多边形及其内角和试题

合集下载

多边形的内角和及角的计算(人教版)(含答案)

多边形的内角和及角的计算(人教版)(含答案)

多边形的内角和及角的计算(人教版)一、单选题(共14道,每道7分)1.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是( )A.四边形B.五边形C.六边形D.八边形答案:C解题思路:∵多边形的外角和都等于360°,∴这个多边形的内角和为720°,∴(n-2)×180°=720°,∴n=6,故选C.试题难度:三颗星知识点:多边形的内角和与外角和2.一个正多边形的每个外角都等于36°,那么它是( )A.正六边形B.正八边形C.正十边形D.正十二边形答案:C解题思路:∵多边形的外角和都等于360°,正多边形的每个外角都相等,∴n=10,故选C.试题难度:三颗星知识点:多边形的内角和与外角和3.若一个n边形的每一个内角为135°,则边数n的值是( )A.6B.7C.8D.10答案:C解题思路:多边形每个外角都相等,均为180°-135°=45°,由多边形外角和为360°,知n=360°÷45°=8,故选C.试题难度:三颗星知识点:多边形的内角和与外角和4.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米.A.8B.9C.10D.12答案:A解题思路:每走1米,左转45°,则机器人走过的轨迹为边长为1的正多边形.题目所求的是正多边形的周长,故只需求边数n即可.∵正多边形的每个外角都相等,∴n=360°÷45°=8,∴机器人共走了:8×1=8(米).故选A.试题难度:三颗星知识点:多边形的外角和定理5.已知:如图,在△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数( ).A.50°B.60°C.70°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理6.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=( )A.70°B.80°C.90°D.100°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理8.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为( )A.65°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.30°B.25°C.20°D.15°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,且BD,CE交于点O.若∠A=50°,∠ACB=60°,则∠1的度数为( )A.130°B.120°C.110°D.100°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理11.如图,点C在AB的延长线上,CE⊥AF于点E,交BF于点D.若∠F=40°,∠C=20°,则∠FBC的度数为( )A.100°B.110°C.120°D.130°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理12.如图,在△ABC中,∠C=30°,∠E=45°.若AE∥BC,则∠AFD的度数是( )A.45°B.60°C.75°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理13.已知:如图,在△ABC中,∠EFB+∠ADC=180°,∠1=∠2.求证:AB∥DG.证明:如图,∵∠EFB+∠ADC=180°(已知)∠ADB+∠ADC=180°(平角的定义)∴∠EFB=∠ADB(____________________)∴__________(同位角相等,两直线平行)∴∠1=______(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠2=∠BAD(等量代换)∴__________(内错角相等,两直线平行)①同角或等角的余角相等;②同角或等角的补角相等;③等量代换;④AB∥DG;⑤EF∥AD;⑥∠BAD;⑦∠2.以上空缺处依次所填正确的是( )A.②⑤⑥④B.①⑤⑦④C.②④⑥⑤D.③⑤⑦④答案:A解题思路:试题难度:三颗星知识点:平行线的性质与判定14.已知:如图,在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE于点F,过B 作BD⊥BC于点B,交CF的延长线于点D.若∠EAC=25°,求∠D的度数.解:如图,∵CF⊥AE(已知)∴∠EAC+∠2=90°(直角三角形两锐角互余)∵∠ACB=90°即∠1+∠2=90°(已知)___________________∴∠1=25°(等量代换)∵BD⊥BC(已知)∴∠DBC=90°(垂直的性质)∴∠D+∠1=90°(直角三角形两锐角互余)∴∠D=90°-∠1=90°-25°=65°(等式性质)横线处应填写的过程最恰当的是( )A.∴∠1=∠EAC(同角或等角的补角相等)∵∠EAC=25°(已知)B.∴∠1=∠EAC(等量代换)∵∠2=65°(已知)C.∴∠1+∠EAC=90°(直角三角形两锐角互余)∵∠EAC=25°(已知)D.∴∠1=∠EAC(同角或等角的余角相等)∵∠EAC=25°(已知)答案:D解题思路:本题主要利用直角三角形两锐角互余和同角或等角的余角相等进行角的计算.故选D.试题难度:三颗星知识点:同角或等角的余角相等。

