同底数幂的乘法典型习题

合集下载

同底数幂的乘法练习题 含答案

同底数幂的乘法练习题 含答案

同底数幂的乘法练习题含答案同底数幂的乘法练习题含答案同底数幂的乘法练习题(含答案)13.1.1同底数幂的乘法(1)x·x=2x()(2)x+x=x()(3)m·m=m()(4)x(-x)=-x()(1)mm=(2)yn-3∙y3∙y5-n=(3)(-a)(-a)(4)-x2(-x)2324533347555131326()(1)10×10(2)(-2)·(-2)·(-2)(3)a·a·a(4)(a+b)(a+b)(a+b)(5)aaa25()()x-2y∙2y-x(6)-a·a(7)(-a)·a(8)2323mn4nn+3342335若3=5,3=7,谋3mnm+n+1的值m+nmn分析:本题的切入点是同底数幂的乘法性质的逆用:a=a·a(m,n为正整数)。

运用此法则,可以把一个幂分解成两个(或两个以上)同底数幂的积。

其中,分拆税金的(两个或两个以上)同底数幂的底数与原来幂的底数相同,指数之和等同于原来幂的指数。

解:∵3=5,3=7,∴3m+n+1mn=3·3·3=5×7×3=105mnp2n3m[]=()()()x-y∙y-x∙-x-y(1)(2)未知2=m,用含m的代数式则表示2=_____2、选择:x+2x(1)以下排序中①b+b=2b②b·b=b③y·y=y④m·m=m⑤m·m=2m其中恰当的个数存有()347[1**********]34a1个b2个c3个d4个3m3m+2不等于()bx·xm2m+2ax·x2cx+2dx·x3mm+22ma+b+ca+bx=35,x=5,谋xc的值.(1)mn14x∙x∙x=x,求m+n.(2)若(3)若an+1∙am+n=a6,且m-2n=1,谋mn的值.3534(4)计算:x∙x+x∙x∙x.1.(2021年重庆市江津区)以下计算错误的就是()a.2m+3n=5mnb.a÷a=ac.(x2)3=x6d.a⋅a=a2.(2021年山西省太原市)下列计算中,结果正确的是()1、推论:本题考查同底数幂的乘法法则及分拆同类项(1)×(2)×(3)×(4)×2、填空:(1)m(2)y(3)本题要注意符号错误-a(4)注意符号-x955462423a.a·a=ab.(2a·)(3a)=6ac.a236()23=a6d.a6÷a2=a33、排序:(1)10(2)2(3)a(4)(a+b)1、填空;769m+n+1(5)a5n+4(6)-a(7)a(8)(2y-x)557p2n3m[]=-(x-y)·()()()x-y∙y-x∙-x-y(1)(x-y)p2n·(x-y)=-(x-y)3mp+2n+3mx+2x2(2)2=2·2=m,∴2x=4(1)a本题考查同底数幂的乘法性质的运用(2)c由同底数幂的乘法性质可知a、b、d运算结果均为x(1)∵xa+b+c3m+2,故挑选c=x·x=35,x=5,∴x=7a+bca+bc1+m+n14(2)由x∙x∙x=x,得x=x,∴1+m+n=14,∴m+n=13mn14(3)∵a·a=a∴n+1+m+n=6,即m+2n=5,又∵m-2n=1,∴m=3,n=1,∴m=33534888x∙x+x∙x∙x(4)=x+x=2xn+1m+n6n1、幂的运算【答案】aa=a,选项a是错的,(2a)2、解析:本题考查整式的有关运算,a·(3a)=6a2,选项235b就是错的,a()23=a6,选项c是正确的,故选c。

