触摸屏实验报告

触摸屏实验报告
触摸屏实验报告

单片机及嵌入式系统原理及应用实验

姓名:张银成、石天涯

班级:2011320105

学号:11、24

触摸屏实验

一、实验目的:

1. 掌握TFT屏的工作原理。

2. 学会使用STM32的FSMC接口驱动TFT屏。

3. 学会使用触摸屏控制器检测触点坐标。

4. 掌握触摸屏的触摸功能。

二、实验内容:

CHD1807-STM32开发板驱动配套的3.2寸液晶、触摸屏,使用FSMC接口控制该屏幕自带的液晶控制器ILI9341,使用SPI接口与触摸屏控制器TSC2046通讯。驱动成功后可在屏幕上使用基本的触摸绘图功能。

1. 验证触摸屏校正功能;

2. 验证触摸绘图功能;

三、实验原理:

1. TFT屏概述

LCD,即液晶显示器,因为其功耗低、体积小,承载的信息量大,因而被广泛用于信息输出、与用户进行交互,目前仍是各种电子显示设备的主流。TFT(ThinFilmTransistor)是指薄膜晶体管,每个液晶像素点都是由集成在像素点后面的薄膜晶体管来驱动,从而可以做到高速度、高亮度、高对比度显示屏幕信息,是目前最好的LCD彩色显示屏之一。

2. 数据点的像素格式

图像数据的像素点由红(R)、绿(G)、蓝(B)三原色组成,三原色根据其深浅程度被分为0~255个级别,它们按不同比例的混合可以得出各种色彩。如R:255,G255,B255混合后为白色。

根据描述像素点数据的长度,主要分为8、16、24及32位。根据描述像素点数据的长度,主要分为8、16、24及32位。16位描述的为216=65536色,称

为真彩色,也称为64K色。16位的像素点格式见图1。D0-D4为蓝色,D5-D10为绿色,D11-D15为红色,使得刚好使用完整的16位。

图 1. 16位像素点格式

RGB比例为5:6:5是一个十分通用的颜色标准,在GRAM相应的地址中填入该颜色的编码,即可控制LCD输出该颜色的像素点。如黑色的编码为0x0000,白色的编码为0xffff,红色为0xf800。

3. STM32驱动TFT屏

因为STM32内部没有集成专用的液晶屏和触摸屏的控制接口,所以在显示面板中应自带含有这些驱动芯片的驱动电路(液晶屏和触摸屏的驱动电路是独立的),STM32芯片通过驱动芯片来控制液晶屏和触摸屏。以实验中的3.2寸液晶屏(240*320)为例,它使用ILI9341芯片控制液晶屏,通过TSC2046芯片控制触摸屏。ILI9341的8080通讯接口时序可以由STM32使用普通I/O接口进行模拟,但这样效率较低,它提供了一种特别的控制方法——使用FSMC接口。

4. 触摸屏感应原理

TSC2046是专用在四线电阻屏的触摸屏控制器,电阻触摸屏的基本原理为分压,它由一层或两层阻性材料组成,在检测坐标时,在阻性材料的一端接参考电压Vref,另一端接地,形成一个沿坐标方向的均匀电场。当触摸屏受到挤压时,阻性材料与下层电极接触,阻性材料被分为两部分,因而在触摸点的电压,反映了触摸点与阻性材料的Vref端的距离,而且为线性关系,而该触点的电压可由ADC测得。更改电场方向,以同样的方法,可测得另一方向的坐标。

图2 触摸屏电阻计算方法

四、程序代码

1. 主程序

int main(void)

{

SysTick_Init(); /*systick 初始化*/

LCD_Init(); /*LCD初始化*/

Touch_init(); /*触摸初始化*/

while(Touchl_Calibrate() !=0); /*等待触摸屏校准完毕*/ Init_Palette(); /*画板初始化*/

while (1)

{

if(touch_flag == 1) /*如果触笔按下了*/ {

if(Get_touch_point(&display, Read_2046_2(), &touch_para ) !=DISABLE)

/*获取点的坐标*/

{

Palette_draw_point(display.x,display.y); /*画点*/

}

}

}

}

2. 画板初始化

void Init_Palette(void)

{

Set_direction(0); //设置为横屏

LCD_Rectangle(0,0,320,240,WHITE); /*清白屏*/

LCD_Line(39,0,39,29);

LCD_Line(0,29,39,29);

LCD_Str_6x12_O(7, 10,"CLR", 0);

LCD_Rectangle(0,30,40,30,GREEN);

LCD_Rectangle(0,60,40,30,BLUE);

