变压器零序电流差动保护
变压器差动保护的四种补偿方式简述

变压器差动保护的四种补偿方式简述变压器差动保护主要考虑幅值补偿和角度补偿。
幅值补偿比较简单,采用标幺化即可处理。
角度的补偿除了考虑角度的问题,对于变压器星形接线侧,若是星形中性点接地,则还需要考虑区外接地时,流过差动CT的零序电流消除问题。
变压器角度补偿有四种方式,以变压器是Y/△-11接线方式为列,简单介绍一下:1、星形侧采用相电流,角形侧采用相电流采用这种方式,则变压器角形侧的相CT要安装在三角形里面,这样高、低压侧同相的电流角度相同。
若变压器星形侧中性点接地,区外故障时高、低压侧同时含有零序电流。
差动不会误动。
2、星形侧采用线电流,角形侧采用相电流这种方式,角形侧相CT安装在三角形外,角形侧相电流不含零序电流。
高压侧采用线电流来补偿30度。
由于高压侧采用了线电流,所以电流中的零序电流也被消除掉了,差动不会误动,不用考虑变压器中性点是否接地。
3、星形侧采用相电流,角形侧采用线电流(补偿零序电流根据星形侧电流计算)这种方式下就需要考虑星形侧零序电流对差动的影响。
若变压器中性点不接地,则不用考虑零序电流影响,星形侧采用相电流,角形侧采用线电流。
若变压器中性点接地,则星形侧电流用相电流减去计算的零序电流,角形侧采用线电流。
4、星形侧采用相电流,角形侧采用线电流(补偿零序电流来自变压器中心点CT) 这种方式下就需要考虑星形侧零序电流对差动的影响。
若变压器中性点不接地,则不用考虑零序电流影响,星形侧采用相电流,角形侧采用线电流。
若变压器中性点接地,则星形侧电流用相电流减去中性点零序电流,角形侧采用线电流。
由于不同的补偿方式,目前各个保护厂家的变压器差动保护也有所不同。
1、星形侧采用相电流,角形侧采用相电流这种方式的角形侧CT安装困难,实际项目很少使用此种方式。
2、星形侧采用线电流,角形侧采用相电流采用此种补偿方式的厂家最多,南瑞、许继、SEL、PMC等都采用此种方式。
3、星形侧采用相电流,角形侧采用线电流(补偿零序电流根据星形侧电流计算)西门子保护可以选择采用这种方式,若变压器中性点是接地的,则西门子保护设置时必须设置高压星形侧是接地方式,同时零序电流设置成来自计算零序。
零序差动说明

为什么要配置零序差动Dcap-3041C在已有的普通变压器及自耦变压器一般采取Y/∆接线,用三相电流互感器对主变实现纵差保护,为了让高低压侧相位达到一致,同时为了防止星形侧外部发生接地短路时,Y侧有零序电流而∆侧没有,引起纵差保护误动,星形侧二次均接成三角形;在普遍采用这种二次接线方式下,当变压器内部接地短路时(单相超高压大型变压器绕组的短路类型主要是绕组对铁蕊即地的绝缘损坏)由于Y 侧二次接成三角形,内部短路所产生的零序电流将被滤去,而纵差保护根本不能反映零序电流,所以在要求纵差保护的同时也能够反映变压器内部接地短路即必须增设零序差动保护。
一、普通变压器及自耦变压器的零序差动1、普通变压器的零序差动保护:如图所示,当YN侧C相绕组某点单相接地短路时,该相绕组被短路点分为两部份,短路相电流各为I1与I2,而绕组匝数也被短路点分为W1与W2试分析:非故障相负荷电流忽略不记,短路点对正常相无影响,故两侧非故障相电流各为0,若有I2 W2>I1 W1则三角形侧绕组C相I2△的方向将由I2决定,相位一致,从图中可看出:三角形侧三相绕组电流分别为0/0/ I2△,则三角形侧的线电流也如图所示,这样两侧的一次电流则为:Ia=0 Ib=0 Ic= I2△IA=0 IB=0 IC= I2根据纵差保护的原理:由于C相两侧接地电流I2与I2△同相位,纯属于穿越性电流,其大小虽不完全一致,但纵差保护的比例制动越限门槛值可随之改变,故纵差保护对YN侧绕组单相接地短路所反映的零敏度可能较低,其对变压器内部单相接地短路时可能拒动。
2、自耦变压器的零序差动保护:首先,纵差保护接线按常规变压器接成Y/Y/△形式,其二次Y形侧均接成三角形,自耦变又是共一个地,前面所述单相绕组接地所产生的零序电流可被滤去,所以这种差动保护对变压器内部接地短路可能拒动。
对于高中压侧中性点均直接接地的自耦变压器,其主要故障为单相接地。
如下图所示:在结构相同/高在压变比相同的情况下,自耦变压器的标准容量等于普通变压器的额定容量则自耦变压器高中压间的短路电抗为普通变的1-(1/K)倍,K为高中压变比,这是因为中压侧短路,高压侧加电压只作用在串联绕组(W1-W2)上,普通变压器高压侧加电压却作用在全部原边绕组W1上,两者的副边绕组均为W2,匝数比(W1-W2)/W1=1-(1/K),而漏电抗与匝数一次方成正比,所以两者高中压间漏抗之比为1-(1/K)倍,由此可知,自耦变压器高中压侧短路电流大。