(完整版)幂的运算经典习题

(完整版)幂的运算经典习题

(完整版)幂的运算经典习题⼀、同底数幂的乘法1、下列各式中,正确的是() A .844m m m = B.25552m m m = C.933m m m = D.66y y 122y =2、102·107= 3、()()()345-=-?-y x y x4、若a m =2,a n =3,则a m+n 等于( ) (A)5 (B)6 (C)8 (D)95、()54a a a =?6、在等式a 3·a 2·( )=a 11中,括号⾥⾯⼈代数式应当是( ).(A)a 7 (B)a 8 (C)a 6 (D)a 383a a a a m =??,则m=7、-t 3·(-t)4·(-t)58、已知n 是⼤于1的⾃然数,则()c -1-n ()1+-?n c 等于 ( )A. ()12--n c B.nc 2-C.c-n2 D.n c 29、已知x m-n ·x 2n+1=x 11,且y m-1·y 4-n =y 7,则m=____,n=____. ⼆、幂的乘⽅ 1、()=-42x 2、()()84aa =3、( )2=a 4b 2;4、()21--k x =5、323221??-z xy =6、计算()734x x ?的结果是 ( )A. 12xB. 14xC. x 19D.84x7、()()=-?342a a8、n n 2)(-a 的结果是 9、()[]52x --= 10、若2,x a =则3x a = 三、积的乘⽅1)、(-5ab)2 2)、-(3x 2y)2 3)、332)311(c ab - 4)、(0.2x 4y 3)2 5)、(-1.1x m y 3m )2 6)、(-0.25)11×411 7)、-81994×(-0.125)1995 四、同底数幂的除法 1、() ()=-÷-a a 42、()45a a a =÷3、()()()333b a ab ab =÷4、=÷+22x x n5、()=÷44ab ab .6、下列4个算式: (1)()()-=-÷-24c c 2c(2) ()y -()246y y -=-÷(3)303z z z =÷ (4)44a a a m m =÷ 其中,计算错误的有 ( )A.4个B.3个C.2个D.1个 7、 ÷a 2=a 3。

同底数幂的乘除法典型习题

同底数幂的乘除法典型习题

1、同底数幂的乘法一、知识点检测1、同底数幂相乘,底数 ,指数 ,用公式表示=n m a a (m ,n 都是正整数)2、计算32)(x x ⋅-所得的结果是( ) A.5x B.5x - C.6x D.6x - 3、下列计算正确的是( ) A.822b b b =⨯ B.642x x x =+ C.933a a a =⨯ D.98a a a =4、计算: (1)=⨯461010 (2)=⎪⎭⎫ ⎝⎛-⨯-6231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 5、若53=a ,63=b ,求b a +3的值二、典例若125512=+x ,求()x x +-20092的值三、拓展提高1、下面计算正确的是( )A.4533=-a aB.n m n m +=⋅632C.109222=⨯D.10552a a a =⋅ 2、=-⋅-23)()(a b b a 。

3、()=-⋅-⋅-62)()(a a a 。

4、已知:5 ,3==n m a a ,求2++n m a 的值四、体验中考1、计算:a 2·a 3= ( )A .a 5B .a 6C .a 8D .a 92、数学上一般把n aa a a a 个···…·记为( )A .naB .n a +C .n aD . n2、幂的乘方一、知识点检测1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是正整数)2、计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅4、如果正方体的棱长是2)12(+a ,则它的体积为 。

二、典例分析例题:若52=n ,求n 28的值三、拓展提高1、()=-+-2332)(a a 。

同底数幂的乘法练习题(含答案)

同底数幂的乘法练习题(含答案)

