空间数据插值

合集下载

20 空间数据的处理-空间插值

20 空间数据的处理-空间插值


局部内插


局部内插 – 将地形区域按一定的方法进行分块,对每一块根据地形曲面特 征单独进行曲面拟合和高程内插,每一块都可用不同的曲面进 行表达。称为空间分块内插。 局部方法: – (1)泰森多边形 – (2)距离反比权值插值(反距离权重内插) – (3)样条函数内插技术 – 克里金内插方法 – 密度估算 – 线性内插、 – 双线性内插 – 多项式内插 – 多层曲面叠加法等。
XY
n
N 1
l
X Y
n
i jN l l
n Zl n a00 Z l X l n a10 N Yl n Z l X lN n N 1 a N0 n Yl a01 Z lYl a11 n n i j N X l Yl Z l X lYl a n Yl N N ij n i j Z l X l Yl a0 N n Z l Yl N
地理信息系统基础
Geographical Information System
WWW . SDJTU .
空间插值
教学内容


§1 插值概论
§2 内插方法 §3 整体内插


§4 局部内插
§5 Kriging 方法
§1 插值概论

插值 – 用已知点来估算其他未知点的过程。
在GIS中,空间插值主要用于栅格数据,估算出栅格中 每个单元的值。空间插值是将点数据转换为面数据的一 种方法。 需要插值的原因: – 现有数据不能完全覆盖所要求的区域 – 现有离散曲面的分辨率、像元大小、方向与要求不 符; – 现有连续曲面的数据模型与要求不一致;

空间插值方法对比整理版

空间插值方法对比整理版

• 由于建立在统计学的基础上,因此不仅可 以产生预测曲面,而且可以产生误差和不 确定性曲面,用来评估预测结果的好坏
• 多种 kriging 方法
a
9
3、精确插值和近似插值
• 精确插值:产生通过所有观测点的曲面。
• 在精确插值中,插值点落在观测点上,内插值等 于估计值。
• 近似插值:插值产生的曲面不通过所有观测 点。
a
11
插值方法选择的原则
① 精确性:
② 参数的敏感性:许多的插值方法都涉及到一个或多个参数, 如距离反比法中距离的阶数等。有些方法对参数的选择相当 敏感,而有些方法对变量值敏感。后者对不同的数据集会有 截然不同的插值结果。希望找到对参数的波动相对稳定,其 值不过多地依赖变量值的插值方法。
③ 耗时:一般情况下,计算时间不是很重要,除非特别费时。
空间插值 Spatial Interpolation
• 空间插值的概念 • 空间插值的类型 • 空间插值的方法
a
1
空间插值概念
空间插值——空间插值常用于将离散点的测量数据转换为连 续的数据曲面,以便与其它空间现象的分布模式进行比较, 它包括了空间内插和外推两种算法。空间内插算法:通过已 知点的数据推求同一区域未知点数据。空间外推算法:通过 已知区域的数据,推求其它区域数据。
• 典型例子是:全局趋势面分析 、Fourier Series (周期序列)
a
4
局部内插法
➢ 局部内插法只使用邻近的数据点来估计未知点的值,步骤如 下: • 定义一个邻域或搜索范围; • 搜索落在此邻域范围的数据点; • 选择能表达这有限个点空间变化的数学函数; • 为未知的数据点赋值。
➢ 局部内插方法: • 样条函数插值法 • 距离倒数插值 • Kriging插值(空间自由协方差最佳内插)

空间插值

空间插值

将内插点周围的16个点的数据带入多项式,可计算 出所有的系数。
16个点
样条函数
Kriging插值
Kriging 插值方法在空间相关范围分析的基础上,用相关 范围内的采样点来估计待插点属性值。 (1)数据检验与分析,删去明显偏离实际的采样数据点。 (2)数据预处理。 (3)绘制方差图,了解空间变量的集聚范围与方向。 (4)克里金插值估计。 相对来说,克里金插值则能较好地反映各种地形变化,但 克里金方法的计算量很大,因此在对大面积区域大数据量 内插时,这是一个不能不考虑的因素。
测量怎么拟合?
●测量数据是二维的,所以需要用二维的 拟合方式。
二元二次或高次多项式:
自然表面的拟合要求
●多数自然现象的分布比较复杂,即比一次 趋势面生成的倾斜面更加复杂。因此,拟合 更加复杂的面要求用更高次的趋势面模型。 比如三次趋势面模型。
z b b x b y b x2 b xy b y 2 x, y 0 1 2 3 4 5 b x3 b x 2 y b xy2 b y3 6 7 8 9
h为各点之间距离,n 是由h 分开的成对样本点的数量,z 是点的属性值。 2.在不同距离的半方差值都计算出来后,绘制半方差图,横轴代表距离,纵 轴代表半方差。半方差图中有三个参数nugget(表示距离为零时的半方差),sill (表示基本达到恒定的半方差值),range(表示一个值域范围,在该范围内半方 差随距离增加,超过该范围,半方差值趋于恒定)。利用做出的半方差图找出与 之拟合的最好的理论变异函数模型(这是关键所在),可用于拟合的模型包括 高斯模型、线性模型、球状模型、指数模型、圆形模型
面来逼近(或拟合)现象的实际表面——这种数
学表面叫趋势面。
总之,趋势面分析就是用多项式方程来近

