变压器零序差动保护
变压器的故障和保护配置

在一般变压器中。有载调压装置往往连接在接地的中性点上,这样调压装置的电压等级可以比在线端调压时低。而自耦变压器中性点调压侧会带来所谓的相关调压问题。因此,要求自耦变压器有载调压时,只能采用线端调压方式。
01
02
变压器的继电保护配置
变压器的继电保护配置
平衡系数的计算 中压侧的平衡系数= 公共绕组的平衡系数=
变压器的继电保护配置
短路电流 对称激磁涌流 不对称激磁涌流 w、d 分 别 为 差 动 电 流 的 波 宽 与 间 断 角。
变压器的继电保护配置
对称涌流:波形不连续,出现间断,波形上 下对称。 严重情况下θw.max =120 θj.max =50.8 非对称涌流:波形偏于时间轴一侧,波形上出 现间断, 严重情况下θw.max =155.4 θj.max =80
变压器的继电保护配置
一、 瓦斯保护: a、0.4MVA及以上户内油浸式变压器 b、0.8MVA及以上油浸式变压器 保护范围 范围包括:变压器本体,有载调压等部分 基本要求 a、内部故障和漏油造成的油面降低。 b、变压器油温、绕组温度过高及油箱压力过高和冷却系统故障。 c、绕组的开焊故障以及匝数很小的短路故障。 当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号; 当壳内故障产生大量瓦斯时,应瞬时动作于断开变压器各侧断路器
对于内桥式接线,差动保护要求桥开关电流作为主变一侧来接入保护。
对于低压侧带分支的情况,低压2侧作为主变其中的一侧来处理
变压器CT接线
变压器的继电保护配置
变压器空载合闸或外部故障切除后电压恢复过程中,励磁涌流将流入差动保护的差动回路,若差动保护不能够躲过这一电流,就会误动作。因此,当前变压器差动保护的核心问题是如何正确地识别励磁涌流和内部故障电流。
变压器差动保护校验小结

变压器差动保护校验小结摘要: 众所周知,变压器保护在电网安全运行中扮演着重要的角色,无论在国外还是在国内,变压器保护都受到极高的重视。
不同的地区电网运行变电站结合自身的地域特点和气候环境,配备了不同的变压器保护。
结合本人对其不同电压等级,型号的南瑞变压器保护装置调试的工作经验和部分的了解,介绍一下个人对南瑞系列变压器差动保护装置校验中的异同点分析理解。
关键词:零差保护、联结组别Abstract: as we all know, transformer protection in the grid security plays an important role, whether in foreign countries or in China, by the transformer protection high attention. Different area of the operation of the electric substation in connection with its own characteristics and climate environment, and equipped with different transformer protection. Combined with oneself to the different voltage grade, type of transformer protection device south red the commissioning of the work experience and part of the understanding, to introduce individual of the south red series transformer differential protection device of the differences and similarities between calibration understanding and analyzing.Keywords: zero differential protection, link categories纵差保护是变压器主保护,它是所有变压器保护装置中主要配置之一,下面就南瑞厂家型号为9671C变压器保护装置的纵差保护进行说明。
西门子7UT6131装置零序差动保护原理及故障分析