优秀资料 欢迎下载!七年级下册同底数幕的乘法基础练习1 .填空:(1)46a a 二5(2) b b -(3) 23m m m 二 359(4) c C C C = (5)m . n . pa a a -(6) t t 2mJ 二 n 1(7) qq 二.计算:(8) n n 2p 1 n p 」二(1) .3.2_b b 口 3(2) (-a) a 二(3) 23(-y) (-y)二 4(4) (-a) (-a)二 (5) -34 32 二 (6) (-5)7 (-5)6 二 (7) (—q)2n (—q)3 二 (8) (-m)4 (-m)2 二(9) -23 =45(10) (-2) (-2)二(11) -b 9(-b)6二33(12) (-a) (-a )=.下面的计算对不对?如果不对, 应怎样改正? (1)^3小2^523 =6 ;6(2) a a a ; (3) nn2ny y 2y ;/ 、 2 2(4) m m 二 m ;(5) (-a)2(-a 2) =a 4; 412(6) a a a ; (7) (-4)^43 ; (8) 7 72 73 = 76 ; (9) _a 2 二-4 ;/ 、 丄 2 3(10) n n n .2.计算: 3 4 (1) a m 叫做a 的m 次幕,其中a 叫幕的 ,m 叫幕的 (2) 写出一个以幕的形式表示的数,使它的底数为 c ,指数为3,这个数为(3) (-2)4表示 (4) 根据乘方的意义,a 3因此a 3 a 4=()()()5•选择题:(1)a2m 2可以写成()•m 1A • 2aB •2m 2a a 2m 2C • a a2 md!D • a a(2)下列式子正确的是( )•A • 34 = 3 4B •4 4(-3) =3J JC • -3 二3D •34=43(3)下列计算正确的是( )•八 4 4A • a a a r 4 . 4B • a a8二aC. a4 a4 =2a4r 4 4D • a a16二a综合练习1 •计算:(1) n n 1 n 吃a a a(2)b n b3n b5n二(3) 2 m 3 m Jb b b b (4)(-1)31 (-1宀(5)7 632-62= (6) 4 56 37 3 =(7) 2 4 3 3 52x x 3x x x x □(8)x4 x3 7x6 x-2x5 x2(9)3n^1 n 1 2n&1x x 3x x (10)a x y a x^ 3a2x =(11) 3 2 6 . 5 6(-a) (-a) (一a ) 3a a 二(12)2n -2^3 2n1 =(13)3 5 mc (「c) c 二2•计算:(结果可以化成以(a b)或(a -b)为底时幕的形式)(1) (a -b)2 (a -b)3 (a -b)4二(2) (a b)m 1 (a b) (a b)m (a b)2 =2 n _1(3) (b —a) (a -b) (b —a)=(4) (a -b)n 1 (b -a)3 (b -a)"'二(5) 2(a b)2 (a b)n4 -3(a b)n^ (a b)3二(6) 3(a -b)2m 1 (a -b)22(b —a)2m (a —b)3(7) (a+b)m (a+b)n -(a+b)卩+3(a + b)n 羊,(a+b)p 」= (8) 3(b —a)2 4(a —b)3 5(b —a)5 =3•填空题: (1)a 3 a 4( ) =a 12 •(2) a 2 ( Ha 4 ( Ha 10 • (3)(x —y)3 (x - y)6 =(x —y)()(x —y) - -()5 (x — y)4•(4) 已知 b m =3 , b n =4,贝U b m * = ________ •2 3 4 5 () ()(6) (a-b) (b_a) (a -b) (b_a) (a _b) =(a_b) _-(b_a)4•选择题:5B . (b - a - c)八、5D . _ (b _ a _ c)5•解答题:m -n3n 113(1)如果 y y 二 y , (2)设 123 ......... m = p ,计算:x m y x m4y 2 x m_2 y 3 :4•把下列各题的计算结果写成 10的幕的形式,其中正确的选项是()•36A • 1000 10 =10B .100 200100 10 =10C . 102n 10m =100m n 108 10 =1008 1. (2a b)m (2a - b)n 等于()•2. 3. 2(2 a b)a 2m1可写成(a _b c)2m “nB . (2a b))• 2mtaB . a(b - a - c)3等于(C . C . )•(2a b)2ma a mnm _nD . (2a b)m -1D . 2aC .2(a-b c)x 4^=x 6 的值.mxy •1 .下面的算式是按一定规律排列的:5 3, 7 9,9 9,11 12,……你能找出其中的规律吗?试一试,算出它的第90个算式的得数.2•某商店一种货物售价目表如下:数量x (千克)售价c (元) 1 14+1.2 2 28+2.4 370+6(1) 写出用x 表示c 的公式; (2) 计算3千克的售价.3.观察下列等式:13 = 12,13 23=32,13 2333=62,13 23 33 • 43 =102,……想一想等式左边各项幕的底数与右边幕的底数有什么关系?猜一猜可以引出什么规律, 并把这种规律用等式写出来.4•下列各个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n 畀)盆花,每个图案花盆的总数是 s.o o o o oo o o o o o ort =5, J = 12按此规律推算,求出 s 与n 的关系式.OO O O O On = 3, 5 = 6 O O O O O O O O OM =4t i = 9基础3(2) c ( 3) 4个一2相乘,4个2相乘的积的相反数(4) a a a a a a a ,a ,3,4,7 (3) — (a-b)6 (4) (-1)n (a-b)2「3(5) -(a bT 1(6)2m : :35(a -b)(7) 4(a b)m n p(8) _60(b_a)103. (1) -b 5(2)-a 454(3) - y(4) -a 7(5)- -729(6) 一 513(7)2n 3_q(8) -m 6 (9)- -8(10)- 512(11) -b 15(12)6a4. (1) 应改为 2332二12(2)改为3a a 36=a(3) 改为ynn 2ny y(4)改为 m m 2 =m 3 (5)改为 (_a)2 ( _a 2) _ -a 4 ⑹ 347改为a a a(7)改为 (一4)3--43(8)对(9)对(10)改为n2n3 二n5. (1) C(2) B (3)C综合1. (1)a3n 3(2) b 9n(3) 2 m -2 b(4)- 1 (5) 0 7 6(6) 3 (7) 6x2. (1) (a —b)9 (2) 2(a b)m 2 (3) 一(a —b)6 (5) -(a b)n1(6) 5( >-b)2m3(7) 4(a -b )m n p(8) _6O(b_a)103. (1) 58a(2) a 6,a(3) 8, y-x (4)12(5)1 5, 一 —10 32(6) 15, 154. (1) B(2) C(3) C (4) A5. (1) n =3, m =6(2) p px y拓展1.( 1)底数,指数2.( 1)a 10(2)2(a b)m 2(8) 6x 7(9) 4x -n 2(10) 4a 2x11(11) 4a(12) -2n 2(13) -c m 8(4) (-b)n (a-b)2n 31. 4532. c = 15.2x3. 132333n3 =(1 亠2亠3亠n)24. x = 3( n T)。

