单双极性SPWM单相桥电压型逆变电路课程设计单极性
双极性SPWM电力电子课程设计

双极性SPWM电力电子课程设计一、教学目标本课程的教学目标是让学生掌握双极性SPWM电力电子的基本原理、特点和应用,具备分析和设计双极性SPWM电力电子电路的能力。
具体包括:1.知识目标:(1)了解双极性SPWM电力电子的基本原理和工作方式。
(2)掌握双极性SPWM电力电子的主要特点和性能指标。
(3)熟悉双极性SPWM电力电子电路的应用领域。
2.技能目标:(1)能够分析双极性SPWM电力电子电路的工作原理。
(2)具备设计双极性SPWM电力电子电路的能力。
(3)能够运用双极性SPWM电力电子技术解决实际问题。
3.情感态度价值观目标:(1)培养学生对电力电子技术的兴趣和热情。
(2)增强学生对双极性SPWM电力电子技术的认同感。
(3)培养学生严谨、细致的科学态度。
二、教学内容根据教学目标,本课程的教学内容主要包括以下几个方面:1.双极性SPWM电力电子的基本原理:介绍双极性SPWM电力电子的工作原理、电路结构及其工作方式。
2.双极性SPWM电力电子的主要特点和性能指标:阐述双极性SPWM电力电子的特点、性能指标及其优缺点。
3.双极性SPWM电力电子电路的应用领域:介绍双极性SPWM电力电子技术在各个领域的应用实例。
4.双极性SPWM电力电子电路的设计与分析:讲解双极性SPWM电力电子电路的设计方法,分析实际电路中的关键参数。
5.实践操作与实验:安排实验环节,使学生能够动手实践,加深对双极性SPWM电力电子技术的理解和掌握。
为了达到教学目标,本课程将采用以下教学方法:1.讲授法:通过讲解双极性SPWM电力电子的基本原理、特点和应用,使学生掌握相关知识。
2.讨论法:学生进行课堂讨论,引导学生思考和分析双极性SPWM电力电子技术的问题。
3.案例分析法:分析实际案例,使学生更好地理解双极性SPWM电力电子技术的应用。
4.实验法:安排实验环节,让学生动手实践,提高实际操作能力。
四、教学资源本课程的教学资源包括:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。
单、三相双极性SPWM逆变电路

计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年5月22日一、实验名称:单、三相双极性SPWM逆变电路MATLAB仿真二、目的及要求了解并掌握单、三相双极性SPWM逆变电路的工作原理; 2.进一步熟悉MATLAB中对Simulink的使用及模块封装、参数设置等技能; 3.进一步熟悉掌握用MA TLAB绘图的技巧。
三、实验原理1.单相双极性SPWM逆变的电路原理2、单相双极性SPWM逆变电路工作方式单相桥式逆变电路双极性PWM控制方式:在Ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负,其幅值只有±Ud两种电平。
同样在调制信号Ur和载波信号Uc 的交点时刻控制器件的通断。
Ur正负半周,对各开关器件的控制规律相同。
当Ur>Uc时,给V1和V4导通信号,给V2和V3关断信号。
如I0>0,V1和V4通,如I0<0,VD1和VD4通,U0=Ud 。
当Ur<Uc时,给V2和V3导通信号,给V1和V4关断信号。
如I0<0,V2和V3通,如I0>0,VD2和VD3通,U0=-Ud 。
这样就得到如下所示的双极性的SPWM波双极性SPWM控制方式波形3.三相双极性SPWM逆变的电路原理图三相SPWM逆变电路4、三相双极性SPWM逆变电路工作方式为:四、实验步骤及电路图1、建立单相双极性SPWM逆变电路MA TLAB仿真模型。
以下分别是主电路和控制电路(触发电路)模型:2、单相双极性SPWM逆变电路参数设置本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。
设置正弦波周期为0.02s,幅值为1。
直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须依次交替输出正三角波和负三角波,这可以通过让三角载波同与之周期相同的、依次交替输出1和-1的矩形波相乘实现。
双极性单相spwm

保护电路
软 故 障 关 断 /高 有 效
上 电 及 手 动 关 断
R1 5 1 0K
C1 31 0u /50 V
+15 R9 3 00 2 3
D1
4 00 7
C4 1 04 R1 0 3 00 2 CG2 3
+15
D2
4 00 7
C61 04
C3 1 0/5 0V 8 7 5 IC1 T L P52 0 R1 1 00 R2 1 0K A G1 +5