西门子7UT6131装置零序差动保护原理及故障分析摘要:当变压器发生区内故障时,变压器零序差动保护能够瞬速切除故障,保护变压器不被损坏。
所以学习零差保护的基本原理、极性整定、保护回路接线类型及故障处理方法,对于预防保护误动具有十分重要的意义。
关键词:零序差动保护;中性点CT极性;故障分析;零差回路接线方式1引言随着电力行业的高速发展,相应地对相关电气设备的继电保护有了更广阔的应用,如西门子继电保护装置由于其高口碑的质量,在国内外应用就非常广泛,但是在调试此保护装置或者需要对此装置进行故障分析时,有特别需要注意的地方,故借本文的分析,供大家遇到相似问题时候能够提供参考。
2零序差动保护的特点零序电流差动保护探测中性点低阻接地或者固定接地的发电机和变压器的接地故障,零序电流差动保护具有选择性,并且比传统的电流差动保护具有更高的灵敏度。
零序差动保护具有不平衡电流小,动作整定电流小,仅涉及Yn绕组本身,与磁路无关,与励磁涌流也无直接关系等特点。
3零序差动保护(REF)原理及其动作特性3.1 零序差动保护两侧电流矢量的定义:定义电流流向保护区域方向为保护正方向。
当零序电流差动保护发生区内故障时,变压器中性点侧电流互感器会出现零序电流,线路侧会产生自产零序电流流向故障点。
由于电流方向定义的原因,自产零序电流()与中性点电流()在相位上同方向。
当零序电流差动保护发生区外故障时,也会有中性点电流()流经中性点侧电流互感器以及自产零序电流()流经线路侧电流互感器,进入装置的两侧电流大小是一致的,由于电流的方向定义为流向保护区域为正方向,所以中性点电流()与自产零序电流()在相位上方向相反。
3.3 零序差动保护的比幅跳闸特性:零序差动保护的动作电流只与中性点电流有关。
定义动作电流,同时定义稳定电流,其中 K 是制动系数,可假设为 l。
对系统故障分下面三种情况进行分析:区外故障时,与幅值相等相位相反,,此时,,;区内三相接地故障时,区内发生接地故障,零序电流由变压器中性点提供,因此,此时,,;3)区内不平衡接地故障时区内发生接地故障,零序电流由变压器中性点和系统提供,假设与幅值以及相位均相等,= ,此时,,;由于制动电流不可能为负数,此时认为.当发生区内故障时制动电流均为零,此时零序差动对中性点电流非常敏感,流过中性点电流一旦达到定值保护马上就动作。
变压器零序差动保护

自耦变压器零序差动保护问题0引言在超高压电力系统中,自耦变压器因体积小、效率高、用材省等优点而得到了广泛应用。
在为自耦变压器配置保护时,其相间差动保护、匝间保护、瓦斯保护及相间后备保护与普通变压器基本相同,一般不需作特殊考虑,但其零序保护及过负荷保护却有着不同于普通变压器保护的特点。
对于过负荷保护,曾有许多专家及工程技术人员进行过大量的论述[1],本文将主要讨论自耦变压器的零序差动保护。
众所周知,自耦变压器与普通变压器的功率传递方式不尽相同,在普通变压器中,高、中压线圈之间没有电的联系,全部是由电磁感应的作用进行功率传递的,而在自耦变压器中,高、中压线圈之间有电的联系,其功率传递除一部分是靠电磁感应的作用外,另一部分则是靠电的直接传导传递的;并且由自耦变压器的原理、结构所定,其高、中压侧的中性点必须连在一起,且同时接地。
这是自耦变压器与普通变压器的主要差异[2]。
在超高压系统中,大多数大容量的自耦变压器都是分相式。
显而易见,对于分相式的自耦变压器而言,其内部发生接地故障的概率远大于相间故障,因此,对于自耦变压器的接地故障必须有高可靠系数的零序保护。
1自耦变压器单相接地故障时的电流分析为了更清楚地说明自耦变压器的特殊性,首先可以利用图1中500 kV/220 kV自耦变压器作为原型,对其中压侧、高压侧发生区外接地故障时的零序电流分布进行分析。
图1 自耦压器主接线图Fig.1 Connection diagram of autotransformera.当自耦变压器的中压侧发生区外接地故障时,对折合到中压侧的零序等效电路(如图2)进行分析,可以得到式(1)、式(2)。
图2自耦变压器中压侧区外单相短路电流分析Fig.2Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at medium voltage side(1)(2) 其中nGZ=U G/U Z,为自耦变压器高、中压变比;Z0为中压侧(短路点)的零序电流;ZX为中性点提供的零序电流;GG0为自耦变压器公共绕组中的零序电流;G0为自耦变压器高压侧零序电流;G0′为折合到中压侧的高压侧零序电流;XG0,XD0分别为自耦变压器高、低压侧的零序电抗;XSM0为自耦变压器高压侧的系统零序阻抗。