同底数幂的乘法练习题及答案

同底数幂的乘法练习题及答案

同底数幂的乘法-练习一、填空题1.同底数幂相乘,底数 , 指数 。

2.A ( )·a 4=a 20.(在括号内填数) 3.若102·10m =102003,则m= . 4.23·83=2n ,则n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,则m=________;若416a x x x =,则a=__________; 12. 若2,5m n a a ==,则m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9二、选择题1. 下面计算正确的是( )A.326+=;D.56a a a=mm m=;B.336+=;C.426b b bx x x2. 81×27可记为( )A.39 B.73 C.63 D.1233. 若x y≠,则下面多项式不成立的是( )A.22-= D.222()y yx y x y+=+()()()y x x y-=- B.33()x x-=- C.224.下列各式正确的是()A.3a2·5a3=15a6 B.-3x4·(-2x2)=-6x6C.3x3·2x4=6x12 D.(-b)3·(-b)5=b8 5.设a m=8,a n=16,则a n m+=()A.24 B.32 C.64 D.1286.若x2·x4·()=x16,则括号内应填x的代数式为()A.x10B. x8C. x4D. x2 7.若a m=2,a n=3,则a m+n=( ).A.5 B.6 C.8 D.98.下列计算题正确的是( )A.a m·a2=a2m B.x3·x2·x=x5 C.x4·x4=2x4 D.y a+1·y a-1=y2a 9.在等式a3·a2( )=a11中,括号里面的代数式应当是( )A.a7B.a8 C.a6D.a5 10.x3m+3可写成( ).A.3x m+1 B.x3m+x3 C.x3·x m+1 D.x3m·x311:①(-a)3·(-a)2·(-a)=a6;②(-a)2·(-a)·(-a)4=a7;③(-a)2·(-a)3·(-a2)=-a7;④(-a2)·(-a3)·(-a)3=-a8.其中正确的算式是( )A.①和②B. ②和③ C.①和④D.③和④12一块长方形草坪的长是x a+1米,宽是x b-1米(a、b为大于1的正整数),则此长方形草坪的面积是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+213.计算a-2·a4的结果是( )A.a-2 B.a2C.a-8 D.a814.若x≠y,则下面各式不能成立的是( )A.(x-y)2=(y-x)2 B.(x-y)3=-(y-x)3C.(x+y)(x-y)=(x+y)(y-x) D.(x+y)2=(-x-y)215.a 16可以写成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8 D .a 4·a4 16.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 7 17.下列题中不能用同底数幂的乘法法则化简的是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 计算2009200822-等于( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科学记数法表示(4×102)×(15×105)的计算结果应是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判断下面的计算是否正确(正确打“√”,错误打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答题1.计算(1)(-2)3·23·(-2) (2)81×3n(3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+12、计算题(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅-(3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