多边形及其内角和练习题含答案

多边形及其内角和练习题含答案

多边形及其内角和练习题含答案11.3多边形及其内角和练习题姓名:_______________班级:_______________考号:_______________一、选择题1、n边形所有对角线的条数有()A. B. C. D.2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270°C.180° D.135°3、一个多边形的内角和与它的一个外角的和为,那么这个多边形的边数为()A.5 B.6C.7D.84、如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°5、一个四边形,截一刀后得到的新多边形的内角和将()A.增加180°B.减少180° C.不变 D.以上三种情况都有可能6、如果一个多边形的边数变为原来的2倍后,其内角和增加了1260°,则这个多边形的边数为()A.7 B.8 C.9 D.107、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或78、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有A.8条B.9条C.10条D.11条9、一个多边形有14条对角线,那么这个多边形有()条边A.6B.7C.8D.910、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为--()A.8 B.9 C.10 D.1211、如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A.30° B.35° C.36° D.42°12、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.813、一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1314、正多边形的一个内角的度数为108°,则这个正多边形的边数为A. 4B. 5C. 6D. 715、多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定二、填空题16、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为.17、如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= _________ .18、如图,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和为19、一个多边形的内角和与外角和之比为9:2,则从这个多边形的个顶点可以引_______条对角线。

初一数学多变形及其内角和试题

初一数学多变形及其内角和试题

初一数学多变形及其内角和试题1.不能作为正多边形的内角的度数的是( )A.120°B.(128)°C.144°D.145°【答案】D【解析】本题主要考查了多边形的内角和外角. 根据n边形的内角和(n-2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D选项正确.解:A、(n-2)•180°=120•n,解得n=6,所以A选项错误;B、(n-2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n-2)•180°=144°•n,解得n=10,所以C选项错误;D、(n-2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.2.多边形的内角中,最多有________个直角.【答案】4【解析】本题主要考查了多边形的内角和外角. 根据多边形的外角的和等于360°进行解答.解:∵凸多边形的外角和等于360°,∴外角中最多有360°÷90°=4个直角,∴内角中最多有4个直角.3.一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【解析】本题考查了多边形的内角和和外角和定理. 根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:∵多边形的外角和为360°,∴边数=360÷24=15.则它是15边形.4.从边形的一个顶点出发的时角线有______条,可将多边形分成______个三角形.【答案】,【解析】本题主要考查了多边形的对角线. 过n边形的一个顶点出发的时角线有n-3条,过一个顶点的对角线把n边形分成(n-2)个三角形.5.一个六边形所有内角都相等,则每个内角为_____度.【答案】【解析】本题主要考查了多边形的外角和内角. 利用多边形的内角和为(n-2)•180°求出正六边形的内角和,再结合其边数即可求解.解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6-2)×180°÷6=120°.6.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块。

八年级数学上册多边形及其内角和专项测试题(二)新

八年级数学上册多边形及其内角和专项测试题(二)新

11.3多边形及其内角和专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、设四边形内角和等于,五边形外角和等于,则与之间的关系是()A.B。

C.D.【答案】B【解析】解:多边形边数为,则内角和为,四边形内角和,多边形外角和为,五边形外角和,因此.故正确答案为:.2、在六边形的一边上取一点与顶点连结,将六边形分割成三角形的个数为( )A.B.C.D。

【答案】C【解析】解:如图:在六边形的一边上取一点与顶点连结,将六边形分割成三角形的个数为.3、若过多边形的一个顶点有条对角线,则这个多边形是( )A。

五边形B。

六边形C。

七边形D。

八边形【答案】C【解析】解:多边形,有几个顶点就是几边形,对于某一个顶点,和自身及相邻顶点的连线不是对角线。

所以顶点数对角线数,多边形的边数顶点数对角线数。

若过多边形的一个顶点共有条对角线,那这个多边形是七边形。

4、六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A。

正五边形地砖B. 正三边形地砖C. 正六边形地砖D。

正四边形地砖【答案】A【解析】解:正五边形每个内角是,不是的约数,不能镶嵌平面,符合题意;正三角形每个内角度数为,是的约数,能镶嵌平面,不符合题意;正六边形每个内角度数为,是的约数,能镶嵌平面,不符合题意;正四边形每个内角度数为,是的约数,能镶嵌平面,不符合题意.5、正多边形的一个内角是,则这个正多边形的边数为()A。

B。

C.D.【答案】C【解析】解:外角是:,.则这个正多边形是正六边形.6、将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A。

B。

C.D.【答案】D【解析】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:.③将矩形沿顶点与边的一点连线剪开,得到一个五边形和三角形,两个多边形的内角和为:.不可能的是.7、设四边形的内角和等于,五边形的外角和等于,则与的关系是()A。