LCD_Rectangle(0,90,40,30,BRED);

LCD_Rectangle(0,120,40,30,GRED);

LCD_Rectangle(0,150,40,30,GBLUE);

LCD_Rectangle(0,180,40,30,BLACK);

LCD_Rectangle(0,210,40,30,RED);

delay_ms(500);

}

3. 获取位置

char Get_touch_place(u16 *x, u16 *y)

{

if(touch_flag == 1) /*如果触笔有按下*/ {

if(Get_touch_point(&display, Read_2046(), &touch_para ) !=DISABLE)

{

*x = display.x ;

*y = display.y ;

return 0;

}

}

return 1;

}

五、实验结果:

1. 触摸屏校正:

图3.触摸屏校正

2. 画板界面:

图4.画板界面

六、思考题:

问题1. 触摸屏校正是不是必须的?如果不校正会产生什么后果?

答:电阻触摸屏是必须要校准的。但是我们可以提供某些参考值,方便我们能够将接收到的原始模数转换值转换成高层软件所需的屏幕像素坐标,理想情况下,校准程序只要在产品初次加点测试过程中运行一次就可以了,参考值可以存储在非易失性存储器中,比如EEPROM。这样,只要我让触摸驱动程序在一启动就运行校准程序,并把参考值保存下来,以后下次再使用时,只需读取该组数据即可。这样在下次开机使用触摸屏时,只要读取该位内容,就可知道触摸屏是否已校正,没有校正则需要进行校正,已经校正过了则无需再重复校正了。

问题2.能否编写程序,将输入的内容识别并通过串口发送到上位机?

答:不可以。由触摸屏原理可知,LCD之所以能够显示各种字符,靠的是触摸屏与显示屏的相互接触,输入完成后,二者就不再接触,导致无法识别输入的内容到底是什么,所以说不能编写程序,将输入的内容识别并通过串口发送到上位机。

七、常见故障

很多人在使用触摸屏时,都遇到触摸屏因出现故障而不能使用的情况。这主要是由于触摸屏是一种比较精密的设备,加之触摸屏多是面向大众开放使用的性质,其使用频率高、使用人员素质良莠不齐,从而造成其故障频繁出现。

1. 触摸屏不准

2. 触摸屏无响应

3. 触摸屏响应时间很长

4. 触摸屏局部无响应等

八、扩展与应用

1. 与触控板的区别

触摸屏(touchscreen)是绝对定位设备。触摸屏是以显示屏为参照的绝对定位设备,其给出的数据是绝对坐标的。像ipad,iphone之类的面板都集成有触摸屏。触摸屏在HID设备类当中,是属于touch事件的设备。

触控板(touchpad)是相对定位设备。触控板是不以显示屏为参照的相对定位设备,其给出的数据是相对坐标数据。比如笔记本上的触摸板。触摸板在HID设备类当中,是属于mouse事件的设备,其工作时通常操作系统上会显示出光标,其工作方式类似于鼠标。

2. 发展趋势

触摸屏技术方便了人们对计算机的操作使用,是一种极有发展前途的交互式输入技术,因而受到各国的普遍重视,并投入大量的人力、物力对其进行研发,新型触摸屏不断涌现。

a、触摸笔:利用触摸笔进行操作的触摸屏类似白板,除显示界面、窗口、图标外,触摸笔还具有签名、标记的功能。这种触摸笔比早期只提供选择菜单用的光笔功能大大增强。

b、触摸板:触摸板采用了压感电容式触摸技术,屏幕面积最大。它由三部分组成:最底层是中心传感器,用于监视触摸板是否被触摸,然后对信息进行处理;中间层提供了交互用的图形、文字等;最外层是触摸表层,由强度很高的塑料材料构成。当手指点触外层表面时,在1 / 1000s 内就可以将此信息送到传感器,并进行登录处理。除与PC兼容外,还具有亮度高、图像清晰、易于交互等特点,因而被应用于指点式信息查询系统(如电子公告板),收到了非常好的效果。

c、触摸屏:可用于在演播室使用触摸屏点评系统,简单讲就是输入和输出合二为一,不再需要机械的按键或滑条,显示屏就是人机接口。整个触摸屏系统由LCD、触摸屏、触摸屏控制器、主CPU、LCD 控制器构成。多点触摸屏控制器是触摸屏模组的核心,触摸屏控制器是采用PSoC(可编程系统芯片)技术,PSoC是集成了可编程模拟和数字外围以及MCU 核的混合信号阵列,所以PSoC 的灵活性、可编程性、高集成度等特性被广泛应用于触摸屏控制器。现在搭建的触摸屏幕有32、46 和70 英寸,支持1080p FullHD 分辨率,无需任何额外设置就可以支持多点触摸控制,可以纵向或横向摆放。更为方便的是,它采用标准的HDMI、FireWire和USB 接口,插上电源并连接Mac、Linux或Windows PC即可开始使用。