同底数幂的乘法典型例题

同底数幂的乘法典型例题

典型例题(一)例1计算题:(1)(2);(3).分析:由同底数幂相乘的法则知,能运用它的前题必须是“同底”,注意最后结果中的底数不能带负号,如不是最后结果,应写成才是最后结果.解:(1)(2)(3)例 2 计算:(1) a6·a6(2) a6+a6分析:对于(1),可利用“同底数幂的乘法公式”计算,而第(2)题,是两个幂相加,需进行合并同类项,注意两者的区别.解:(1) a6·a6=a6+6=a12(2) a6+a6=2a6说明:注意区分:同底数幂的乘法是乘法运算,且底数不变,指数相加.而合并同类项是加(减)法,且系数相加,字母与字母的指数不变.例3计算:(1);(2);(3);(4)分析:在幂的运算法则中的底数,可以是数字、字母,也可以是单项式或多项式.例如(1)中的,(3)中的,(2)中的,(4)中的.指数可以是自然数,也可以是代表自然数的字母.解:(1)(2)(3)(4)说明:(1)中的指数是1,不是0;(2)要注意区别与的不同,,而;(4)指数中含有自然数和字母,相加时要合并同类项化简.例4计算题:(1);(2);(3).分析:运用同底数幂相乘的法则要求必须“同底”,注意与的不同,它们的底不同,必须变成相同的底数之后再运算.解:(1)原式;(2)原式;(3)原式.说明:分别把,看作一修整一,第一个是三个同底数幂相乘,但必须把转化为,或者把转化为,其实质是相同的,因为互为相反数的奇次幂仍是互为相反数.例5计算:(1);(2);(3).分析:此题为混合运算,应先根据同底数幂的运算性质进行乘法运算,再进行加减运算.解:(1)原式(2)原式(3)原式说明:(2)中用到,是逆向使用运算公式.。

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)

同底数幂的乘法专项练习50题(有答案)一、 知识点:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________; (3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+(5)若m 、n 均为正整数,则a m ·a n =_______,即同底数幂相乘,底数______,指数_____.二、专项练习: (1)=⋅64a a(2)=⋅5b b(3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c(5)=⋅⋅p n ma a a (6)=-⋅12m t t (7)=⋅+q qn 1(8)=-+⋅⋅112p p n n n(9)=-⋅23b b (10)=-⋅3)(a a(11)=--⋅32)()(y y (12)=--⋅43)()(a a(13)=-⋅2433 (14)=--⋅67)5()5((15)=--⋅32)()(q q n(16)=--⋅24)()(m m(17)=-32 (18)=--⋅54)2()2((19)=--⋅69)(b b (20)=--⋅)()(33a a(21) 111010m n +-⨯= (22) 456(6)-⨯-=(23)234x x xx += (24)25()()x y x y ++=(25)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=(26) 若34ma a a =,则m=________; 若416ax x x =,则a=__________;若2345yxx x x x x =,则y=______; 若25()x a a a -=,则x=_______.(27) 若2,5m na a ==,则m na +=________.(28)19992000(2)(2)-+-=(29)2323()()()()x y x y y x y x -⋅-⋅-⋅- (30)23()()()a b c b c a c a b --⋅+-⋅-+(31)2344()()2()()x x x x x x -⋅-+⋅---⋅; (32)122333m m m x xx x x x ---⋅+⋅-⋅⋅。