多边形的内角和计算练习题

多边形的内角和计算练习题

多边形的内角和计算练习题一、选择题1、一个多边形的内角和是 720°,则这个多边形是()A 四边形B 五边形C 六边形D 七边形2、如果一个多边形的内角和是外角和的 3 倍,那么这个多边形的边数是()A 8B 9C 10D 113、下列角度中,不能成为多边形内角和的是()A 600°B 720°C 900°D 1080°4、一个多边形的内角和比它的外角和的 2 倍还大 180°,这个多边形的边数为()A 7B 8C 9D 105、若一个多边形的每一个外角都等于 40°,则这个多边形的边数是()A 7B 8C 9D 10二、填空题1、一个多边形的内角和是 1800°,则它是_____边形。

2、若一个多边形的每一个内角都等于 150°,则这个多边形是_____边形。

3、一个多边形的每一个外角都是36°,则这个多边形是_____边形。

4、若一个多边形的内角和与外角和的总和为 1800°,则这个多边形是_____边形。

5、一个多边形的边数增加 1,则内角和增加_____度。

三、解答题1、已知一个多边形的内角和与外角和的差为 1080°,求这个多边形的边数。

2、若一个多边形的内角和是外角和的5 倍,求这个多边形的边数。

3、一个多边形的每一个内角都比相邻的外角大 36°,求这个多边形的边数。

4、一个多边形除一个内角外,其余内角之和是 2570°,求这个内角的度数以及多边形的边数。

5、小明在计算一个多边形的内角和时,少算了一个内角的度数,结果得出内角和为 600°,你能帮他算出这个多边形的内角和以及少算的那个内角的度数吗?6、如图,在四边形 ABCD 中,∠A = 140°,∠D = 80°。

(1)∠B +∠C =?(2)若四边形 ABCD 的内角和为 360°,求∠B 和∠C 的度数分别是多少?7、一个多边形截去一个角后,形成的新多边形的内角和为2520°,求原多边形的边数。

人教版八年级数学上册多边形及其内角和测试题

人教版八年级数学上册多边形及其内角和测试题

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n 10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)

多边形及其内角和练习题(含答案)1.如果四边形ABCD中∠A+∠C+∠D=280°,那么∠B的角度是多少?选项:A.80° B.90° C.170° D.20°2.如果一个多边形的内角和为1080°,那么这个多边形有多少条边?选项:A.9 B.8 C.7 D.63.内角和等于外角和的两倍的多边形是什么形状?选项:A.五边形B.六边形C.七边形D.八边形4.六边形的内角和是多少度?5.正十边形的每个内角的度数是多少?每个外角的度数是多少?6.图中有多少种不同的四边形?7.四边形的四个内角可以都是锐角吗?可以都是钝角吗?可以都是直角吗?为什么?8.求下列图形中x的值:9.在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC。

BE与DF有什么位置关系?为什么?10.有10个城市进行篮球比赛,每个城市派出3个代表队参加比赛,规定同一城市间的代表队不进行比赛,其他代表队都要比赛一场。

按照这个规定,所有代表队需要打多少场比赛?11.在一个五边形的每个顶点处以1为半径画圆,求圆与五边形重合的面积。

12.(1) 已知一个多边形的内角和为540°,那么这个多边形是什么形状?选项:A.三角形 B.四边形 C.五边形 D.六边形 (2) 五边形的内角和是多少度?13.一个多边形的每个顶点处取一个外角,这些外角中最多有几个钝角?选项:A.1个 B.2个 C.3个 D.4个14.(1) 四边形有几条对角线?五边形有几条对角线?六边形有几条对角线?猜想并探索:n边形有几条对角线?(2) 一个n边形的边数增加1,对角线增加多少条?15.如果一个多边形的边数增加1,那么这个多边形的内角和会增加多少度?如果将n边形的边数增加1倍,那么它的内角和会增加多少度?16.壁虎想捕捉一只害虫,它在油罐下底边A处,害虫在油罐上边缘B处。