实验3空间插值分析实验

实验3空间插值分析实验

卫星遥感数据
通过卫星遥感技术获取地 表覆盖、植被分布、水体 等空间信息数据。
数据预处理
数据清洗
对原始数据进行清洗,去 除异常值、缺失值和重复 值,确保数据的准确性和 可靠性。
数据格式化
将不同来源和格式的数据 进行统一格式化处理,以 便进行后续的空间插值分 析。
数据转换
根据空间插值分析的需要, 将数据转换为相应的空间 坐标系和投影方式。
将本次实验的插值结果与已知的观测数据进行对比,分析其误差 和精度。
对比结果
通过对比发现,本次实验的插值结果与观测数据较为接近,误差 较小,精度较高。
误差分析
对误差进行了来源分析,发现误差主要来源于数据本身的波动和 插值方法的局限性。
误差来源与改进方向
误差来源
误差主要来源于数据本身的波动和插值方法的局限性。具体来说,数据波动可能由于观测设备的误差、观测环境 的干扰等因素造成;而插值方法的局限性则可能由于所选方法的假设条件与实际情况的差异、算法本身的误差等 造成。
在实验过程中,我们采用了多种空间插值方法,包括全局插值和局部插值。通过对比分析,我们发现局 部插值方法在处理非均匀分布的数据时具有更好的预测效果。
实验结果表明,空间插值分析在解决实际问题中具有广泛的应用前景,尤其在地理信息系统、环境监测、 气象预报等领域。
应用前景与展望
随着大数据和人工智能技术的不断发展,空间插 值分析将与这些技术相结合,进一步提高预测的 准确性和效率。例如,利用机器学习算法优化插 值参数,提高预测精度。
利用全局样条曲线对整个数据集进行 拟合,以估计未知点的值。这种方法 在处理大规模数据集时效率较高,但 可能无法捕捉到局部变化。
混合插值方法
局部多项式全局样条插值法

空间插值方法

空间插值方法


数据拟合问题就是根据若干参考点上的已知值求出待定点 上(未知点)的研究值。数据拟合问题通常可分为插值问 题和光顺逼近问题。 插值问题的解要求严格经过已知量测点,而光顺逼近问题 的解虽不要求严格经过已知点,但它要求在某种约束条件 下(比如最上 乘意义下 最小曲面能或最小粗糙度意义 下(比如最上二乘意义下、最小曲面能或最小粗糙度意义 下)达到整体逼近效果。
6/21/2010
空间插值方法
第6讲 空间插值方法及 TIN/TEN构建算法

6.1 问题的提出 6.2 空间数据插值方法概述 6.3 几种空间数据插值方法原理
6.1 空间插值问题的提出

6.2 空间数据插值方法概述

GIS在实际应用过程中,很多情况下,比如采样密度不够、 曲线与曲面光滑处理、空间趋势预测、采样结果的可视化 等,必须对空间数据进行插值和拟合,因此空间数据插值 是GIS数据处理的一项重要任务。其主要目的是根据一组 已知的离散数据,按照某种数学关系推求其他未知点和未 知区域的数据的过程。
Delauny三角化方法自提出后并未引起足够多 的重视,到了20世纪80年代才开始研究这个算 法,目前比较有效的算法有:

分治算法 逐点加入法 生长算法 凸壳法

分治算法

分治算法的基本思想是一个递归思想,把点集划分到足够小, 使其易于生成三角网,然后把子集中的三角网合并生成最终 的三角网。 逐点加入法有两个基本步:1.定位,找到包含新加点的三角 形;2.更新,形成新的三角形。 生长法从第一个DT开始,而后由三角形边逐步形成新的DT。 如果二维上的任意一点对应到三维点,可以计算出提升点的 凸壳,除去朝上的凸壳面,剩下的朝下的面就是原始点的DT (这个关系适合于任意n维)。