u 01 (nTc ) 1 Tc
( n 1)Tc nTc
u 0 (t )dt
1 U d D(n)Tc U d Tc D(n)Tc 2D(n) 1U d Tc
三、输出电压分析
5. 双极性 SPWM 脉冲的占空比
D ( n)
( n)
Tc
u g (nTc ) U cm 2U cm
图4:双极性SPWM逆变控制策略
二、全桥式逆变 器的控制策略
3. 双极性SPWM逆变: 输出正弦波(谐波 少)、电压可调; B和C工况:G2G4有 效时,电流右方向, VT24不导通,从 VD24续流;
+Ud
i0
t
G1G3
t
G2G4
t
基波 u 01
u0 t
基波 i 0 1
i0 t
DC-T O-AC G1 T1 T2 IRF84 0 IRF84 0 A
G2
L
OUT 1 C
VT 1 3 VD2 4 VT 2 4 VD1 3
RL
u0
A工况
B 工况
C 工况
D工况
单双极性SPWM单相桥电压型逆变电路课程设计前言

前言电力电子应用技术综合了微电子、电路、电机学、自动控制等多科学知识,是电能变换与控制的核心技术,在工业、能源、交通、国防等各个领域发挥着越来越重要的作用。
然而,由于电力电子器件所固有的非线性特性,使得对电力电子电路及系统的分析十分困难。
现代计算机仿真技术通过在计算机平台上模拟实际的物理系统,为电力电子电路及系统的分析提供了有效的方法,大大简化了电力电子和传动系统的分析与设计过程,成为研究电力电子应用技术的重要手段。
计算机仿真需要用数学模型代替实际的电力电子装置,通过数值方法求解数学方程,获得电力电子电路及系统中各状态变量的运动规律。
但是,复杂的数学模型、数值计算及编程过程依然需要耗费巨大的工作量,阻碍了计算机仿真技术在工程中的应用。
为此,出现了PSPICE、SABER、MATLAB等适用于电力电子电路及系统的专用仿真软件。
这些软件将各种功能子程序模块化,提供了完善的部件模型,用户只需简单的操作便可完成给定系统的仿真。
目前,MATLAB已涉及通信、信号处理、电气工程、人人工智能等诸多领域。
MATLAB中提供的“SimPowerSystems”,是进行电力电子系统仿真的理想工具,SimPowerSystems中的模型关注器件的外特性,易于与控制系统相连接。
SimPowerSystems 模型库中包含常用的电源快、电力电子器件模块、电机模型以及相应的驱动模块、控制和测量模块,使用这些模块进行电力电子电路系统、电力系统、电力传动等的仿真,能够简化编程工作,以直观易用的图形方式对电气系统进行模拟描述。
直流-交流(DC-AC)变换电路,又称为逆变器(inverter),能够将直流电能转换为交流电能。
逆变电路可做多种分类,按功率器件可分为半控器件逆变电路和全控器件逆变电路。
前者采用晶闸管器件,负载换流或者外接电路强制换流,正逐渐被采用GTO、IGBT等器件的全控器件逆变器所代替。
按直流电源形式可分为电压源逆变器和电流源逆变器。
单极性和双极性

单相桥式PWM 逆变电路如图一所示,其控制方式有单极性和双极性两种,当输出脉冲的宽度按正弦规律变化时,这种电路一般称为SPWM 逆变电路。
无论对于单极性还是双极性SPWM 逆变电路,均把需要输出的正弦波作为调制信号u r ,去调制一个等腰三角形载波信号u c ,从而获得对逆变电路开关器件的控制信号,进而得到所需要的SPWM 波形,如图二所示[2]。
而在具体分析逆变电路的输出电压时常采用一种近似方法,这种方法是假设三角载波信号的频率f c 远大于正弦调制信号的频率f r , 既满足条件 f c 》f r ,这样两个三角载波信号间的正弦波形就可近似看作直线[3],从而可方便的确定各个控制脉冲的起止时刻,以及输出电压的大小和谐波分布。
这种近似分析方法会产生过少误差及控制方式不同时输出电压的不同特点将是本文分析的内容。
二、逆变电路输出脉冲的数学分析 1 单极性逆变电路为分析方便,把图二(a )中细实线方框内的部分图形放大并展宽于图三中。
并设半周正弦调制信号内的脉冲个数为N ,且N 为奇数,由图可见载波信号的第K 个过零点相对于正弦调制信号的角度为πβNK K 212-=(1)它与正弦调制信号u r 的交点A 、B 的坐标分别为(αK -, u K -)与(αK +,u K +), 根据直线方程的两点式表达式,可解出A 、B 两点所在直线的方程为)12(2-+-=--K Nu K K απ)12(2--=++K Nu K K απ把以上两式结合在一起,既有⎥⎦⎤⎢⎣⎡--=-)12(2K N u K K απ (2)在近似计算逆变电路的输出时,正弦调制信号看作不变并用它在K β时刻的值取代,既有关系式⎥⎦⎤⎢⎣⎡--=)12(2sin K N m K K απβ(3)其中cmrmu u m=为调制比,由此可解出输出脉冲的始末角度K α为()[]K K m K Nβπαsin 122 -=(4)但实际上由三角载波和正弦调制信号所产生的输出脉冲与上述是有区别的,要准确计算输出脉冲的始末角度 K α必须使用下式⎥⎦⎤⎢⎣⎡--=)12(2sin K N m K K απα(5)而该式为一奇异方程,我们不能求得其解析解,只能通过计算机求得近似解。