多边形内角和外角和典型试题

多边形内角和外角和典型试题

多边形内角和外角和典型试题一.选择题(共30小题)1.若一个正多边形的一个内角等于150°,则这个正多边形的边数是()A.9 B.10 C.11 D.122.一个四边形截一刀后得到的多边形的内角和将()A.增加180° B.减少180° C.不变 D.以上都有可能3.下列哪个多边形的内角和是1080°()A.十二边形 B.十边形 C.八边形 D.六边形4.下列命题是假命题的是()A.三角形的内角和是180° B.多边形的外角和都等于360°C.五边形的内角和是900° D.三角形的一个外角等于和它不相邻的两个内角的和5.一个多边形的每一个外角等于72°,这个多边形是()A.正三角形 B.正方形 C.正五边形 D.正六边形6.若正n边形的每个内角都是120°,则n的值是()A.3 B.4 C.6 D.87.一个凸n边形,除一个内角外,其余n-1个内角的和为2008°,则n的值是()A.12 B.13 C.14 D.158.一个多边形的内角和等于外角和,则这个多边形是()边形.A.3 B.4 C.5 D.69.正n边形的每个内角都是140°,则n为()A.7 B.8 C.9 D.1010.如图,△ABC中,∠A=60°,点D、E分别在AB、AC上,则∠1+∠2的大小为()A.120° B.240° C.180° D.300°11.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90° B.84° C.72° D.88°12.若正多边形的一个外角是36°,则该正多边形为()A.正八边形 B.正九边形 C.正十边形 D.正十一边形13.一个正方形和两个等边三角形的位置如图所示,若∠3=60°,则∠1+∠2=()A.80° B.90° C.120° D.180°13.已知一个多边形的每一个外角都等于18°,下列说法错误的是()A.这个多边形是二十边形 B.这个多边形的内角和是3600°C.这个多边形的每个内角都是162°D.这个多边形的外角和是360°15.如图,∠1+∠2+∠3+∠4等于()A.180° B.360° C.270° D.450°16.当多边形的边数每增加1时,它的内角和与外角和()A.都不变 B.内角和增加180゜,外角和不变 C.内角和增加180゜,外角和减少180゜D.都增加180゜17.人们都是知道“五角星☆”的五个角的相等,那么每一个角的度数是()A.60° B.45° C.36° D.30°18.内角和为360°的多边形是()A.三角形 B.四边形 C.五边形 D.六边形19.如果一个正多边形的每个外角为36°,那么这个正多边形的边数是()A.12 B.10 C.9 D.819.若一个正多边形的一个外角是72°,则这个正多边形的边数是()A.10 B.9 C.8 D.520.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.6 C.5 D.321.每一个内角都相等的多边形,它的外角等于内角的三分之二,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形23.如果一个多边形的内角和等于540°,那么,这个多边形的边数等于()A.四 B.五 C.六 D.七24.八边形的内角和为()A.720° B.900° C.1080° D.1440°25.如果一个多边形的所有内角与一个外角的和是1360°,那么这个多边形的对角线一共有() A.14条 B.28条 C.27条 D.54条26.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形 B.五边形 C.四边形 D.三角形27.一个多边形的内角和等于1260°,则它是()A.五边形 B.七边形 C.九边形 D.十边形28.如果正多边形的每个外角等于40°,则这个正多边形的边数是()A.10 B.9 C.8 D.729.已知一个正多边形的内角和是540°,则这个正多边形的一个外角是()A.45° B.60° C.72° D.90°30.下列哪个度数可能成为某个多边形的内角和()A.240° B.600° C.1980° D.2180°31.一个多边形每个外角都等于30°,这个多边形是()A.六边形 B.正八边形 C.正十边形 D.正十二边形32.内角和与外角和相差180°的多边形是()A.三角形 B.四边形 C.五边形与四边形 D.五边形与三角形33.以下叙述正确的有()①对顶角相等;②同位角相等;③两直角相等;④邻补角相等;⑤多边形的外角和都相等;⑥三角形的中线把原三角形分成面积相等的两个三角形.A.2个 B.3个 C.4个 D.5个34.一个多边形的内角和是1800°,则这个多边形是()边形.A.9 B.10 C.11 D.1235.设一个凸多边形的边数为奇数,除去两个内角外,其余内角和为2390°,则除去的这两内角的度数和为()A.130° B.300° C.310° D.490°36.如果正n边形的一个外角与和它相邻的内角之比是1:3,那么n的值是()A.5 B.6 C.7 D.839.一个九边形的内角相等,那么这个九边形的每一个外角等于()A.140° B.40° C.80° D.20°40.如果一个凸多边形有且仅有三个内角是钝角,那么这种多边形的边数不可能是()A.4 B.5 C.6 D.741.如果一个多边形内角和等于它外角和的两倍,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形42.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.4 B.8 C.10 D.1243.若一个一般的四边形的一组对角都是直角,则另一组对角可以()A.都是钝角 B.都是锐角 C.是一个锐角和一个直角D.是一个锐角和一个钝角44.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360° B.540° C.720° D.630°45.如图,在四边形ABCD中,∠COD=100°,∠ADC、∠DCB的平分线相交于点O,则(∠A+∠B)的和是()A.160° B.180° C.200° D.260°46.如图,四边形ABCD,∠A=80°,∠C=140°,DG和BG分别是∠EDC和∠CBF的角平分线,那么∠DGB=()A.25° B.30° C.35° D.40°47.如图,在三角形纸片ABC中剪去∠C得到四边形ABDE,且∠1+∠2=230°.纸片中∠C 的度数是()A.50° B.60° C.70° D.80°48.