x-1=x-2 或 2x-1=-x+2
教师组织, 培养反思习
学生畅谈
惯
学生课外完 成,教师批 改。
培养复习习 惯和创新意 识。
3
4
评、强调。 2、培养学生
规范解题的
习惯。
完成下列题目并批改打分( 1 题 30 分, 2 题每个 15 分): 学生完成、 1、检测学生
1、下列解方程的过程中,正确的是(
)
评分、纠错。 学习情况,
(A)x 2= -2, 解方程,得 x=± 2
教师点评、 反馈教学效
强调。
果。
(B)(x-2) 2=4, 解方程,得 x-2=2, x=4
x=
±a
即 x 1= a , x 2 = - a .
4、结论:只要一元二次方程可化为“左平方,右非负” 的形式,就可以用“直接开方带±”的方法降次解方程。
1
小组 探究 1
1 、问题 1.能用直接开平方法解下列方程吗?
(1) x 2-8=0
(2 )2x2=9
(3)-3x 2+7=0
2、思考:左非平方怎么办?
华东师大版数学九年级(上册)第 22 章
第二课时 一元二次方程的解法 1——直接开平方法
学校
汝阳县直初中
主备人 吕先锋
时间
设计 理念
教 学 目 标
重点 难点
一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解

一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:类型二、因式分解法解一元二次方程【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
湘教版九年级数学上册课件:2.2 一元二次方程的解法 (共35张PPT)

反过来,如果d和h是方程 x2 + bx + c = 0 的两 个根,则方程的左边可以分解成
x2 + bx + c = (x - d )(x – h)= 0.
我们已经学习了用配方法、公式法和因式分解法 解一元二次方程,在具体的问题中,我们要根据方 程的特点,选择合适的方法来求解.
如何选择合适的方法来解一元二次方程呢?
x b b2 4ac ( b2 - 4ac ≥0) 2a
我们通常把这个式子叫作一元二次方程的求根公式.
由求根公式可知, 一元二次方程的根由方程的系
数a,b,c 决定, 这也反映出了一元二次方程的根与 系数a,b,c之间的一个关系.
运用一元二次方程的求根公式直接求每一个一元二 次方程的根,这种解一元二次方程的方法叫作公式法.
第2章 一元二次方程
2.2 一元二次方程的解法
2.2 一元二次方程的解法 —配方法
教学重、难 点
教 学 重 点 : 运 用 开 平 方 法 解 形 如 ( x+m ) 2=n(n≥0)
的方程;领会降次—转化的数学思想.
教学难点:通过根据平方根的意义解形如 x2=n 的方 程,将知识迁移到根据平方根的意义解形如(x+m)2 = n(n≥0)的方程.
用配方法解一元二次方程的一般步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
例 市区内有一块边长为15米的正方形绿地,经城市规 划,需扩大绿化面积,预计规划后的正方形绿地面积将 达到289平方米,这块绿地的边长增加了多少米?
解:这里 a 1 b 7 c 18
一元二次方程的解法直接开平方法PPT课件

2
2 ,x2=-1- 2
例2解下列方程: ⑵ ( x - 1) 2 - 4 = 0 ⑶ 12(3-2x)2-3 = 0 分析:第2小题先将-4移到方程的右边,再同 第1小题一样地解; 解:(2)移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
典型例题
即x1=3,x2=-1
典型例题 例2解下列方程:
⑶ 12(3-2x)2-3 = 0 分析:第3小题先将-3移到方程的右边,再 两边都除以12,再同第1小题一样地去解,然后 两边都除以-2即可。 解:(3)移项,得12(3-2x)2=3 两边都除以12,得(3-2x)2=0.25 ∵3-2x是0.25的平方根 ∴3-2x=±0.5 即3-2x=0.5,3-2x=-0.5
首先将一元二次方程化为左边是含有未 知数的一个完全平方式,右边是非负数的形式, 然后用平方根的概念求解
3.任意一个一元二次方程都能用直接开平 方法求解吗?请举例说明
1、下列解方程的过程中,正确的是(D ) (A)x2=-2,解方程,得x=±
练一练
2
(B)(x-2)2=4,解方程,得x-2=2,x=4
试一试:
已知一元二次方程mx2+n=0(m≠0),若方 程可以用直接开平方法求解,且有两个实数根, 则m、n必须满足的条件是( B ) A.n=0 C.n是m的整数倍 B.m、n异号 D.m、n同号
例1解下列方程 (1)x2-1.21=0
典型例题
(2)4x2-1=0
解(1)移项,得x2=1.21 ∵x是1.21的平方根 ∴x=±1.1 即 x1=1.1,x2=-1.1 (2)移项,得4x2=1 1 2 两边都除以4,得x = 1 4 ∵x是 4 的平方根 ∴x=
1.2.1一元二次方程的解法(因式分解法,直接开平方法 1)