变压器零序差动保护

自耦变压器零序差动保护问题0引言在超高压电力系统中,自耦变压器因体积小、效率高、用材省等优点而得到了广泛应用。
在为自耦变压器配置保护时,其相间差动保护、匝间保护、瓦斯保护及相间后备保护与普通变压器基本相同,一般不需作特殊考虑,但其零序保护及过负荷保护却有着不同于普通变压器保护的特点。
对于过负荷保护,曾有许多专家及工程技术人员进行过大量的论述[1],本文将主要讨论自耦变压器的零序差动保护。
众所周知,自耦变压器与普通变压器的功率传递方式不尽相同,在普通变压器中,高、中压线圈之间没有电的联系,全部是由电磁感应的作用进行功率传递的,而在自耦变压器中,高、中压线圈之间有电的联系,其功率传递除一部分是靠电磁感应的作用外,另一部分则是靠电的直接传导传递的;并且由自耦变压器的原理、结构所定,其高、中压侧的中性点必须连在一起,且同时接地。
这是自耦变压器与普通变压器的主要差异[2]。
在超高压系统中,大多数大容量的自耦变压器都是分相式。
显而易见,对于分相式的自耦变压器而言,其内部发生接地故障的概率远大于相间故障,因此,对于自耦变压器的接地故障必须有高可靠系数的零序保护。
1自耦变压器单相接地故障时的电流分析为了更清楚地说明自耦变压器的特殊性,首先可以利用图1中500 kV/220 kV自耦变压器作为原型,对其中压侧、高压侧发生区外接地故障时的零序电流分布进行分析。
图1 自耦压器主接线图Fig.1 Connection diagram of autotransformera.当自耦变压器的中压侧发生区外接地故障时,对折合到中压侧的零序等效电路(如图2)进行分析,可以得到式(1)、式(2)。
图2自耦变压器中压侧区外单相短路电流分析Fig.2Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at medium voltage side(1)(2) 其中nGZ=U G/U Z,为自耦变压器高、中压变比;Z0为中压侧(短路点)的零序电流;ZX为中性点提供的零序电流;GG0为自耦变压器公共绕组中的零序电流;G0为自耦变压器高压侧零序电流;G0′为折合到中压侧的高压侧零序电流;XG0,XD0分别为自耦变压器高、低压侧的零序电抗;XSM0为自耦变压器高压侧的系统零序阻抗。
第6章 变压器保护 差动保护

励磁涌流的产生
图6-8 励磁涌流的产生及电流变化曲线 (a)稳态时电压与磁通关系;(c)变压器铁芯的磁化曲线瞬 间合闸时电压与磁通关系
励磁涌流的产生
com
m
2m
np
m
m
Im
t
p
(b)t=0,u=0瞬间空载合闸时电压与磁 通关系 图6-8变压器励磁涌流
I exs
t
(d)励磁涌流波形
变压器各侧电压等级和额定电流不同,因而采用的电流互感
器型号不同,它们的特性差别很大,故引起较大的不平衡
电(实际上是两个电流互感器励磁电流之差)
I unb
3K err K st I k . max K TA.d
(6-12)
Kerr——电流互感器误差,取0.1; KSt——电流互感器同型系数,对发电机线路纵差保护取0.5;对变压器、 母线差动保护取1;
6.4.3变压器的励磁涌流及其抑制措施
变压器励磁电流仅流经变压器的某一侧,因此,通过电流 互感器反应到差动回路中不能被平衡,在外部故障时,由 于电压降低,励磁电流减小,它的影响就更小。可忽略不 计。 但是当变压器空载投入和外部故障切除后电压恢复时,则 可能出现数值很大的励磁电流(又称为励磁涌流)。
UX1
I Y(1)
I Y(2)
KD UT
I Y(1)
I Y(2)
KD W2 UA
I Y(2)
UX2
I (1)
I (2)
I (1)
I
(2)
I Y(2) - I (2)
Wd
(a)
(b)
主变差动保护的基本原理

主变差动保护的基本原理主变差动保护是一种用于保护电力系统主变压器的重要保护装置。
它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。
主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。
主变差动保护的基本原理如下:1.差动电流原理:主变差动保护是基于差动电流原理工作的。
在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。
而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。