第6章 变压器保护 差动保护

励磁涌流的产生
图6-8 励磁涌流的产生及电流变化曲线 (a)稳态时电压与磁通关系;(c)变压器铁芯的磁化曲线瞬 间合闸时电压与磁通关系
励磁涌流的产生
com
m
2m
np
m
m
Im
t
p
(b)t=0,u=0瞬间空载合闸时电压与磁 通关系 图6-8变压器励磁涌流
I exs
t
(d)励磁涌流波形
变压器各侧电压等级和额定电流不同,因而采用的电流互感
器型号不同,它们的特性差别很大,故引起较大的不平衡
电(实际上是两个电流互感器励磁电流之差)
I unb
3K err K st I k . max K TA.d
(6-12)
Kerr——电流互感器误差,取0.1; KSt——电流互感器同型系数,对发电机线路纵差保护取0.5;对变压器、 母线差动保护取1;
6.4.3变压器的励磁涌流及其抑制措施
变压器励磁电流仅流经变压器的某一侧,因此,通过电流 互感器反应到差动回路中不能被平衡,在外部故障时,由 于电压降低,励磁电流减小,它的影响就更小。可忽略不 计。 但是当变压器空载投入和外部故障切除后电压恢复时,则 可能出现数值很大的励磁电流(又称为励磁涌流)。
UX1
I Y(1)
I Y(2)
KD UT
I Y(1)
I Y(2)
KD W2 UA
I Y(2)
UX2
I (1)
I (2)
I (1)
I
(2)
I Y(2) - I (2)
Wd
(a)
(b)
《变压器的差动保护》PPT课件

精选PPT
6
变压器差动保护其差动回路中的不平衡电流大,必须采取措施躲开不 平衡电流或设法减小不平衡电流的影响。
(一)变压器励磁涌流的特点及减小其对纵差保护影响的措施 1励磁涌流的产生及特点 变压器的励磁电流只通过变压器的原边线圈,它通过电流互感 器进入差动回路形成不平衡电流,在正常运行情况下,其值很小, 一般不超过变压器额定电流3%~5%。当发生外部短路时,由于 电压降压,励磁电流更小,因此这些情况下对差动保护的影响一 般可以不考虑。 当变压器空载合闸或外部故障切除后电压恢复过程中,由于变压 器铁心中的磁通量的突变,使铁心瞬间饱和,这时将出现数值很大的励磁 电流,可达5~10倍的额定电流,称为励磁涌流。此电流通过差动回路,如 不采取措施,纵差动保护将会误动作
精选PPT
7
QF1
TA1 K1
TA2 QF2
KD
Iop
变压器励磁电流形成的不平衡电流
精可达额定电流的5一10倍。 (2)含有大量非周期分量和高次谐波分量,且随时间衰减。 在起始瞬间,励磁涌流衰减的速度很快,对于一般的中小型 变压器,经0.5~1秒后,其值不超过额定电流的0.25~0.5倍 ,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~ 3s,即变压器的容量越大,衰减越慢,完全衰减需要十几秒 时间 (3)其波形有间断角,
将要饱和,电流互感器饱和时将产生各种高次谐波,其中包含二次 谐波分量。而变压器差动保护的涌流闭锁功能,目前大部分采用二 次谐波闭锁,当电流互感器饱和时,电流中的二次谐波分量将会使 差动保护闭锁,不能动作出口。这时,只能靠差动速断保护动作出 口,因为涌流闭锁不闭锁速断。因此,变压器差动保护中要设置速 断保护。 • 根据差动速断保护的特点,要求差动速断保护满足以下两点要求: • (1)动作电流应能躲过最大励磁涌流电流。 • (2)区内发生最大短路电流故障时,应有足够的灵敏度(一般这 种故障都是发生在高压套管引线上)。
变压器零序电流差动保护

6.2 变压器纵差动保护
3、电流互感器型号传变误差产生的不平衡 电流
不平衡电流为两个电流互感器励磁电流之差! 尽量选用同型号的电流互感器
4、变压器励磁电流产生的不平衡电流
第六章 电力变压器保护
主要内容: 1. 变压器故障类型和不正常运行状态 2. 变压器纵差动保护 3. 变压器相间短路的后备保护 4. 变压器接地短路的后备保护 5. 变压器保护的配置原则
6.1变压器故障类型和不正常运行状态
一、故障类型
1、分为油箱内和油箱外两种故障。 2、油箱内的故障包括:相间短路、接
6.2 变压器纵差动保护
3、躲电流互感器二次侧断线引起的差电流
I set K I rel L.max