一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有()A.42条 B.54条 C.66条 D.78条49.(n+1)边形的内角和比n边形的内角和大()A.180° B.360° C.n×180° D.n×360°50.若一个多边形每一个外角都与它的相邻的内角相等,则这个多边形的边数是()A.6 B.5 C.4 D.351.一个多边形的每个外角都是45°,则这个多边形的内角和为()A.360° B.1440° C.1080° D.720°52.多边形的每个内角都是120°,则从这个多边形的某一个顶点出发引出的对角线共有多少条()A.10条 B.9条 C.3条 D.4条53.一个正多边形的每个外角都等于36°,那么它是()A.正六边形 B.正八边形 C.正十边形 D.正十二边形54.多边形剪去一个角后,多边形的外角和将()A.减少180° B.不变 C.增大180° D.以上都有可能55.若一个多边形的每一个内角都等于108°,则它是()A.四边形 B.五边形 C.六边形 D.八边形56.一个多边形的内角中,锐角的个数最多有()A.3个 B.4个 C.5个 D.6个57.一个凸五边形有三个内角是直角,另外两个角都等于X°,则X°等于()A.45° B.135° C.120° D.108°58.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.1059.已知α是某直角三角形内角中较大的锐角,β是某五边形的外角中的最大角,甲、乙、丙、丁计算1/6(α+β)的结果依次为10°、15°、30°、45°,其中有正确的结果,则计算正确的是()A.甲 B.乙 C.丙 D.丁60.如图,在五边形ABCDE中,AE⊥DE,垂足为E,∠D=150°,∠A=∠B,∠B-∠C=60°,则∠A的度数为()A.120° B.110° C.105° D.100°61.如图,锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,那么∠ACB与∠DFE 的关系是()A.互余 B.互补 C.相等 D.不互余、不互补也不相等62.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110° B.108° C.105° D.100°63.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90° B.135° C.150° D.270°64.某多边形的内角和与外角和的总和为900°,此多边形的边数是()A.4 B.5 C.6 D.765.多边形的边数增加2,这个多边形的内角和增加()A.90° B.180° C.360° D.540°66.一个多边形的内角和等于1260°,它是几边形;一个多边形的内角和是外角和一半,它是几边形.以上两个多边形分别是()A.八边形、四边形 B.九边形、四边形 C.七边形、三角形 D.九边形、三角形67.下列说法中,你认为正确的是()A.四边形具有稳定性 B.任意多边形的外角和都是360°C.等边三角形是中心对称图形 D.矩形的对角线一定互相垂直68.一个多边形的每个外角都等于30°,则它的内角和等于()A.720° B.1080° C.1800° D.2160°68.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360° B.外角和增加360°C.对角线增加一条 D.内角和增加180°70.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.871.若一个多边形的边数增加2倍,它的外角和()A.扩大2倍 B.缩小2倍 C.保持不变 D.无法确定72.下列正多边形中,中心角等于内角的是()A.正六边形 B.正五边形 C.正四边形 D.正三边形73.下列说法中,你认为正确的是()A.四边形具有稳定性 B.等边三角形是中心对称图形 C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°74.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形及其内角和试题
1.从n 边形的一个顶点可以引 条对角线,它们把n 边形分成 个三角形;
2.n 边形共有 条对角线;
3.各个角都 ,各条边都 的多边形叫做正多边形,正三角形的每个内角为 度;
4.正五边形的每个内角为 度,正六边形的每个内角为 度,正八边形的每个内角为 度;
5.一个多边形的内角和为1800°,则它是 边形;
6.一个电冰箱的每一个内角都等于140°,则它的每一个外角等于 °,它是 边形;
7.一个多边形的每一个外角的度数等于其相邻内角度数的1/3,则这个多边形是 边形;
8.在ABCD 中,若∠A ∶∠B ∶∠C ∶∠D = 3∶1∶2∶3,则∠A= ,∠B= ,∠C= ,∠D= ;
9.如果一个角的两边与另一个角的两边互相垂直,则这两个角的关系是: ; 10.一个凸多边形的内角从小到大排列起来,恰好依次增加相同的度数,其中最小角是100°,最大角为140°,则这个多边形的边数是 ; 11.下列可能是n 边形内角和的是 ( ) A 、300° B 、550° C 、720° D 、960°
12.下列说法:⑴四边形中四个内角可以都是锐角;⑵ 四边形中四个内角可以都是钝角;⑶ 四边形中四个内角可以都是直角;⑷ 四边形中四个内角最多可以有两个钝角;⑸四边形中最多可以有两个锐角;其中正确的是( ) A 、1个 B 、2个 C 、3个 D 、4个 13.一个多边形的外角不可能都等于( )
A 、30°
B 、40°
C 、50°
D 、60° 14.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为( )
A 、1620°
B 、1800°
C 、1980°
D 、2160° 15.多边形每一个内角都等于150°,则此多边形一个顶点发出的对角线有 ( ) A 、7条 B 、8条 C 、9条 D 、10条
16.一个多边形的每一个外角都等于且小于45°,那么这个多边形的边数最少是 ( ) A 、7条 B 、8条 C 、9条 D 、10条
17.一个多边形的内角和是外角和的3倍,则这个多边形的对角线有 ( )
A 、20条
B 、24条
C 、27条
D 、30条 18.一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°,则原来多边形
的边数不可能是( ) A 、15条 B 、16条 C 、17条 D 、18条 19.一个多边形的每一个内角都比相邻的外角的3倍还多20°,求这个多边形的内角和。