单极性SPWM逆变电路电力电子课设

电力电子技术课程设计单极性SPWM单相桥式逆变电路的设计与仿真院、部:电气信息工程学院学生姓名:李旺指导教师:杨万里职称助教专业:自动化班级:1401班学号:1430740107完成时间:2017.6湖南工学院电力电子技术课程设计课题任务书学院:电气与信息工程学院专业:自动化摘要20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极型晶体管。
逆变电路是PWM控制技术最为重要的应用场合。
这里在研究单相桥式PWM逆变电路的理论基础上,采用Matlab的可视化仿真工具Simulink建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波度对输出波形的影响。
仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。
关键词:PWM控制技术;逆变电路;单极性SPWM;SimulinkAbstractSince 1980s, the electronic information technology and power electronics technology combined to produce a generation of high frequency phase in their development, full controlled power electronic devices, a typical gate turn off thyristor, power transistor, power MOSFET and insulated gate bipolar transistor.The inverter circuit is one of the most important applications of PWM control technology. Here in the theoretical basis of the single-phase bridge inverter circuit of the PWM, the simulation model of PWM inverter using Matlab visual simulation tool Simulink to establish the single-phase bridge unipolar control mode, through dynamic simulation, studied the modulation depth, the carrier frequency of the output voltage. Influence of load current; and analyzes the harmonic characteristics of output voltage, load current. The simulation results show that the model is correct, and it is proved that the model is fast, flexible, convenient, intuitive and a series of characteristics, so as to power electronic technology teaching Study and research provides an effective tool.Key words:PWM control technology; inverter circuit; SPWM waveform; Simulink目录1绪言 (1)1.1电力电子技术的概况 (1)1.2课程学习情况简介 (1)1.3设计要求及总体方案设计 (2)2主电路设计 (3)2.1主电路原理图及原理分析 (3)2.2器件选择及参数计算 (4)3控制与驱动电路设计 (5)3.1控制电路设计 (5)3.2驱动电路设计 (6)4保护电路设计 (7)4.1过电流保护 (7)4.2过电压保护 (7)5仿真分析 (8)5.1仿真软件介绍 (8)5.2仿真模型的建立 (8)5.3仿真结果分析 (10)6设计总结 (13)参考文献 (14)致谢 (15)附录 (16)1绪言1.1电力电子技术的概括随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要用到逆变电路了。