2
上述解一元二次方程的方法叫作因式分解法.
利用因式分解的方法解方程,这种方法 叫做因式分解法。
动脑筋
方程①还有其他解法吗? (35-2x) -900 = 0.
2
①
把方程①写成(35-2x)2=900, 这表明35-2x是900的平方根, 因此 3 5 2 x 9 0 0 或 35 2 x 900 , 即35-2x=30 或 35-2x=-30. 解得 x=2.5 或 x=32.5.
(4)解这两个一元一次方程, 它们的解就是原方程的解。
因式分解法的依据是什么?
若ab=0,则a=0或b=0。
布置作业
P19
(A) T1
结
束
可以用平方差公式, 把方程①的左边因式 分解.
先把方程①写成 (35-2x) -30 =0. 把此方程的左边因式分解 (35-2x+30)(35-2x-30)=0, 即 (65-2x)(5-2x)=0. ② 因此,从方程②得 其次,我们知道:“如果p q = 0, 65-2x=0或 5-2x=0. ③
(1) 9x -49=0 , 原方程可以写成 解 2 2 (3x) -7 = 0, 把方程左边因式分解,得 (3x+7)(3x-7)=0. 由此得出 3x+7=0 或 3x-7=0. 解得 x1 7 ,x 2 7 . (2) 36-x =0 , 原方程可以写成 解 62-x2 = 0, 把方程左边因式分解,得 (6+x)(6-x)=0. 由此得出 6+x=0 或 6-x=0. 解得 x1 6 ,x 2 6 .
解:(解法一) 原方程可以写成
我们可以用因式分解法 解这个方程。
把方程左边因式分解,得
1.2.1 一元二次方程的解法(1)-直接开平方法

1.2 一元二次方程的 解法(第1课时)
直接开平方法
利用平方根的定义直接开平方求一元二 次方程的解的方法。
想一想:
一桶某种油漆可刷的面积为1500dm2, 李林用这桶油漆恰好刷完10个同样的正方 体形状的盒子的全部外表面,你能算出盒 子的棱长吗?
今天你有哪些收获?
1. 直接开平方法的理论根据是:平方根的定义 基本思想是将一元二次方程降幂为一元一次方程.
2. 用直接开平方法可解形如x2=p(p≥0)或 (mx-n)2=p(p≥0)的一元二次方程.
3. 解方程时要注意书写的格式.
小结中的两类方程为什么要加条件:p≥0呢?
1、一元二次方程的概念
等号两边都是整式,只含有一个未知数 (一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.
2、一元二次方程的一般形式
ax2 bx c 0 (a 0)
1、判断下面哪些方程是一元二次方程
(1)x2 3x 4 x2 7 ×
(2) 2x2 4
√
(3)32 x 5x 1 0 ×
解: x2 =25 根据平方根的定义可知:x是25的 (平方根).
∴ x = 25 即: x =±5 这时,我们常用x1、x2来表示未知数为x的 一元二次方程的两个根。
∴ 原方程的两个根为 x1 =5,x2 =-5.
注:因为棱长为正数,所以 x =5
例1、利用直接开平方法解方程: x2 -900=0
(B)(x-2)2=4,解方程,得x-2=2,x=4
(C)4(x-1)2=9,解方程,得4(x-1)= ±3,
7
1
x1= 4 ;x2= 4
(D)(2x+3)2=25,解方程,得2x+3=±5, x1= 1;x2=-4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.任意一个一元二次方程都能用直接开平 方法求解吗?请举例说明
练一练
2、解下列方程: (1)x2=16 (2)x2-0.81=0 (3)9x2=4 (4)y2-144=0
练一练
3、解下列方程: (1)(x-1)2 =4 (2)(x+2)2 =3 (3)(x-4)2-25=0 (4)(2x+3)2-5=0 (5)(2x-1)2 =(3-x)2
典型例题
例2 解下列方程: ⑴ (x+1)2= 2 ⑵ (x-1)2-4 = 0 ⑶ 12(3-2x)2-3 = 0
分析:第1小题中只要将(x+1)看成是一个 整体,就可以运用直接开平方法求解;
解:(1)1+ 2 , x2=-1- 2
典型例题
例2 解下列方程: ⑵ (x-1)2-4 = 0 ⑶ 12(3-2x)2-3 = 0 分析:第2小题先将-4移到方程的右边,再同 第1小题一样地解;
小结与思考
1、怎样的一元二次方程可以用直接开平方法
来求解? (xh)2 k
方程可化为一边是 含__未__知__数__的_完__全__平__方__式___, 另一边是__一_个__常__数_____,那么就可以用直接开 平方法来求解.
2、直接开平方法的理论依据是什么? 平方根的定义及性质
再见!
18.2 (1)一元二次方程的 解法
直接开平方法
概括总结
什么叫直接开平方法?
像解x2=4,x2-2=0这样,这种解一元二次 方程的方法叫做直接开平方法。
说明:运用“直接开平方法”解一元二次方程 的过程,就是把方程化为形如x2=a(a≥0)或 (x+h)2=k(k≥0)的形式,然后再根据平方根的 意义求解
∵3-2x是0.25的平方根
∴3-2x=±0.5
即3-2x=0.5,3-2x=-0.5
∴x1=
5 4
,
x2=
7 4
讨论
1.能用直接开平方法解的一元二次方程有什么特点? 如果一个一元二次方程具有(x+h)2= k(k≥0)
的形式,那么就可以用直接开平方法求解。
2.用直接开平方法解一元二次方程的一般步骤是什么?
解:(2)移项,得(x-1)2=4 ∵x-1是4的平方根 ∴x-1=±2
即x1=3,x2=-1
典型例题
例2 解下列方程: ⑶ 12(3-2x)2-3 = 0
分析:第3小题先将-3移到方程的右边,再两 边都除以12,再同第1小题一样地去解。
解:(3)移项,得12(3-2x)2=3
两边都除以12,得(3-2x)2=0.25