触摸屏技术的发展趋势,具有专业化、多媒体化、立体化和大屏幕化等特点。

随着信息社会的发展,人们需要获得各种各样公共信息,以触摸屏技术为交互窗口的公共信息传输系统,通过采用先进的计算机技术,运用文字、图像、音乐、解说、动画、录像等多种形式,直观、形象地把各种信息介绍给人们,给人们带来极大的方便。我们相信,随着技术的迅速发展,触摸屏对于计算机技术的普及利用将发挥重要的作用。输入手下触屏但是同样全键盘输入,触摸屏没有物理按键效率高,原因在于:输入法需要定位手指的位置,比如双手操作电脑键盘时,左手食指中指定位在F键,右手中指定位在J键,而触摸屏无法像按键的凸点或者输入感觉定位,难以形成高效的盲打。

触摸屏本身点击没有物理按键精准,触摸屏点击目标区域没有真正点击到目标区域,偏向目标正中心的下方。无论是单手和双手输入,触摸屏本身误点击的概率高。在虚拟键盘这样按键密集型的区域,每个按键的可点击区域有限,误点击的概率更高。

3. 实例应用

我们在参加2013年6月份的陕西省五校联赛时,选择了双音源定位系统(A 题)这个题目,其中就用到了触摸显示屏。该系统采用模块化的设计方案,主要包括发声模块、声音接收放大模块和数据处理及显示三大模块。声音接收放大模块接收到声音信号后经过放大再交给数据处理模块处理,最后要将声源的具体位置在液晶屏上显示出来。

触摸屏原理及基础知识全解析

触摸屏原理及基础知识全解析 本文来自: 中国触摸屏网(https://www.360docs.net/doc/231235734.html,) 详细出处参考:https://www.360docs.net/doc/231235734.html,/technology/principle/200812/26-977.html 【导读】:目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。 触摸屏在我们身边已经随处可见了,在PDA等个人便携式设备领域中,触摸屏节省了空间便于携带,还有更好的人机交互性。 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。目前市场上,使用ITO材料的电阻式触摸屏和电容式触摸屏应用最为广泛。 电阻式触摸屏 ITO 是铟锡氧化物的英文缩写,它是一种透明的导电体。通过调整铟和锡的比例,沉积方法,氧化程度以及晶粒的大小可以调整这种物质的性能。薄的ITO材料透明性好,但是阻抗高;厚的ITO材料阻抗低,但是透明性会变差。在PET聚脂薄膜上沉积时,反应温度要下降到150度以下,这会导致ITO氧化不完全,之后的应用中ITO会暴露在空气或空气隔层里,它单位面积阻抗因为自氧化而随时间变化。这使得电阻式触摸屏需要经常校正。 图一是电阻触摸屏的一个侧面剖视图。手指触摸的表面是一个硬涂层,用以保护下面的PET层。PET层是很薄的有弹性的PET薄膜,当表面被触摸时它会向下弯曲,并使得下面的两层ITO涂层能够相互接触并在该点连通电路。两个ITO层之间是约千分之一英寸厚的一些隔离支点使两层分开。最下面是一个透明的硬底层用来支撑上面的结构,通常是玻璃

触摸屏的种类及工作原理

触摸屏种类及原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型

喷码机触摸屏的工作原理与应用

喷码机触摸屏的工作原理与应用 一、触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU 发来的命令并加以执行。二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台。触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍: 1、电阻式触摸屏电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI 导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比,即可得触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。 电阻式触摸屏的OTI 涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI 外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI 使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI 受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。这种触摸屏利用压力感应进行控制。它用两层高透明的导电层组成触摸屏,两层之间距离仅为2.5 微米。当手指按在触摸屏上时,该处两层导电层接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。这种触摸屏能在恶劣环境下工作,但手感和透光性较差,适合配带手套和不能用手直接触控的场合。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800 个(埃=10-10 米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 2、电容式触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。电容式触摸屏在