2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。
主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。
3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。
通常,差动保护器会对两侧电流进行相位和幅值的比较。
如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在差动电流,差动保护器则判断主变发生故障。
4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。
差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。
5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。
例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。
此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。
总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。
它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。
同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。
变压器装设哪些保护

专业答辩题1、变压器装设哪些保护?答:①重瓦斯、轻瓦斯保护。
②纵联差动和电流速断保护。
③过电流保护。
④零序保护。
⑤过负荷保护。
2、油短路器控制回路中,红、绿灯为什么都要串一个电阻?直流电源监视灯为什么也串联一个电阻?答;油短路器控制回路中串联电阻的目的是为了防止灯座处短路造成开关误跳、误合。
直流电源监视灯串联电阻是为了防止灯丝、灯座短接造成直流短路和防止烧毁电源监视灯。
3、变压器铁芯是否需要接地?允许几点接地?为什么?答:为防止变压器在运行中或试验时,由于静电感应作用在铁芯上产生悬浮感应电位,造成铁芯对地放电,所以铁芯必须可靠接地,且只允许一点接地,如果有两点或两点以上接地,则接地点之间可能形成闭合回路,当主磁通穿过此闭合回路时,就会在其中产生循环电流,造成局部过热事故。
4、三相异步电动机启动时,如果电源一相断线,电机能否启动?有何现象?如果在运行中一相断线,电机是否继续运转?有何不良结果?答:(1)三相异步电动机电源一相断线,电机将无法启动;其现象:转子左右摆动,有强烈的嗡嗡声,断线相电流无指示,其它两相升高。
(2)运行中一相断线,电动机仍能继续运转,但转速降低,电流增大,其运行的两相绕组中电流增大到√3Ue,该电流大于一般的过负荷电流,小于短路电流,熔丝不熔断,继电保护也不动作。
因此,缺相运行,如不及时发现并停止,将造成电机过热而烧毁。
5、分析异步电动机整体过热和局部过热的原因。
答:异步电动机整体过热和局部过热的原因有以下几种可能:(1)电机过载,三相电流偏大;(2)拖动机械卡阻;(3)电源电压过低或过高;(4)定子和转子在运转中相摩擦;(5)定子绕组有短路故障;6、两台变压器并联运行的条件?答:(1)并联变压器的高压和低压边的额定电压即变压比相同;允许偏差5%;(2)短路电压即阻抗百分比相等。
允许偏差±10%;(3)连接组别相同;一般情况下,最大和最小变压器容量之比不超过3︰1;7、变压器油面不正常,如何处理?答:(1)油面上升,主要是温度上升引起的,针对温度上升情况进行处理。
三段电流、零序电压电流及其保护和差动保护

零序电压:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A 相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C 相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
变压器差动保护

变压器差动保护一、差动保护原理变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电 流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。