单极性和双极性

单相桥式PWM 逆变电路如图一所示,其控制方式有单极性和双极性两种,当输出脉冲的宽度按正弦规律变化时,这种电路一般称为SPWM 逆变电路。
无论对于单极性还是双极性SPWM 逆变电路,均把需要输出的正弦波作为调制信号u r ,去调制一个等腰三角形载波信号u c ,从而获得对逆变电路开关器件的控制信号,进而得到所需要的SPWM 波形,如图二所示[2]。
而在具体分析逆变电路的输出电压时常采用一种近似方法,这种方法是假设三角载波信号的频率f c 远大于正弦调制信号的频率f r , 既满足条件 f c 》f r ,这样两个三角载波信号间的正弦波形就可近似看作直线[3],从而可方便的确定各个控制脉冲的起止时刻,以及输出电压的大小和谐波分布。
这种近似分析方法会产生过少误差及控制方式不同时输出电压的不同特点将是本文分析的内容。
二、逆变电路输出脉冲的数学分析 1 单极性逆变电路为分析方便,把图二(a )中细实线方框内的部分图形放大并展宽于图三中。
并设半周正弦调制信号内的脉冲个数为N ,且N 为奇数,由图可见载波信号的第K 个过零点相对于正弦调制信号的角度为πβNK K 212-=(1)它与正弦调制信号u r 的交点A 、B 的坐标分别为(αK -, u K -)与(αK +,u K +), 根据直线方程的两点式表达式,可解出A 、B 两点所在直线的方程为)12(2-+-=--K Nu K K απ)12(2--=++K Nu K K απ把以上两式结合在一起,既有⎥⎦⎤⎢⎣⎡--=-)12(2K N u K K απ (2)在近似计算逆变电路的输出时,正弦调制信号看作不变并用它在K β时刻的值取代,既有关系式⎥⎦⎤⎢⎣⎡--=)12(2sin K N m K K απβ(3)其中cmrmu u m=为调制比,由此可解出输出脉冲的始末角度K α为()[]K K m K Nβπαsin 122 -=(4)但实际上由三角载波和正弦调制信号所产生的输出脉冲与上述是有区别的,要准确计算输出脉冲的始末角度 K α必须使用下式⎥⎦⎤⎢⎣⎡--=)12(2sin K N m K K απα(5)而该式为一奇异方程,我们不能求得其解析解,只能通过计算机求得近似解。
基于Matlab的单相双极性spwm逆变电路仿真报告

基于Matlab的单相双极性spwm 逆变电路仿真报告单相双极性SPWM桥式逆变电路实验报告学院:电气与电子工程班级:xxxxx 姓名:xx一、理论介绍SPWM控制技术是逆变电路中应用最为广泛的PWM型逆变电路技术。
对SPWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和SPWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK 模块对电路进行了仿真,给出了最终仿真波形。
SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同. (此处采用等面积法)SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.二、主电路设计分析根据设计要求,采用单相全桥PWM逆变电路,工作方式为单极性PWM方式,开关器件选用IGBT,直流电源电压为200V,电阻电感负载。
设计主电路图如图一所示。
图一单相桥式PWM逆变电路分析:a、主电路采用IGBT作为开关器件的单相桥式电压型逆变电路。
采用负载为阻感负载,工作时V1和V2的通断状态互补,V3和V4的通断状态也互补。
在输出电压u0的正半周,让V1保持通态,V2保持断态,V3和V4交替通断。
当uco>utri,且-uco<utri ,触发VTA+和VTB-导通,输入电源Ud经过VTA+、负载和VTB-构成电流回路,uo=-Ud,电流上升;当uco<utri,使VTA+断开,触发VTA-,但由于是感性负载,电流不能突变,因此负载电流经VDA-和VTB-续流,使VTA-不能导通,uo=0,同时电流下降;当uco>utri,且-uco<utri ,触发VTA+和VTB-导通,输入电源Ud经过VTA+、负载和VTB-构成电流回路,uo=-Ud,电流上升;当-uco>utri,使VTB-断开,触发VTB+,由于是感性负载,电流不能突变,因此负载电流经VTA+和VDB+续流,使VTB+不能导通,uo=0,同时电流下降;直至下一个周期触发VTA+和VTB-导通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单极性PWM控制方式调制信号ur为正弦波,载波uc在ur的正半周为正极性的三角波,在ur的负半周为负极性的三角波。
