中考数学专题突破十:新定义问题(含答案)

合集下载

最新通用版九年级中考数学小专题复习新定义问题(解析版)

最新通用版九年级中考数学小专题复习新定义问题(解析版)

新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型例1 我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ).在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=pq.例如2可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F (t )的最大值.例题分层分析(1)对任意一个完全平方数m ,设m =n 2(n 为正整数),找出m 的最佳分解为________,所以F(m)=________=________;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=________,根据“吉祥数”的定义确定出x与y的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.对应练习:对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a-b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x=-2011,求x的值;(2)若x⊗3<5,求x的取值范围.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型例2 如图,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD 纸片按图①的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段________,________;S 矩形AEFG ∶S ▱ABCD =________.(2)▱ABCD 纸片还可以按图②的方式折叠成一个叠合矩形EFGH ,若EF =5,EH =12,求AD 的长.(3)如图③,四边形ABCD 纸片满足AD ∥BC ,AD <BC ,AB ⊥BC ,AB =8,CD =10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD ,BC 的长.例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S 矩形AEFG ∶S ▱ABCD =________;(2)由矩形的性质和勾股定理可求得FH =________,再由折叠的轴对称性质可知HD =________,FC =______,∠AHE =12______,∠CFG =12________,从而可得∠________=∠________,再证得△AEH ≌△CGF ,可得________,进而求得AD 的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD ,BC 的长. 对应练习:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .(2)如图②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的. 课后练习:1.定义[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x ]的图象如图Z 3-3所示,则方程[x ]=12x 2的解为( )A .0或 2B .0或2C .1或- 2D .2或- 22.对于实数a ,b ,定义符号min{a ,b },其意义为:当a ≥b 时,min{a ,b }=b :当a <b 时,min{a ,b }=a .例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D .533.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x,1y)称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =kx的图象上.若AB =2 2,则k =________.4.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.5.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图①,在半对角四边形ABCD 中,∠B =12∠D ,∠C =12∠A ,求∠B 与∠C 的度数之和;(2)如图②,锐角三角形ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF ,求证:四边形DBCF 是半对角四边形;(3)如图③,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.答案与解析【例1】【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【对应练习】【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.【例2】【解答】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,∴S矩形AEFG=S▱ABCD,∴S矩形AEFG:S▱ABCD=1:2;故答案为:AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴FH==13,由折叠的性质得:AD=FH=13;(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴GM=CM===3,∴AD=BG=BM﹣GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴FM=BM==3,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=(AD+BC)×8=2×25,∴AD+BC=,∴BC=﹣x,∴MC=BC﹣BM=﹣x﹣3,∵MN=MC,∴3+x=﹣x﹣3,解得:x=,∴AD=,BC=﹣=;③折法3中,如图6所示,作GM⊥BC于M,则E、G分别为AB、CD的中点,则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,GM=FM=4,CM==3,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,∴AD=5.【对应练习】【解答】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则四边形ABFE是矩形,AE=BF=BC=6,∵AB=5,∴AE≠AB∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=2.5,∴AE=9﹣2.5=6.5,综上所述,满足条件的AE的长为5或6.5.【课后练习】1.A 【解答】解:当1≤x<2时,x2=1,解得x1=,x2=﹣(舍去);当0≤x<1时,x2=0,解得x=0;当﹣1≤x<0时,x2=﹣1,方程没有实数解;当﹣2≤x<﹣1时,x2=﹣2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.2.D【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选:D.3.﹣【解答】解:(方法一)设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB===(b﹣a)=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.(方法二)∵直线y=﹣x+1上有两点A、B,且AB=2,∴设点A的坐标为(a,﹣a+1),则点B的坐标为(a+2,﹣a﹣1),点A′的坐标为(,),点B′的坐标为(,﹣).∵点A′,B′均在反比例函数y=的图象上,∴,解得:.故答案为:﹣.4.113°或92°【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.5.【解答】解:(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A,∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,即∠B与∠C的度数和为120°;(2)证明:∵在△BED和△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BOE.∵∠BCF=∠BOE,∴∠BCF=∠BDE,连接OC,设∠EAF=α,则∠AFE=2∠EAF=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠ABC=∠AOC=∠EFC,∴四边形DBCF是半对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是半对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∵DG⊥OB,∴BH=BG=.在直角△BDH中,利用勾股定理得到:BD===.∴BO=BD=.∴⊙O的直径是2.。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