三绕组变压 器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接人差动继电 器KD ,这里不再赘述。
电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。
如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动 回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即I ,= I',1 2流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和 幅值调整。
具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自 然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形 接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线 的电流互感器变比调整为原来的倍。
微型机变压器差动保护,可以通过软件 计算实现相位校正。
1. 变压器正常运行或外部故障根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧 电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补 偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作, 差动保护不动作。
此时流人差动继电器的电流为式中 n 1TA ——电流互感器1TA 、2TA 的变比;、油—一流人差动继电器的不平衡电流。
2. 变压器内部故障IKD I /—1— — ―2— n iTA^TA =I unb (4—1)根据图4-4(b )所示电流分布,此时流人差动继电器KD 的电流是变压器两侧 电流的二次值相量之和,使继电器动作,差动保护动作。
此时流人差动继电器的 电流为如果变压器只有一侧电源,则只有该侧的电流互感器二次电流流人差动继电 器;如果变压器两侧有电源,则两侧的电流互感器二次电流都流入差动继电器, 且数值相加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 变压器纵差动保护
3、电流互感器型号传变误差产生的不平衡 电流
不平衡电流为两个电流互感器励磁电流之差! 尽量选用同型号的电流互感器
4、变压器励磁电流产生的不平衡电流
第六章 电力变压器保护
主要内容: 1. 变压器故障类型和不正常运行状态 2. 变压器纵差动保护 3. 变压器相间短路的后备保护 4. 变压器接地短路的后备保护 5. 变压器保护的配置原则
6.1变压器故障类型和不正常运行状态
一、故障类型
1、分为油箱内和油箱外两种故障。 2、油箱内的故障包括:相间短路、接
6.2 变压器纵差动保护
3、躲电流互感器二次侧断线引起的差电流
I set K I rel L.max
如果有断线闭锁的措施,则可以不用考虑这 个条件。
4、灵敏系数的பைடு நூலகம்验
K sen
I k.m in.r I set
6.2 变压器纵差动保护
四、具有制动特性的差动继电器
1、差动继电器的制动特性
制动电流
6.2 变压器纵差动保护
2、双绕组三相变压器纵差动保护的原理接线图 (Y/∆-11)
6.2 变压器纵差动保护
二、变压器纵差动保护不平衡电流及减小不
平衡电流的方法
nTA 2 nTA1
nT
1、计算变比与实际变比不一致产生的不平衡电流
采用中间变流器进行补偿,以消除这一不平衡电流的
影响。见图6-9
2、变压器带负荷调整分接头产生的不平衡电流
I set K I rel unb.max
考虑了电流互感器实际变比与计算变比之间 的误差,变压器分接头改变引起的误差,电流互 感器的稳态和暂态误差
6.2 变压器纵差动保护
2、躲变压器的最大励磁涌流
I set Krel K I N
考虑了励磁涌流的最大倍数 一般采用以下两种方法,一是鉴别励磁涌流和 故障电流,励磁涌流时将差的保护闭锁;二是采 用速饱和的中间变流器减少励磁涌流产生的不平 衡电流。
一、变压器纵差动保护的基本原理
1、双绕组单相变压器纵差动保护的原理接线图 (以降压变压器为例)
6.2 变压器纵差动保护
流入差动继电器的差动电流:
.
Ir
.
I 1 '
.
I
2'
若 nTA2
nTA1
nT
.
.
.