如果有断线闭锁的措施,则可以不用考虑这 个条件。
4、灵敏系数的பைடு நூலகம்验
K sen
I k.m in.r I set
6.2 变压器纵差动保护
四、具有制动特性的差动继电器
1、差动继电器的制动特性
制动电流
6.2 变压器纵差动保护
2、双绕组三相变压器纵差动保护的原理接线图 (Y/∆-11)
6.2 变压器纵差动保护
二、变压器纵差动保护不平衡电流及减小不
平衡电流的方法
nTA 2 nTA1
nT
1、计算变比与实际变比不一致产生的不平衡电流
采用中间变流器进行补偿,以消除这一不平衡电流的
影响。见图6-9
2、变压器带负荷调整分接头产生的不平衡电流
I set K I rel unb.max
变压器零序方向过流保护

零序方向过流保护小结变压器高压侧(110kV 及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。
变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。
一、变压器接地后备保护概述变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。
对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。
中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。
对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。
在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。
当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。
因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。
对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。
对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。
综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。
二、零序方向过流保护逻辑零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,则由“零序过流元件”、“零序方向元件”和“零序电压闭锁元件”相与构成。
其逻辑图如图1所示。
图1 零序方向过流保护逻辑框图零序电压闭锁元件的零序电压取自TV 开口三角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自耦变压器零序差动保护问题0引言在超高压电力系统中,自耦变压器因体积小、效率高、用材省等优点而得到了广泛应用。
在为自耦变压器配置保护时,其相间差动保护、匝间保护、瓦斯保护及相间后备保护与普通变压器基本相同,一般不需作特殊考虑,但其零序保护及过负荷保护却有着不同于普通变压器保护的特点。
对于过负荷保护,曾有许多专家及工程技术人员进行过大量的论述[1],本文将主要讨论自耦变压器的零序差动保护。
众所周知,自耦变压器与普通变压器的功率传递方式不尽相同,在普通变压器中,高、中压线圈之间没有电的联系,全部是由电磁感应的作用进行功率传递的,而在自耦变压器中,高、中压线圈之间有电的联系,其功率传递除一部分是靠电磁感应的作用外,另一部分则是靠电的直接传导传递的;并且由自耦变压器的原理、结构所定,其高、中压侧的中性点必须连在一起,且同时接地。
这是自耦变压器与普通变压器的主要差异[2]。
在超高压系统中,大多数大容量的自耦变压器都是分相式。
显而易见,对于分相式的自耦变压器而言,其内部发生接地故障的概率远大于相间故障,因此,对于自耦变压器的接地故障必须有高可靠系数的零序保护。
1自耦变压器单相接地故障时的电流分析为了更清楚地说明自耦变压器的特殊性,首先可以利用图1中500 kV/220 kV自耦变压器作为原型,对其中压侧、高压侧发生区外接地故障时的零序电流分布进行分析。