初中几何43模型解题 模型【10】 新定义问题(3)(附解析)

初中几何43模型解题  模型【10】  新定义问题(3)(附解析)

模型10新定义问题(3)【模型分析】知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

其主要目的是通过对新定义的理解与运用来考查学生的自主学习能力,便于学生养成良好的学习习惯。

要点突破解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

【经典例题】例1.(2020·杭州市公益中学七年级月考)已知正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,则这样的正整数n 有()A .6个B .10个C .16个D .20个【分析】由236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦,以及若x 不是整数,则[]x <x 知,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦,即n 是6的倍数,得到n 的值【解析】∵236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若x 不是整数,则[]x <x∴,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数∴n 值为:6、12、18、24、30、36、42、48、54、60、66、72、78、84、90、96,共16个,选C 【小结】此题考查有理数的大小比较,取整计算,解题的关键是正确理解[]x 表示不超过x 的最大整数,得到,,223366n n n n n n⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎢⎥⎣⎦⎣⎦⎣⎦,即n 是6的倍数,由此解决问题.例2.(2021·全国八年级)若一个自然数t能写成t=x2﹣y2(x,y均为正整数,且x≠y),则称t为“万象数”,x,y为t的一个万象分解,在t的所有万象分解中,若x yx y-+最小,则称x,y为t的绝对万象分解,此时F(t)=xy.例如:32=92﹣72=62﹣22,因为9797-+=18,6262-+=12,1182<.所以9和7为32的绝对万象分解,则F(32)=97.若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“博雅数”.例如2112,4554均为“博雅数”.若一个四位正整数m是“万象数”且能被13整除,“博雅数”n的前两位数字组成的两位数与后两位数字组成的两位数恰好是m的一个万象分解,则所有满足条件的数m中F(m)的最大值为______.【分析】设n的个位数字是a,十位数字是b,由“博雅数”和万象分解的定义,可以得到m=99(a+b)(a-b),再由a与b的取值范围,m同时能被13整除,可以确定m的所有取值可能为1287,3861,6435;再将这三个数进行万象分解,确定F(m).【解析】设n的个位数字是a,十位数字是b,∵n是“博雅数”,∵n的前两位数字组成的两位数与后两位数字组成的两位数恰好是m的一个万象分解,∴m=(10a+b)2﹣(10b﹣a)2=99(a+b)(a﹣b),∵m能被13整除,∴(a+b)(a﹣b)是13的倍数,∵1≤a≤9,0≤b≤9,∴a+b=13,∴a=6,b=7;a=7,b=6;a=5,b=8;a=8,b=5;a=9,b=4;a=4,b=9;∴m的值所有情况为:1287=99×13×1=762﹣672=362﹣32;3861=99×13×3=852﹣582=752﹣422=692﹣482;6435=99×13×5=942﹣492=1022﹣632=1142﹣332=3622﹣3532;∵F(1287)=7667;F(3861)=6948;F(6435)=362353;∴F(m)的最大值为69 48.【小结】本题考査因式分解的应用;能够通过定义,结合数整除的性质,借助因式分解准确找到符合条件的三个数的所有万象分解是解题的关键.例3.(2021·渝中区·重庆巴蜀中学八年级期末)对于一个四位正整数,若满足百位数字与十位数字之和是个位数字与千位数字之和的两倍,则称该四位正整数为“希望数”,例如:四位正整数3975,百位数字与十位数字之和是16,个位数字与千位数字之和8,而16是8的两倍,则称四位正整数3975为“希望数”,类似的,四位正整数2934也是“希望数”.根据题中所给材料,解答以下问题:(1)请写出最小的“希望数”是________;最大的“希望数”是_______;(2)对一个各个数位数字均不超过6“希望数m ,设m abcd =,若个位数字是千位数字2倍,且十位数字和百位数字均是2倍数,定义()|()()|F m a b c d =+-+,求()F m 最大值.【分析】(1)根据题意可知,最小的“希望数”要使千位和百位最小,最大的“希望数”要使千位和百位最大,据此写出答案;(2)根据题意直接列出满足条件的“希望数m ,再根据定义()|()()|F m a b c d =+-+求出()F m 即可得出最大值.【解析】(1)千位数最小为1,最大为9,百位数最小为0,最大为9;根据对于一个四位正整数,若满足百位数字与十位数字之和是个位数字与千位数字之和的两倍,则称该四位正整数为“希望数”,可得:出最小的“希望数”是1020;最大的“希望数”是9990;(2)一个各个数位数字均不超过6的“希望数m ,若个位数字是千位数字的2倍,且十位数字和百位数字均是2的倍数,“希望数m ”可能是1062;1602;1242;1422;2664.当m abcd ==1602时,()|(16)(02)|=5F m =+-+;当m abcd ==1062时,()|(10)(62)|=7F m =+-+;当m abcd ==1242时,()|(12)(42)|=3F m =+-+;当m abcd ==1422时,()|(14)(22)|=1F m =+-+;当m abcd ==2664时,()|(26)(64)|=2F m =+-+;故()F m 的最大值为7.【小结】本题考查阅读材料类题目,属于创新题,同时又包含了大量计算,做此类型题目时,应注意从材料中获取解题方法、掌握定义的本质,同时本题考查了数的大小与数位的关系.【巩固提升】1.(2020·新安中学(集团)外国语学校七年级月考)若规定“!”