西门子触摸屏步骤

西门子触摸屏步骤 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

西门子触摸屏下载步骤初始状态下载: 触摸屏在初始状态下启动后进入传送(Transfer)模式,退出传送模式,点击进入控制面板(Control Panel),双击传送图标(Transfer)进入传送设置界面。在传送设置界面中选中“Enable Channel”和“Remote Control”,然后选择传送通道(如 MPI/Profibus/S7-Ethernet,ETHERNET,USB)。如果使用MPI或PROFIBUS传送,选择“MPI/Profibus/S7-Ethernet”,然后点击“Advanced”按钮进入高级设置。在高级设置对话框中列出了可选择的连接方式,有“MPI”、“PROFIBUS”和“S7-Ethernet”,选择所需要的连接方式,然后点击属性按钮“Properties…”对选择的连接方式进一步设置。如果选择的是“MPI”或“PROFIBUS”,那么在属性对话框中请选中“Panel is the only master on the bus”,并设置好触摸屏的站地址和波特率等相关的通讯设置。如果选择的是以太网,则设置IP地址和子网掩码,要求IP地址和计算机的IP地址位于同一网段内。设置完成后点击“OK”保存所有修改过的内容。然后退出控制面板,点击“Transfer”进入传送模式。 触摸屏部分设置好后,下面进行PG/PC接口的设置。进入计算机控制面板或启动STEP7,然后打开“设置PG/PC接口”界面,选择与触摸屏相同的通讯接口(如MPI或PROFIBUS DP),点击属性按钮设置PG/PC属性。在属性窗口中,选中“PG/PC是总线上的唯一主站”,设置站地址和波特率等通讯设置,然后点击确认保存。

表面声波式触摸屏原理

表面声波式触摸屏原理--- 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。 工作原理以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。 ---表面声波触摸屏特点--- 表面声波触摸屏第一大特点就是抗暴,因为表面声波触摸屏的工作面是一层看不见、打不坏的声波能量,触摸屏的基层玻璃没有任何夹层和结构应力(表面声波触摸屏可以发展到直接做在CRT表面从而没有任何“屏幕”),因此非常抗暴力使用,适合公共场所。 表面声波第二大特点就是清晰美观,因为结构少,只有一层普通玻璃,透光率和清晰度都比电容电阻触摸屏好得多。反应速度快,是所有触摸屏中反应速度最快的,使用时感觉很顺畅。 表面声波第四大特点是性能稳定,因为表面声波技术原理稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常是4096×4096×256级力度。 表面声波触摸屏的缺点是触摸屏表面的灰尘和水滴也阻挡表面声波的传递,虽然聪明的控制卡能分辨出来,但尘土积累到一定程度,信号也就衰减得非常厉害,此时表面声波触摸屏变得迟钝甚至不工作,因此,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏。 表面声波触摸屏能聪明的知道什么是尘土和水滴,什么是手指,有多少在触摸。因为:我们的手指触摸在4096×4096×256级力度的精度下,每秒48次的触摸数据不可能是纹丝不变的,而尘土或水滴就一点都不变,控制器发现一个“触摸”出现后纹丝不变超过三秒钟即自动识别为干扰物。 表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。目在所有触摸屏中只有声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个

笔记本加装触摸屏史上最详尽教程

前言篇 一、这段是废话你要看吗? 这天逛电脑城,LZ一进去就受到了各大门店的热情接待,一直叫LZ帅哥问装机不,虽然LZ帅这是个铁的事实,但LZ是不会被这些花言巧语所迷惑的。但既然人家这么诚实,LZ也不能表现得太无情是吧,于是跟着进去看了看。话说现在的笔记本真薄啊,yoga更是让哥直呼爽!触摸屏搭配WIN8系统,屏幕还可以旋转,谁TM还买macbook啊。。。哥当下就查了查银行卡,看了看上面的数额,然后跟卖电脑的小妹说我还有事先走了。 回到家我盯着我的联想S10-3S,一个念头上来了。我要改装!!! 进入主题,网上的教程很多,大部分都是小马哥的教程,并且很多教程都不够条理,难以让新手看懂,同为新手的我,在此整理出一份详细的教程来,有些内容和图片会摘自网络,找得到原帖的尽量复制链接,有侵犯权利的请联系我删除。 准备篇 心急吃不了热豆腐 首先拆机看看你的笔记本有没有空间来放下触摸屏的控制卡,大小如图: 除了确认是否有地方放控制卡,还需要确认屏幕内能否放下触摸屏。TB上的电阻屏一般在1.4mm和0.5mm之间,1.4mm的加了一层玻璃,属于硬性电阻屏,