(完整版)同底数幂的乘法练习题与答案

(完整版)同底数幂的乘法练习题与答案

同底數冪の乘法-練習一、填空題1.同底數冪相乘,底數 , 指數 。

2.A ( )·a 4=a 20.(在括號內填數) 3.若102·10m =102003,則m= . 4.23·83=2n ,則n= .5.-a 3·(-a )5= ; x ·x 2·x 3y= . 6.a 5·a n +a 3·a 2+n –a ·a 4+n +a 2·a 3+n = .7.(a-b )3·(a-b )5= ; (x+y )·(x+y )4= . 8. 111010m n +-⨯=__ _____,456(6)-⨯-= __. 9. 234x x xx +=_ 25()()x y x y ++=_ _.10. 31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=__ __.11. 若34m a a a =,則m=________;若416a x x x =,則a=__________; 12. 若2,5m n a a ==,則m n a +=________.13.-32×33=_________;-(-a )2=_________;(-x )2·(-x )3=_________;(a +b )·(a +b )4=_________;0.510×211=_________;a ·a m ·_________=a 5m +115.(1)a ·a 3·a 5= (2)(3a)·(3a)= (3)=⋅⋅-+11m m m X X X(4)(x+5)3·(x+5)2= (5)3a 2·a 4+5a ·a 5= (6)4(m+n)2·(m+n)3-7(m+n)(m+n)4+5(m+n)5= 14.a 4·_________=a 3·_________=a 9 二、選擇題1. 下面計算正確の是( )A .326b b b =; B .336x x x +=; C .426a a a +=; D .56mm m =2. 81×27可記為( )A.39 B.73 C.63 D.1233. 若x y ≠,則下面多項式不成立の是( )A.22()()y x x y -=-B.33()x x -=-C.22()y y -=D.222()x y x y +=+ 4.下列各式正確の是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6 C .3x 3·2x 4=6x 12 D.(-b )3·(-b )5=b 8 5.設a m =8,a n =16,則a n m +=( )A .24 B.32 C.64 D.128 6.若x 2·x 4·( )=x 16,則括號內應填x の代數式為( )A .x 10B. x 8C. x 4D. x 2 7.若a m =2,a n =3,則a m+n =( ).A.5 B.6 C.8 D.9 8.下列計算題正確の是( )A.a m ·a 2=a 2m B.x 3·x 2·x =x 5 C.x 4·x 4=2x 4 D.y a+1·y a-1=y 2a 9.在等式a 3·a 2( )=a 11中,括號裏面の代數式應當是( )A.a 7B.a 8 C.a 6D.a 5 10.x 3m+3可寫成( ).A.3x m+1 B.x 3m +x 3 C.x 3·x m+1 D.x 3m ·x 311:①(-a)3·(-a)2·(-a)=a 6;②(-a)2·(-a)·(-a)4=a 7;③(-a)2·(-a)3·(-a 2)=-a 7;④(-a 2)·(-a 3)·(-a)3=-a 8.其中正確の算式是( )A.①和②B. ②和③ C.①和④ D.③和④12一塊長方形草坪の長是x a+1米,寬是x b-1米(a 、b 為大於1の正整數),則此長方形草坪の面積是( )平方米.A.x a-b B.x a+b C.x a+b-1 D.x a-b+2 13.計算a -2·a 4の結果是( )A .a -2B .a 2C .a -8D .a 814.若x ≠y ,則下面各式不能成立の是( ) A .(x -y )2=(y -x )2B .(x -y )3=-(y -x )3C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )215.a 16可以寫成( )A .a 8+a 8 B .a 8·a 2 C .a 8·a 8D .a 4·a 416.下列計算中正確の是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 717.下列題中不能用同底數冪の乘法法則化簡の是( ) A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )18. 計算2009200822-等於( ) A 、20082 B 、 2 C 、1 D 、20092- 19.用科學記數法表示(4×102)×(15×105)の計算結果應是( ) A .60×107 B .6.0×107 C .6.0×108 D .6.0×1010 三.判斷下面の計算是否正確(正確打“√”,錯誤打“×”)1.(3x+2y)3·(3x+2y)2=(3x+2y)5( ) 2.-p 2·(-p)4·(-p)3=(-p)9( ) 3.t m ·(-t 2n )=t m-2n ( ) 4.p 4·p 4=p 16( ) 5.m 3·m 3=2m 3( ) 6.m 2+m 2=m 4( ) 7.a 2·a 3=a 6( ) 8.x 2·x 3=x 5( ) 9.(-m )4·m 3=-m 7( ) 四、解答題1.計算(1)(-2)3·23·(-2) (2)81×3n (3)x 2n+1·x n-1·x 4-3n (4)4×2n+2-2×2n+1 2、計算題(1) 23x x x ⋅⋅ (2) 23()()()a b a b a b -⋅-⋅- (3) 23324()2()x x x x x x -⋅+⋅--⋅ (4) 122333m m m x x x x x x ---⋅+⋅-⋅⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂的乘法
1、同底数幂的乘法
一、知识点检测
1、同底数幂相乘,底数 ,指数 ,用公式表示=n
m a a (m ,n 都是正整数)
2、计算32)(x x ⋅-所得的结果是( )
A.5x
B.5x -
C.6x
D.6x -
3、下列计算正确的是( )
A.822b b b =⨯
B.642x x x =+
C.933a a a =⨯
D.98a a a =
4、计算: (1)=⨯4
61010 (2)=⎪⎭⎫ ⎝⎛-⨯-6
231)31( (3)=⋅⋅b b b 32 (4)2y ⋅ 5y = 5、若53=a ,63=b ,求b a +3
的值
二、典例分析
例题:若1255
12=+x ,求()x x +-20092的值
三、拓展提高
1、下面计算正确的是( )
A.4533=-a a
B.n m n m +=⋅632
C.109222=⨯
D.10
552a a a =⋅ 2、=-⋅-23)()(a b b a 。