是一种数学运算符号,且1!1=,2!212=⨯=,3!3216=⨯⨯=, ,则100!98!的值为()A .5049B .99C .9900D .2【分析】先根据数学运算符号“!”得出100!和98!的值,再计算有理数的乘除法即可得【解析】由题意得:100!10099982198!98979621⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯ 10099=⨯9900=,选C 【小结】本题考查了新运算下的有理数的乘除法,理解新运算是解题关键.2.(2020·江苏常州市·七年级期中)定义:一种对于三位数abc (其中在abc 中,a 在百位,b 在十位,c 在个位,a 、b 、c 不完全相同)的F 运算:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零),例如abc =463时,则经过大量运算,我们发现任意一个三位数经过若干次F 运算都会得到一个固定不变的值;类比联想到:任意一个四位数经过若干次这样的F 运算也会得到一个定值,这个定值为()A .4159B .6419C .5179D .6174【分析】设这个四位数为1234,再进行若干次F 运算即可得到这个定值.【解析】由题意,不妨设这个四位数为1234,则经过第1次F 运算的结果为432112343087-=,经过第2次F 运算的结果为87303788352-=,经过第3次F 运算的结果为853*********-=,经过第4次F 运算的结果为764114676174-=,由此可知,这个定值为6174,选D .【小结】本题考查了数字类的规律型问题,掌握理解F 运算的定义是解题关键.3.(2020·浙江金华市·七年级期中)已知a 是不等于1-的数,我们把11a+称为a 的和倒数.如:2的和倒数为11123=+,已知211,a a =是1a 的和倒数,3a 是2a 的和倒数,4a 是3a 的和倒数,…,依此类推,则31212a a a a ⋅⋯⋅=______.【分析】根据和倒数的定义分别计算出a 1、a 2、a 3、…a 12的值,代入计算即可求解.【解析】a 1=1,a 211112==+,a 3121312==+,413a 2513==+,515a 3815==+,618a 51318==+,7113a 821113==+,8121a 1334121==+,9134a 2155134==+,10155a 3489155==+,11189a 55144189==+,121144a 892331144==+,则a 1•a 2•a 3…a 12=1123581321345589144123581321345589144233233⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=【小结】本题为新定义问题,理解和倒数的定义,并根据定义依次计算出a 1,a 2,a 3,a 4,a 5…a 12的值是解题关键.4.(2020·江门市新会尚雅学校八年级期中)定义:若两个二次根式a 、b 满足a b c ⋅=,且c 是有理数,则称a 与b 是关于c的共轭二次根式.若与是关于2的共轭二次根式,则m 的值为___.【分析】根据共轭二次根式的定义列等式即可得出m 的值;【解析】∵与是关于2的共轭二次根式,∴=2⨯∴1=12m 【小结】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.5.(2020·重庆市凤鸣山中学八年级期中)进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333=,(746)=.(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a +b =12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【解析】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a +b =12c ,∴212bc a =+,∵a 、b 、c 均为整数,且04b ≤≤,∴b =0,c =2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩,∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【小结】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键.6.(2020·浙江绍兴市·九年级其他模拟)定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D .①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线;(2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -;②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为51(,24-,中分线解析式为110y x =-.【解析】(1)如图,对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得234201x x -+=,解得2x =或4,(2,0)A ∴,(4,0)B ,令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24,中分线经过点O ,∴中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标为2004(,22++,即(1,2). 中分线经过点O ,∴中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-,中分线经过点O ,∴中分线解析式为110y x =-,综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-.【小结】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.模型11新定义问题(4)【模型分析】知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