0.5mm的属于柔性电阻屏,大家根据自己的实际情况选择。我由于是上网本,空间不大,故选择了0.5mm的。 确认好有地方放就可以上淘宝买啦!淘宝上的触摸屏如世间美女,参差不齐,厚度也大小不一,价格也不一样,因此非常有必要要普及一下知识: 从技术原理来区别触摸屏,可分为5个基本种类,但是在这里只讲3种: 1.1电阻式触摸屏 (1)在一种对外界完全隔离的环境下工作,不怕灰尘、水汽和油污 (2)可以用任何物体来触摸,可以用来写字画画,这是它们比较大的优势 (3)四层结构造成其透光率较低 (4)需要压力触摸 1.2 电容式触摸屏 (1)价格较为昂贵 (2)只能用手指来完成触控 (3)透光率高 (4)受温度、水汽等影响,容易产生触控漂移现象 1.3 红外式触摸屏 任何触摸物体都可改变触点上的红外线而实现触摸屏操作,能够实现多重触控,触摸屏采用多元化结构,维修方便,能够用任何不透明物体在表面实现触控,透光率高,表面采用玻璃或者是钢化玻璃结构,结实耐用,使用寿命长。 -------------------------------------------以上信息来自度娘~------------------------------------------ 了解完了我们就可以上TB购买了,在这里只建议大家购买最便宜的电阻触摸屏,原因不解释。 接下来选择相应的尺寸,以下是各种尺寸的参照表: 需要准备或者购买的东西 电阻屏、屏幕驱动控制卡、延长线、电烙铁、屏幕保护膜(为什么要这个,后 面会提到) 本人选择了TB某店购买,需要地址的可私信找我要。第二天就收到了,我天朝民族复兴需要这样的速度!卖家态度也不错,有问题都及时为我解答,在这里赞一个。 快递小哥像只蜗牛一样踩着阳光奔跑而来,但我还是检查了里面的货没事才收下。这是我收到的东西,一个电阻屏,一条延长线,一条USB线,一个控制卡,一 根触屏笔,一个驱动光盘。

触摸屏控制原理

触摸屏的原理是什么 作者:来源:浏览次数:358时间:2010-04-09 09:11:05 NULL触控屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置( 以坐标形式) 由触控屏控制器检测,并通过接口( 如RS-232 串行口) 送到CPU ,从而确定输入的信息。触控屏系统一般包括触控屏控制器( 卡) 和触摸检测装置两个部分。其中,触控屏控制器( 卡) 的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU ,它同时能接收CPU 发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏控制卡。 1 .电阻触控屏 电阻触控屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小( 小于千分之一英寸) 的透明隔离点把它们隔开绝缘。 当手指触控屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y 轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行 A /D 转换,并将得到的电压值与5V 相比即可得到触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是所有电阻技术触控屏共同的最基本原理。 2. 电容技术触控屏: 是利用人体的电流感应进行工作的。电容式触控屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO ,最外层是一薄层矽土玻璃保护层, 夹层ITO 涂层作为工作面, 四个角上引出四个电极,内层ITO 为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,由于人体电场,用户和触控屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触控屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。电容触控屏的特点: 对大多数的环境污染物有抗力。人体成为线路的一部分,因而漂移现象比较严重。带手套不起作用。需经常校准。不适用于金属机柜。当外界有电感和磁感的时候,会使触控屏失灵。 3. 红外触控屏 红外触控屏是利用X 、Y 方向上密布的红外线矩阵来检测并定位用户的触摸。红外触控屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触控屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触控屏操作。红外触控屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触控屏产品最终的发展趋势。采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。红外线触控屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触控屏市场主流。过去的红外触控屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32 、40X32 ,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。这些正是国外非红外触控屏的国内代理商销售宣传的红外屏的弱点。而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720 ,至于说红外屏在光照条件下不稳定,从第二代红外触控屏开始,就已经较好的克服了抗光干扰这个弱点。第五代红外线触控屏是全新一代的智能技术产品,它实现了1000*720 高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。原来媒体宣传的红外触控屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触控屏所无法效仿的。

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏

电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 (2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 1.1 四线电阻屏 四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。特点:高解析度,高速传输反