3、()=-⋅-⋅-62)()(a a a 。

4、已知:5 ,3==n m a a ,求2++n m a 的值
5、若62=-a m ,115=+b m ,求3++b a m 的值
四、体验中考
1、计算:a 2·a 3= ( )
A .a 5
B .a 6
C .a 8 D
.a 9 2、数学上一般把n a
a a a a 个···…·记为( )
A .na
B .n a +
C .n a D
.a n
2、幂的乘方
一、知识点检测
1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是
正整数)
2、计算23()a 的结果是( )
A .5a
B .6a
C .8a
D .2
3a 3、下列计算不正确的是( )
A.933)(a a =
B.326)(n n a a =
C.2221)(++=n n x x
D.623x x x =⋅
4、如果正方体的棱长是2
)12(+a ,则它的体积为 。

二、典例分析
例题:若52=n ,求n 28
的值
三、拓展提高
1、()=-+-2332)(a
a 。

2、若63=a ,5027=
b ,求a b +33
的值 3、若0542=-+y x ,求y x 164⋅的值
4、已知:625255=⋅x x ,求x 的值
5、比较5553
,4444,3335的大小。

四、体验中考
1下列运算正确的是( )
A .43a a a =⨯
B .44()a a -=
C .235a a a +=
D .235()a a = 2.计算32()a 的结果是( )
A .5a
B .6a
C .8a
D .9a 3、已知102103m n ==,,
则3210m n +=____________.
3、积的乘方
一、知识点检测
1、积的幂,等于幂的积。

用公式表示:n ab )(= (n 为正整数)
2、下列计算中,正确的是( )
A. ()6
33xy y x =⋅ B.6326)3()2(x x x =-⋅- C. 2222x x x =+ D. 2221)1(-=-a a
3、计算:()23ab
=( ) A .22a b B .23a b C .26a b D .6ab
二、典例分析
例题:求603020092125
.0⨯的值
三、拓展提高
1、=3)2(ab =43)2(a =-2)3(m n b a
2、计算:201020092010)2.1()6
5()
1(-⨯⨯-
3、计算:3920964252
25.0⨯⨯⨯
4、已知332=-b a ,求96b a 的值
5、若13310052+++=⨯x x x , 求x 的值
四、体验中考
1、下列计算正确的是( )
A .532)(b b =
B .2623)(b a b a -=- C
.325a a a += D .()32628a a = 2、计算()4323b a --的结果是( )
A.12881b a B.7612b a C.7612b a - D.12881b a -。

相关文档
最新文档