在ur的正半周,V1保持通态,V2保持断态。
当ur>uc时使V4导通,V3关断,uo=Ud。
当ur<uc时使V4关断,V3导通,uo=0。
在ur的负半周,V1保持断态,V2保持通态。
当ur<uc时使V3导通,V4关断uo=-Ud。
当ur>uc时使V3关断,V4导通,uo=0。
主电路在每个开关周期内输出电压在正和零(或负和零)间跳变,正、负两种电平不会同时出现在一个开关周期内,故称为单极性SPWM。
七、单极性SPWM调制分析载波比和调制深度的定义与双极性SPWM相同。
它不适于半桥电路,而双极性SPWM在半桥、全桥电路中都可以使用。
与双极性SPWM相同,在m<=1和fc>>f的条件下,单极性SPWM逆变电路输出的基波电压u1的幅值U1m满足如下关系:U1m=mUd 即输出电压的基波幅值随调制深度m线性变化,故其直流电压利用率与双极性时也相同。
就基波性能而言,单极性SPWM和双极性SPWM完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。
八、建立单极性SPWM仿真模型单极性SPWM触发信号产生图:触发电路中三角载波(Triangle)参数设置:“Time V alues”为[0 1/fc/2 1/fc],“Output V alues”为[1 0 1]。
对脉冲电路进行封装:单极性SPWM主电路:触发电路参数设置:Ud=300v,R=1欧,L=2mH九、进行单极性SPWM仿真1、仿真时间设为0.06s 键入MATLAB语言命令:>> subplot(4,1,1)>> plot(b.time,b.signals(1).values)>> subplot(4,1,2)>> plot(b.time,b.signals(2).values)>> subplot(4,1,3)>> plot(b.time,b.signals(3).values)>> subplot(4,1,4)>> plot(b.time,b.signals(4).values)>> subplot(3,1,1)>> plot(c.time,c.signals(1).values)>> subplot(3,1,2)>> plot(c.time,c.signals(2).values)>> subplot(3,1,3)>> plot(c.time,c.signals(3).values)仿真结果如下:单极性SPWM单相逆变器m=0.8,N=15时的仿真波形图仿真结果分析:输出电压为单极性SPWM型电压,脉冲宽度符合正弦变化规律。
直流电流同样含有直流分量,2倍基频的交流分量以及与开关频率有关的更高次谐波分量。
但负载电流以开关频率向直流电与回馈的情况较双极性调制时大大减少,因此直流电流的开关次谐波大大小于双极性情况。
由图可知:基波幅值为238.7,与式U1m=mUd 的理论值接近。
即输出电压的基波幅值随调制深度m 线性变化,故其直流电压利用率与双极性时也相同。
谐波分布较双极性情况有明显不同,不在含有开关次即15次谐波,14和16次谐波为基波的39.6%左右。
值得考虑的最低次谐波12次,其幅值为基波的17.55%。
可见值得考虑的最低次谐波幅值较双极性调制时小,所需滤波器也较小。
最高分析频率为3.5KHz 时的THD 达到72.92%。
负载上交流电流的THD 为8.06%。
可见,在线性调制情况下单极性调制时的谐波性能优于双极性SPWM 调制。
2、将调制深度设为0.95。
键入MATLAB语言命令:>> subplot(4,1,1)>> plot(b.time,b.signals(1).values)>> subplot(4,1,2)>> plot(b.time,b.signals(2).values)>> subplot(4,1,3)>> plot(b.time,b.signals(3).values)>> subplot(4,1,4)>> plot(b.time,b.signals(4).values)>> subplot(3,1,1)>> plot(c.time,c.signals(1).values)>> subplot(3,1,2)>> plot(c.time,c.signals(2).values)>> subplot(3,1,3)>> plot(c.time,c.signals(3).values)仿真结果如下:单极性SPWM单相逆变器m=0.95,N=15时的仿真波形图仿真波形分析:交流电压的中心部分加宽。