触摸屏知识

2008年以后,电容式触摸屏异军突起,In-Cell、On-Cell、OGS等新技术不断涌现,GFF制程繁复材料成本高。 即便GFF具材料成本优势,但GFF的组成架构仍稍嫌复杂,导致触控模组的薄化程度有限,为了满足电子产品的薄化设计趋势,近年来触控模组厂商也纷纷投入开发OGS单片式玻璃触控模组设计架构,目标在减少ITO薄膜或是ITO 玻璃的使用量,利用简化或整合架构概念使触控模组可以达到更薄的设计目标,触控功能材料越简化、薄化,也可进一步增加液晶显示模组的透光率与更佳的色彩表现,也能让整体触控显示模组具更轻盈的模组重量,等于是一举数得的技术方桉。 In-Cell将成为OGS最终方向 电容屏主要有第一类是外挂式触摸屏: 一是“玻璃式”(GG),二是“薄膜式”(GFF),GFF技术进化方向是GF,即将实现触控感应的两层薄膜减为一层。基于上下感应层的设计位置不同,GF又分为G1F和GF2;第二类是内嵌式触摸屏,On-cell和In-cell。 电容式触控面板主要结构包括GFF(Glass-Film-Film)、G1F(Glass-Film)、GG (Glass-Glass)、G2 (Glass Only)这几种类型,其中,GFF与G1F均需使用铟锡氧化物(Indium Tin Oxide;ITO)膜,属薄膜电容式触控面板;而GG与G2则运用在玻璃基板上溅镀ITO图样(Pattern)方式取代ITO膜,属玻璃电容式触控面板。 由于全球ITO膜市场主要掌握于日东电工(NittoDenko)等日厂手中,且使用ITO膜易导致触控面板光穿透率下滑,迫使行动装置调升背光强度,相对不利于降低行动装置耗电量,于此背景下,为避免供料短缺及省电需求,薄膜电容式触控面板渐朝减少ITO膜用量发展。 在电容式触控面板主要结构中,GFF因需使用2片ITO膜,相对较不利于降低行动装置耗电量,然其具备价格较低等优势;G1F因可减少ITO膜用量至1片,渐成原先供应GFF结构的业者发展目标。另一方面,玻璃电容式触控面板-GG结构因需使用2片玻璃,不利于轻巧化,且其贴合良率偏低;G2结构因

触摸屏工作原理

0 引言 随着信息技术的飞速发展,人们对电子产品智能化、便捷化、人性化要求也不断提高,触摸屏作为一种人性化的输入输出设备,在我国的应用范围非常广阔,是极富吸引力的多媒体交互没备。目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA、便携导航设备等。随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计一种实用且低成本的触摸屏控制系统。 1 触摸屏的工作原理 触摸屏由触摸检测部件和触摸屏控制器件组成(如图1所示);触摸检测部件用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息送给控制器,它同时能接收控制器发来的命令并加以执行。

触摸屏的主要3大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指触

摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5 V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5 V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是四线电阻式触摸屏基本原理,其原理如图2所示。 2 触摸屏控制系统硬件设计 根据四线电阻式触摸屏的工作原理可以看出,在硬件设计上的主要工作就在于将触摸点所在的X轴及Y轴坐标通过控制驱动模块加以精确识别。 2.1 总体结构设计 触摸屏控制器的设计关键在于对驱动模块的控制,本文采用AT89C2051作为驱动电路的控制核心,通过ADS7843模块接收触摸屏上得到的信号并控制驱动电

ITO触摸屏原理及基础知识复习过程

ITO触摸屏原理及基础知识 2008-08-01 22:41 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。 触摸屏在我们身边已经随处可见了,在PDA等个人便携式设备领域中,触摸屏节省了空间便于携带,还有更好的人机交互性。 目前主要有几种类型的触摸屏,它们分别是:电阻式(双层),表面电容式和感应电容式,表面声波式,红外式,以及弯曲波式、有源数字转换器式和光学成像式。它们又可以分为两类,一类需要ITO,比如前三种触摸屏,另一类的结构中不需要ITO, 比如后几种屏。目前市场上,使用ITO材料的电阻式触摸屏和电容式触摸屏应用最为广泛。 电阻式触摸屏 ITO 是铟锡氧化物的英文缩写,它是一种透明的导电体。通过调整铟和锡的比例,沉积方法,氧化程度以及晶粒的大小可以调整这种物质的性能。薄的ITO材料透明性好,但是阻抗高;厚的ITO材料阻抗低,但是透明性会变差。在PET聚脂薄膜上沉积时,反应温度要下降到150度以下,这会导致ITO氧化不完全,之后的应用中ITO会暴露在空气或空气隔层里,它单位面积阻抗因为自氧化而随时间变化。这使得电阻式触摸屏需要经常校正。 图一是电阻触摸屏的一个侧面剖视图。手指触摸的表面是一个硬涂层,用以保护下面的PET层。PET层是很薄的有弹性的PET薄膜,当表面被触摸时它会向下弯曲,并使得下面的两层ITO涂层能够相互接触并在该点连通电路。两个ITO层之间是约千分之一英寸厚的一些隔离支点使两层分开。最下面是一个透明的硬底层用来支撑上面的结构,通常是玻璃或者塑料。