图1 自耦压器主接线图Fig.1 Connection diagram of autotransformera.当自耦变压器的中压侧发生区外接地故障时,对折合到中压侧的零序等效电路(如图2)进行分析,可以得到式(1)、式(2)。
图2自耦变压器中压侧区外单相短路电流分析Fig.2Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at medium voltage side(1)(2) 其中nGZ=U G/U Z,为自耦变压器高、中压变比;Z0为中压侧(短路点)的零序电流;ZX为中性点提供的零序电流;GG0为自耦变压器公共绕组中的零序电流;G0为自耦变压器高压侧零序电流;G0′为折合到中压侧的高压侧零序电流;XG0,XD0分别为自耦变压器高、低压侧的零序电抗;XSM0为自耦变压器高压侧的系统零序阻抗。
由上述推导可以看出,因为nGZ>1,所以在自耦变压器中压侧发生区外单相接地故障时,自耦变压器的各侧(包括中性点)均有零序电流存在。
中压侧零序电流Z0肯定大于高压侧零序电流G0,且自耦变压器中性点的零序电流ZX、公共绕组的零序电流GG0恒与短路点电流Z0同向,即I*ZX,I*GG0的方向与自耦变压器本身的阻抗以及系统阻抗无关。
b.当自耦变压器的高压侧发生区外接地故障时,对折合到中压侧的零序等效电路(见图3)进行分析,可以得到式(3)、式(4)。
图3自耦变压器高压侧区外单相短路电流分析Fig.3Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at high voltage side(3)(4)式中XZ0为自耦变压器中压侧的零序电抗;XSN0为中压侧的系统零序阻抗。
由上述推导可以看出:如果XSN0 XZ0>(nGZ-1)XD0,则当自耦变压器高压侧发生区外单相接地故障时,中性点电流ZX、公共绕组的零序电流GG0与图中所标的方向相同;而当XSN0 XZ0<(nGZ-1)XD0时,自耦变压器中性点电流ZX和公共绕组中的零序电流GG0均与图中所标的方向相反。
即:当自耦变压器高压侧发生接地短路时,中性点的零序电流ZX和公共绕组中的零序电流GG0不可能恒与短路点电流G0同向,而是随着中压侧系统阻抗XSN0的不同,自耦变压器中性点电流ZX的大小及方向也是不同的。
尤其值得注意的是:当XSN0 XZ0=(nGZ-1)XD0时,ZX=0。
由此可以得到这样一个结论:在自耦变压器的高压侧发生区外故障时,其中性点的零序电流与中压侧的系统阻抗有相当大的关系,不能明确地反映故障的方向和故障的严重程度。
因此,自耦变压器不宜像普通变压器那样选用由中性点的电流互感器(TA)构成的零序电流方向保护,否则很难保证其选择性[1,3]。
自耦变压器的零序电流方向保护很难保证选择性,而相间差动保护由于其特有的接线形式使其对于接地故障的灵敏度降低。
在这种情况下,不言而喻,快速的、有较高灵敏度的零序差动保护对于自耦变压器是十分必要的。
2较简单的自耦变压器零序差动保护最初提出的自耦变压器零序差动保护的方案如图4所示。
它利用高、中压侧和公共绕组的电流互感器分别形成各自的零序电流滤波器,然后差接起来,构成自耦变压器的零序差动保护。
当变压器内部发生接地故障时,流入差动继电器的电流为故障点零序电流的总和,与中性点的零序电流方向无关,差动继电器将反应3侧的零序电流相量和而动作。
这种零序差动保护的最大特点是接线简单,但必须按下列条件取最大值来整定[1]。
图4简单的自耦变压器零序差动保护Fig.4Simple zero-sequence currentdifferential protection of autotransformera.躲过外部接地短路的最大不平衡电流:Idz=K k KapK i I kφmax(5) 式中K k为可靠系数,一般取1.3;Kap为非周期分量系数,一般取1.5~2.0;K i为电流互感器允许的最大误差,一般取0.1;I kφmax为最大外部单相短路电流。
b.躲过外部三相短路时的最大不平衡电流:Idz=K k KapK i I k3φmax(6)式中I k3φmax为最大外部三相短路电流。
c.躲过变压器空载合闸时零序差动保护的不平衡电流:I dz取(0.3~0.4)I e(7)d.躲过电流互感器二次回路断线所产生的差电流:I dz=K k I e(8)显而易见,变压器外部发生三相短路时各侧零序不平衡电流以相量和的形式出现在差回路中,而在最不利的情况下,零序不平衡电流的和值所产生的差电流可能大于各侧的零序不平衡电流。