对输出的交流电压进行FFT分析,可得频谱图:由图可知:基波幅值增加到283.5V。
输出电压中依然不含15次谐波,但12次谐波有所增加,为基波的20.71%;14和16次谐波有所降低,为基波的23.45%。
交流电压THD降为54.15%。
交流电流的THD 也降到5.95%。
对输出的交流电流进行FFT分析,可得频谱图:3、将载波频率设为1050Hz,即N=21。
键入MATLAB语言命令:>> subplot(4,1,1)>> plot(b.time,b.signals(1).values)>> subplot(4,1,2)>> plot(b.time,b.signals(2).values)>> subplot(4,1,3)>> plot(b.time,b.signals(3).values)>> subplot(4,1,4)>> plot(b.time,b.signals(4).values)>> subplot(3,1,1)>> plot(c.time,c.signals(1).values)>> subplot(3,1,2)>> plot(c.time,c.signals(2).values)>> subplot(3,1,3)>> plot(c.time,c.signals(3).values)仿真结果如下:单极性SPWM单相逆变器m=0.95,N=21时的仿真波形图对输出的交流电压进行FFT分析,可得频谱图:由图可知:SPWM逆变器的谐波特性也与载波特性有着密切关系。
值得考虑的最低次谐波增加到18次,其幅值为基波的20.62%,但较双极性调制时小。
开关次整数倍谐波消除,不含21次谐波。
20和22次谐波为基波的23%左右。
同双极性SPWM一样,载波比越高,最低次谐波离基波便越远。
交流电压的THD减为51.42%,交流电流的THD只有4.13%,其正弦度更好。
同双极性SPWM一样,若进一步提高载波频率,则负载电流更加接近于正弦波形。
对输出的交流电流进行FFT分析,可得频谱图:十、总结PWM 控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
PWM 控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,现在大量应用的逆变电路中,绝大部分都是PWM 型逆变电路。
采用正弦调制(SPWM )的的单相全桥逆变电路,当载波频率远高于输出电压基频且调制深度m<=1时,可知基波电压U1的幅值满足关系:U1m=mUd 。
它表明在m<=1和fc>>f 的条件下,SPWM 逆变器输出电压的基波幅值随调制深度m 线性变化。
因此,通过控制调制信号,可方便地调节逆变器输出电压的频率和幅值。
在线性调制区内,m=1时输出电压的基波幅值达到最大,即Ud 。
与单相方波逆变器相比,SPWM 逆变器的直流利用率只有其0.7854倍。
SPWM 逆变电路可以使输出电压、电流较方波逆变电路跟接近正弦波,但由于使用了载波对正弦信号波调制,会产生和载波有关的谐波分量。
这些谐波分量的频率和幅值是衡量PWM 逆变电路性能的重要指标之一。
单相桥式双极性SPWM 逆变电路所包含的谐波角频率为 式中,n=1,3,5,…时,k=0,2,4, …;n=2,4,6,…时,k=1,3,5, …其SPWM 波中不含有低次谐波,只含有角频率为wc 及其附近的谐波,以及2wc 、3wc 等及其附近的谐波。
幅值最高影响最大的是角频率为wc 的谐波分量。
随调制深度的增加,其幅值的相对值逐渐减小。
输出电压中最靠近基频的低次谐波是n=1时的下边带,由于这一边带衰减很快,值得考虑的低次谐波大致在N —2次。
可见,载波比越高,最低次谐波离基波便越远,也就越容易进行滤波,故提高载波比将有效改善输出电压的质量。
单极性SPWM 不适于半桥电路,而双极性SPWM 在半桥、全桥电路中都可以使用。
与双极性SPWM 相同,在m<=1和fc>>f 的条件下,单极性SPWM 逆变电路输出的基波电压u1的幅值U1m 满足关系:U1m=mUd 。
即输出电压的基波幅值随调制深度m 线性变化,故其直流电压利用率与双极性时也相同。
就基波性能而言,单极性SPWM 和双极性SPWM 完全一致,但在线性调制情况下它的谐波性能优于双极性调制:开关次整数倍谐波消除,值得考虑的最低次谐波幅值较双极性调制时小得多,所需滤波器也较小。
十一、参考文献1、《电力电子技术》 第五版 王兆安 刘进军 主编 机械工业出版社2、《电力电子应用技术的MA TLAB 仿真》 林飞 杜欣 编著 中国电力出版社rc ωωk n ±。