触摸屏基础知识

触摸屏基础知识 行业简介 触摸屏产品的研究和开发始于60年代的美国,而该技术的成熟和壮大主要应归功于日本的业者,尤其在70年代倍受关注的人机对话系统即是对触摸屏技术的极佳运用,随着运用的不断普及,日本业者开发出适合量产化的触摸屏生产工艺,并逐步控制了全球80%以上的触摸屏生产能力。为了控制触摸屏的生产技术,日本业者一直坚持触摸屏技术不转移的策略。直到90年代,韩国和台湾的厂商才先后在触摸屏的工艺攻关上有所突破,开始在触摸屏市场上有了一席之地,但他们的量产能力和技术水准都还和日本业者有着较大的差距。 在改革开放的大潮中,特别是进入21世纪以来,随着信息技术和平面显示技术在中国的迅速发展,国内许多企业也开始对触摸屏技术产生了兴趣,有的引进出国留学人才开发触摸屏技术;有的和境外企业合作生产,逐步掌握这项技术。目前已改变了过去触摸屏只能依赖进口的局面。在国内市场上,一开始触摸屏主要是应用于公共场所的信息查询系统上。当初只是显示菜单选择的画面,让顾客逐个点按的简单系统,其软件处理速度和触摸屏耐久性等方面都存在水平较低的问题。近几年,随着国内触摸屏制造、开发能力的增强,以及计算机应用能力的提高和显示技术的进步,业界专家开发出了各种适合个性化用途且具备耐久性和可靠性的触摸屏。现在,在不少公共场所中(如车站的售票机、图书馆的检索终端等)都应用了触摸屏。另外,触摸屏也被应用在现代工厂所使用的机器设备,作为一种操控面板。除此之外,以POS系统为中心的销售处理系统、便携式信息终端和自动记录仪等方面通过采用触摸屏,其工作的便利性得到了大大增强。 应用领域 电子钟表,电动玩具,计算器,台历; 手写板,电子字典/书,PDA,商务通;ν 电话机,手机;ν 家用电器(电磁炉、微波炉、空调、消毒柜等);ν 工业仪器设备操作系统;ν 军事指挥系统;ν 教育训练设备;ν 安全监控系统;ν GPS卫星定位系统;ν 餐饮业点餐、订位系统;ν 医疗器械及挂号、诊疗、配药系统;ν 金融提款、转帐、服务系统;ν 各类自动销售系统;ν 各类公共场所信息查询系统。ν 可进行手写输入的触摸屏在近几年间以每年1000万台的规模急速发展。可以肯定,随着人们对显示类产品功能的要求越来越高,随着工业、医疗、教学、科技、军事现代化的不断推进,触摸屏的应用范围必将越来越广,从而实现显示装置和信号输入装置的一体化、直观化、小型化和集约化。同时由于应用了触摸屏,各种科技含量高的新产品必将相继面市。 触摸屏产品类型介绍 从目前触摸屏的应用中,人们对触摸屏的性能要求也越来越理性化,不断提高与顾客要求相符的光学特性、耐久性以及可靠性已成为触摸屏制造者不可忽略的因素。在此,先简单介绍一下几种不同类型的触摸屏。触摸屏可分为电阻式、电容式、红外线式、表面声波式、矢量压力传感式和电磁诱导式等。就市场应用的普遍性而言,前四种的应用居多,而在前四种里电阻式触摸屏又占了大半江山。前四种类型的触摸屏各有优缺点,主要是要根据其具体的用途而定。但各类触摸屏一般都必须具备以下四种条件,即:①透光率好,具备可视性;②使用周期长,耐久性好;③与用户整体设计的尺寸相符(包含连接器件),④能与