20.如图,在四边形ABCD 中,∠A 与∠C 的两边互相垂直,且∠C 与∠A 相差58°,求这两个角的度数。

21.根据图填空:⑴∠1= ,⑵∠2= ,⑶∠3= ; 22.n 边形的边数增加1条,其内角增加 度,对角线增加 条;
1
2
3
456
7
12
3
120
120
120
120
75
101
118
°
°
°
°
°
°
°
A
B
C
D
23.如图,∠1+∠2+∠3 +∠4+∠5+∠6+∠7= ;
24.一个多边形的内角和外角和的比是7∶2,则这个多边形是 边形;
25.一个多边形的每一个内角都相等,且它的每一个外角与相邻内角之比为3∶6,试求多边形的边数。

26.四边形ABCD 的四个外角度数之比为8∶6∶3∶7,求这个四边形各内角度数分别是多少? 27.如果一个散兵线除了一个内角外,其余各内角之和为1190°,则这个内角是多少度? 28.如图,分别以四边形的各个顶点为圆心,半径为R 作圆,问这些圆与四边形的公共部分的面积是多少?为什么? 二 填空题
1.如图,∠1+∠2+∠3+∠4=______度.
2.如图3,已知AB ∥CD ,∠A=55°,∠C=20°,则∠P=___________. 3.一个多边形的每一个外角都等于30°,这个多边形的边数是 ,它的内角和是 。

4.用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是______. 5.小明准备用长分别为30cm ,70cm ,40cm 的三条铁丝为边焊接成三角形,他能做到吗?答_____(“能”或“不能”) 三、解答题
1、如图,按规定,一块模板中AB 、CD 的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅边结AC ,测得∠BAC =32°,∠DCA =65°,此时AB 、CD 的延长线相交所成的角是不是符合规定?为什么?
2、如图,在△ABC 中,∠A=70°,∠B=50°,CD 平分∠ACB .求∠ACD 的度数. 3.如图所示,已知DF ⊥AB 于F ,∠A =40°,∠D =50°,求∠ACB 的度数.
4.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.
5、 小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由。

6.如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 关系,并说明理由.
(图7)
7.如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 度数.
8.如图,已知∠B=38°,∠C=55°,∠DEC=23°,求∠F 的度数.
9.如图,△ABC 中,AD 是BC 上的高,AE 平分∠BAC ,∠B=75°,•∠C=45°,求∠DAE 与∠AEC 的度数.
10.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC 度数.
4
321
D C
B A。

相关文档
最新文档