则差动电流变为: I r
nT I 1 I 2 nTA 2
正常运行时:
Ir 0
纵差动保护的判据: Ir Iset
地短路及绕组匝间短路等, 3、油箱外的故障有套管和引出线的相间及
接地短路。
6.1变压器故障类型和不正常运行状态
二、不正常运行状态
常见不正常运行状态有:外部短路引起的 过电流及中性点过电压、过负荷、过励磁、油 面下降等。
三、变压器的常用保护
纵差动保护、瓦斯保护 相间短路后备保护 接地短路后备保护护
6.2 变压器纵差动保护
闸角有关 (2)波形完全偏向时间轴的一侧,出现间断 (3)含有大量的非周期分量 (4)含有大量的高次谐波,尤其是二次谐波
6.2 变压器纵差动保护
2、三相变压器的励磁涌流 励磁涌流的波形
6.2 变压器纵差动保护
励磁涌流的特点 (1)三相励磁涌流不会相同,任何情况下空载投入
变压器,至少要在两相中出现不同程度的励磁涌 流; (2)某相励磁涌流可能不再偏向时间轴的一侧,其 他两相仍为偏向时间轴一侧的非对称性涌流; (3)三相励磁涌流中有一相或两相的二次谐波含量 比较少,但至少有一相比较大; (4)波形仍是间断的,但间断角显著减少。
制动特性的斜率
K I I set.max set.min I I res.m ax res.g
拐点电流、最小动作电流、制动特性的斜率
6.2 变压器纵差动保护
五、励磁涌流
1、单相变压器的励磁涌流 变压器的铁芯饱和形成的!
6.2 变压器纵差动保护
励磁涌流的波形
励磁涌流的特点 (1)空载合闸时,励磁涌流是否产生以及大小与合
正常运行时,变压器的励磁电流很小,一般不超过 额定电流的2%~10%。当变压器空载投入或外部故障切除 时,变压器电压从零或很小的数值突然上升到运行电压, 其电源侧将流过数值很大的励磁电流,即励磁涌流。
6.2 变压器纵差动保护
三、纵差动保护的整定原则
1、躲外部短路故障时的最大不平衡电流 Iunb.max (fZA U 0.1Kup Kst )Ik.max
(1) 对并列运行的变压器,考虑突然切除最大容 量变压器时的过负荷;
(2)对降压变,考虑低压侧负荷电动机自启动时 的最大电流。
6.3 变压器相间短路的后备保护
6.3 变压器相间短路的后备保护
二、低电压启动的过电流保护
1、按照变压器的额定电流整定(降低整定电流)。
2、低电压继电器的整定
I set
Ires I1
不平衡电流
Iunb f (Ires )
具有制动特性的差动继电器的动作方程
Ir Krel f (Ires )
6.2 变压器纵差动保护
制动特性的数学表达式
I set.r I set.min
Ires Ires.g
I set.r K( Ires Ires.g ) I set.min Ires Ires.g
(1)躲外部单相接地故障时的不平衡电流; (2)躲过励磁涌流时和外部三相故障时产生 的零序不平衡电流。 单相接地时灵敏度高。
6.3 变压器相间短路的后备保护
一、过电流保护
1、和线路定时限过电流保护相同,按照躲过可能
出现的最大负荷电流整定。
I set
K rel K re
I L.max
2、最大负荷电流
6.2 变压器纵差动保护
3、防止励磁涌流引起误动的方法 (1)采用速饱和变流器,以阻止励磁涌流流入 差动继电器;
(2)用二次谐波构成制动量,在出现励磁涌流 时制动保护;
(3)鉴别短路电流和励磁涌流的波形间断角, 以分辨出励磁涌流。
6.2 变压器纵差动保护
六、变压器零序电流差动保护
1、主要应用于单相接地保护。 2、整定原则
K re l K re
IN
(1) 躲正常运行时可能出现的最低工作电压;
U set
U L.min K rel K re
(2)躲电动机自启动时的电压整定。
U set (0.5 ~ 0.6)U N