触摸工作原理

电容触摸感应MCU工作原理与基本特征 现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC 面世。与此同时,高灵敏度的电容触摸技术也在快速地发展起来,其主要应用在电容触摸屏和电容触摸按键,但由于电容会受温度、湿度或接地情况的不同而变化,故稳定性较差,因而要求IC的抗噪性能要好,这样才能保证稳定正确的触摸感应。 针对市场的需求,来自美国的高效能模拟与混合信号IC创新厂商Silicon Laboratories (简称:Silicon Labs)公司特别推出了C8051F7XX和C8051F8XX系列的MCU(单片机),专门针对电容触摸感应而设计,在抗噪性能和运算速度上表现的非常突出。 一、Silicon Labs公司的电容触摸系列MCU 目前Silicon Labs公司推出的C8051F7xx和C8051F8xx等电容触摸系列MCU,以高信噪比高速度的特点在业界表现尤为出色。同时,灵活的I/O配置,给设计带来更多的方便。另外,由于该系列MCU内部集成了特殊的电容数字转换器(CDC),所以能够进行高精度的电容数字转换实现电容触摸功能。 CDC的具体工作原理: 如图1所示,IREF是一个内部参考电流源,CREF是内部集成的充电电容,ISENSOR 属于内部集成的受控电流源,CSENSOR为外部电容传感器的充电电容,由于人体的触摸引起CSENSOR的变化,通过内部调整过的ISENSOR对CSENSOR进行瞬间的充电,在CSENSOR上产生一个电压VSENSOR,然后相对内部参考电压经过一个共模差分放大器进行放大;同理IC内部的IREF对CREF充电后也产生一个参考电压并相对同样的VREF 经过差分放大,最后将2个放大后的信号通过SAR(逐次逼近模数转换器)式的ADC采样算出ISENSOR的值。 图1 Silicon Labs SAR式的ADC采样可选择12-16位的分辨率,如图2所示,采用16位的分辨率进行逐位比较采样:首先从确定最高位第16位(IREF=0x8000)开始,最高位的

触摸屏的原理与应用

触摸屏的原理与应用触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠 性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装

在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解哪种触摸屏适用于哪种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。 下面对上述的各种类型的触摸屏进行简要介绍一下: 1、表面声波屏 声波屏的三个角分别粘贴着X,Y 方向的发射和接收声波的换能器(换

触摸屏原理

触摸屏原理及技术发展简介 董炜 2010.10.08 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的而且又适用于中国多媒体信息查询国情的输入设备,触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地指碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术极大方便了那些不懂电脑操作的用户。这种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要有公共信息的查询,如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外还可广泛应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等,将来,触摸屏还要走入家庭。随着城市向信息化方向发展和电脑网络在日常生活中的渗透,信息查询都会以触摸屏——显示内容可触摸的形式出现。 工作原理及基本技术: 一:触摸屏的工作理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首 先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的 图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触 摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息, 并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。二:触摸屏的技术原理 从技术原理来区别触摸屏,可分为五个基本种类: 1.矢量压力传感技术触摸屏、 2.电阻技术触摸屏、

触摸屏基本知识

所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。人人都会使用,也就标志着计算机应用普及时代的真正到来。这也是我们发展触摸屏,发展KIOSK,发展KIOSK网络,努力形成中国触摸产业的原因。 从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 触摸屏的第一个特征:透明,它直接影响到触摸屏的视觉效果。透明有透明的程度问题,红外线技术触摸屏和表面声波触摸屏只隔了一层纯玻璃,透明可算佼佼者,其它触摸屏这点就要好好推敲一番,“透明”,在触摸屏行业里,只是个非常泛泛的概念,我们知道,很多触摸屏是多层的复合薄膜,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度,还能再分,比如反光程度包括镜面反光程度和衍射反光程度,只不过我们的触摸屏表面衍射反光还没到达 CD盘的程度,对用户而言,这四个度量已经基本够了。今天我尽量不结合具体的触摸屏去“排队”,技术是在前进的,今天也许是声波屏最理想,明天也许又是另一种,环星公司通过触摸屏的技术本质引申出一些触摸屏的概念,目的是让用户自己学会思考、学会判断,选购适用的触摸屏。 先说透明度和色彩失真度,首先提醒大家,我们看到的彩色世界包含了可见光波段中的各种波长色,在没有完全解决透明材料科技之前,或者说还没有低成本的很好解决透明材料科技之前,多层复合薄膜的触摸屏在各波长下的透光性还不能达到理想的一致状态,下面是一个示意图: 由于透光性与波长曲线图的存在,通过触摸屏看到的图象不可避免的与原图象产生了色彩失真,静态的图象感觉还只是色彩的失真,动态的多媒体图象感觉就不是很舒服了,色彩失真度也就是图中的最大色彩失真度自然是越小越好。平常所说的透明度也只能是图中的平均透明度,当然是越高越好。 反光性,主要是指由于镜面反射造成图象上重叠身后的光影,如人影、窗户、灯光等。反光是触摸屏带来的负面效果,越小越好,它影响用户的浏览速度,严重时甚至无法辨认图象字符,反光性强的触摸屏使用环境受到限制,现场的灯光布置也被迫需要调整。大多数存在反光问题的触摸屏都提供另外一种经过表面处理的型号:磨砂面触摸屏,也叫防眩型,价格略高一些,防眩型反光性明显下降,适用于采光非常充足的大厅或展览场所,不过,防眩型的透光性和清晰度也随之有较大幅度的下降。

相关文档
最新文档