第六讲 空间插值

第六讲 空间插值

每个采样点对插值结果的影响随距离增加而减弱,因 此距目标点近的样点赋予的权重较大。
n
a ttr0 a ttri * w i i1
wi
1 pow er (D isti )n
n
1 pow er(D isti )n
i1
二、空间插值方法
4. 距离反比加权法—参数对插值结果的影响
权重的影响
权重过高,较近点的影响较大,拟合表面更细致(不光 滑);
趋势面分析的一个基本要求就是,所选择的趋势面模型应 该是剩余值最小,而趋势值最大,这样拟合度精确度才能 达到足够的准确性;
在数学上,拟合数学曲面要注意两个问题:一是数学曲面 类型(数学表达式)的确定,二是拟合精度的确定。
二、空间插值方法
5.1 趋势面模型的建立
设地理要素的实际观测数据为Zi(xi,yi)(i=1,2,…,n),
基本内容
空间插值:定义及应用 空间插值方法及特征
泰森多边形( Voronoi )及不规则三角网(TIN) 距离反比加权法(IDW) 地质统计学(Geostatistics)
利用样条曲线优化插值结果 插值精度评估 三参数插值方法(体数据或者动态演化特征)
为何进行插值?
1. 2D离散点转化为连续面,如地表、地层界面 如基于空间离散点,剖面数据和等高线等来构建连续
不足——对权重函数的选择十分敏感;易受数据点集群的 影响,结果常出现一种孤立点数据明显高于周围数据点的 “鸭蛋”分布模式;
全局最大和最小变量值都散布于数据之中。 距离反比很少有预测的特点,内插得到的插值点数据在样
点数据取值范围内。
二、空间插值方法
5. 趋势面分析
实际的地理曲面分解为趋势面和剩余面两部分,前者反应 地理要素的宏观分布规律,属于确定性因素作用的结果; 而后者则对应于微观区域,被认为是随机因素影响的结果。

空间插值模型的评价与对比

空间插值模型的评价与对比

空间插值模型的评价与对比空间插值是地理信息科学中重要的研究领域,它通过利用已知的空间数据点来估计未知位置的值。

空间插值模型的评价与对比对于提高空间数据的精确性和可靠性至关重要。

本文将探讨空间插值模型的评价方法,并对比常用的插值算法。

一、评价空间插值模型的指标1. 精度指标精度是评价插值模型的重要指标之一。

常用的精度指标包括均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)。

RMSE衡量了观测值与插值值之间的差异,值越小表示模型精度越高;MAE计算了观测值与插值值的绝对差异的平均值,同样,值越小表示模型精度越高;MAPE则用百分比表示了观测值与插值值的误差程度,同样,值越小表示模型精度越高。

2. 空间自相关指标空间自相关指标可以反映插值结果的空间分布特征。

其中,Moran's I和Geary's C是常用的空间自相关指标。

Moran's I衡量了观测值与其邻近观测值之间的空间相关性,值介于-1和1之间,其中正值表示正相关,负值表示负相关;Geary's C则衡量了观测值与其邻近观测值之间的差异,值越接近1表示空间自相关性越强。

二、常用的插值算法对比1. 克里金插值法克里金插值法是一种基于统计学原理的插值方法,它通过对已知数据点的空间关系进行分析,建立空间变异模型,从而对未知位置进行估计。

克里金插值法具有较好的精度和稳定性,但对于大规模数据集计算较为耗时。

2. 反距离加权插值法反距离加权插值法是一种简单而常用的插值方法,它假设未知位置的值与其邻近已知点的距离成反比。

该方法简单易懂,计算速度较快,但对于稀疏数据集和局部变异性较大的情况下,插值结果可能较差。

3. 全局插值法全局插值法是一种基于全局模型的插值方法,如径向基函数插值(RBF)和普通克里金插值。

全局插值法通过对整个数据集进行拟合,建立全局模型来估计未知位置的值。

这种方法适用于数据集较为均匀的情况,但对于大规模数据集计算较为耗时。

空间数据插值

空间数据插值

当数据是按正方形格网点布置:
2023/3/15
10
3、双三次多项式(样条函数)内插
是一种分段函数,每次只用少量的数据点,故内插速度很 快;样条函数通过所有的数据点,故可用于精确的内插;可 用于平滑处理。
双三次多项式内插的多项式函数为:
将内插点周围的16个点的数据带入多项式,可计算出所有的系数。
16个点
B、趋势面分析 是一种多项式回归分析技术。多项式回归的基本思
想是用多项式表示线或面,按最小二乘法原理对数据点 进行拟合,拟合时假定数据点的空间坐标X、Y为独立变 量,而表示特征值的Z坐标为因变量。
1、当数据为一维时,1)ຫໍສະໝຸດ 性回归:2023/3/15
6
2)二次或高次多项式:
2、数据是二维的 二元二次或高次多项式
通常使用的采样点数为6—8点。对于不规则分布的 采样点需要不断地改变窗口的大小、形状和方向,以获 取一定数量的采样点。
2023/3/15
13
地理信息系统原理及应用
14
2
一、空间数据内插概念
设已知一组空间数据,它们可以是离散点的形式,也可以是分 区数据的形式,空间数据的内插就是从这些数据中找到一个函数关 系式,使该关系最好地逼近这些已知的空间数据,并能根据该函数 关系式推求出区域范围内其他任意点或任意分区的值。
2023/3/15
3
• 二、内插方法分类
• 内插:在已观测点的区域内估算未观测点的 数据的过程;
2023/3/15
7
C、局部内插
利用局部范围内的 已知采样点的数据内插 出未知点的数据。
2023/3/15
8
1、线性内插
将内插点周围的3个数据点的数据值带入多项式,即可 解算出系数a0、a1、a2 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档