为躲过此不平衡电流,零序差动保护的整定值将大于额定电流值,可能达到1.3I e~1.5I e,甚至更大。
无疑将大大降低零序差动保护对变压器接地故障的灵敏度和可靠性。
尤其是对于大型自耦变压器,将失去装设零序差动保护的意义。
3改进后的自耦变压器零序差动保护为克服上述不足之处,自耦变压器零序差动保护可采用图5接线形式。
应选用带比率制动特性的变压器保护,将高压侧相电流A,B,C及中压侧相电流,b,c分别组合成A c,B a,C b后,取最大值乘以系数K Z(一般在0.5 a左右)作为制动量,高、中压侧各相电流与公共绕组各相电流差接后得到的零序电流作为动作量。
图5改进后的自耦变压器零序差动保护原理图Fig.5Improved zero-sequence currentdifferential protection of autotransformer下面对改进后的自耦变压器零序差动保护在区内、外故障时的动作行为进行分析[3]。
3.1外部三相短路时制动回路:由于是三相对称性故障,三相制动电流分别为:A c,B a,C b,它们在制动侧产生的制动电压基本是均衡的。
差动回路:进入差动回路的是三相短路时的不平衡电流,(9) 很明显,制动量远大于动作量,保护不会误动作。
3.2外部AB两相短路时制动回路:由于是AB两相故障,三相制动电流中以*B a最大,起主要的制动作用。
差动回路:进入差动回路的是两相短路的不平衡电流。
由于两相短路故障时,发生故障的两相电流大小相等,方向相反,所以(10)同样,制动量远大于动作量,保护不会误动作。
3.3外部A相短路时制动回路:由于是A相故障,三相制动电流中以B a,A c(实际上是A和a)中的较大者起主要的制动作用。
差动回路:进入差回路的是外部单相短路时的不平衡电流,(11)其中取A或a两者中较大者。
同样,制动量远大于动作量,保护不会误动作。
3.4内部发生A相接地故障时制动回路:由于是A相故障,三相制动电流中以B a,A c(实际上是A和a)中的较大者起主要的制动作用。
差动回路:应该是故障相高、中压侧和公共绕组故障电流的向量和,=A a GaCD(12) 因CD K Z A(或a),保护能够可靠动作。
改进后的自耦变压器零序差动保护由于增加了比率制动部分,使得差动保护的动作定值大大降低,因而提高了自耦变压器内部发生接地故障时保护的灵敏度。
但是,由于国内各厂家均没有专门用于自耦变压器的零序差动保护产品,因此,在实际工程中通常借用普通变压器的相间差动保护来构成自耦变压器的零序差动保护。
在此情况下,改进后的自耦变压器零序差动保护的电流差回路只能接在保护盘外(即在TA端子箱内,将各电流回路按上述要求接成差动回路),这样就带来两个问题:a.由于带比率制动特性的普通变压器差动保护的差动回路已经在保护装置内部接好,当采用这种保护构成改进后的自耦变压器零序差动保护时,必须对保护装置的内部回路进行适当的改进,否则保护有可能在区外故障时误动。
b.变压器投入运行并带上一定负荷后,按规程规定必须进行相量检查,但对公共绕组上的TA进行相量检查较为困难,稍有不慎,则可能造成保护误动。
从理论上讲,改进后的自耦变压器零序差动保护应具有比率制动特性,因此在TA断线时不应误动作。
但应当注意,普通的比率制动式变压器差动保护的制动量是在回路中的电流达到一定值后才起作用的(如集成电路型的差动保护,当电流大于0.7倍额定电流时,制动量才起作用;而晶体管型的差动保护,则当电流大于额定电流时,制动量才起作用),因此,改进后的自耦变压器零序差动保护在TA断线时不误动,并不是绝对的。
4自耦变压器的高、中压分相差动保护除采用上述的保护方案外,还可采用将自耦变压器各相的高压出线TA、中压出线TA及公共绕组的TA分别接成差回路,构成自耦变压器的高、中压分相差动保护,如图6所示。
图6自耦变压器高、中压分相差动保护原理图Fig.6Diagram of separate phase differentialprotection of autotransformer at highand medium voltage side在正常运行及自耦变压器高、中压线圈外部故障(包括接成三角形的第三线圈的故障)时,如不考虑TA等因素引起的误差的影响,该差回路的电流恒等于零。
而在自耦变压器的高、中压线圈内部发生故障时,差回路中的差电流将使得差动继电器动作,跳开变压器主开关。