北京市中考数学专题突破十:新定义问题(含答案)

北京市中考数学专题突破十:新定义问题(含答案)

北京市中考数学专题突破十:新定义问题(含答案)专题突破(十)新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.北京第25题分析北京第29题分析年份20142015考点新定义问题——先学习后判断,函数综合给出新定义,学习,应用1.[2015·北京]在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙O的反称点的定义如下:若在射线..CP上存在一点P′,满足CP+CP′=2r,则称P′为点P 关于⊙C的反称点,如图Z10-1为点P及其关于⊙C的反称点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[2014·北京]对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y=1x(x>0)和y=x+1(-4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(-1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足34≤t≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0). (1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________;②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O 的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.图Z10-34.[2012·北京]在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值.(2)已知C 是直线y =34x +3上的一个动点, ①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.图Z10-41.[2015·平谷一模]b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=-x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=-x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=2015x是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2-2x-k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).2.[2015·东城一模]定义符号min⎩⎨⎧⎭⎬⎫a,b的含义为:当a ≥b 时,min ⎩⎨⎧⎭⎬⎫a ,b =b ;当a <b 时,min ⎩⎨⎧⎭⎬⎫a ,b =a .如:min ⎩⎨⎧⎭⎬⎫1,-2=-2,min ⎩⎨⎧⎭⎬⎫-1,2=-1.(1)求min ⎩⎨⎧⎭⎬⎫x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[2015·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号);①(0,2);②(-4,2);③(3,2). (2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[2015·门头沟一模]如图Z10-6,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a >0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.图Z10-6(1)抛物线y=12x2的碟宽为________,抛物线y=ax2(a>0)的碟宽为________.(2)如果抛物线y=a(x-1)2-6a(a>0)的碟宽为6,那么a=________.(3)将抛物线y n=a n x2+b n x+c n(a n>0)的准蝶形记为F n(n=1,2,3,…),我们定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.如果F n与F n-1的相似比为12,且F n的碟顶是F n-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的函数解析式.②请判断F1,F2,…,F n的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[2015·朝阳一模]定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,2),Q(4,2).①在点A(1,0),B(52,4),C(0,3)中,PQ的“等高点”是________;②若M(t,0)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时t的值.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,直接写出点Q的坐标.图Z10-86.[2015·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H(m,n)在一次函数y=x-1的图象上,且是线段AB的“邻近点”,求m的取值范围;(3)若一次函数y=x+b的图象上至少存在一个邻近点,直接写出b的取值范围.图Z10-97.[2015·海淀一模]在平面直角坐标系xOy 中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b ′=⎩⎨⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点⎝⎛⎭⎫2,3的限变点的坐标是⎝⎛⎭⎫2,3,点⎝⎛⎭⎫-2,5的限变点的坐标是⎝⎛⎭⎫-2,-5.(1)①点⎝⎛⎭⎫3,1的限变点的坐标是________; ②在点A ⎝⎛⎭⎫-2,-1,B ⎝⎛⎭⎫-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[2015·西城一模]给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C(-2,3)和射线OA之间的距离为________.(2)如果直线y=x和双曲线y=kx之间的距离为2,那么k=________.(可在图Z10-11(a)中进行研究)(3)点E的坐标为(1,3),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图(b)中画出图形M,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE,OF组成的图形记为图形W,抛物线y=x2-2与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.图Z10-11参考答案北京真题体验1.解:(1)①点M (2,1)关于⊙O 的反称点不存在.点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T(1,3)关于⊙O的反称点存在,反称点T′(0,0).②如图①,直线y=-x+2与x轴、y轴分别交于点E(2,0),点F(0,2).设点P的横坐标为x.(i)当点P在线段EF上,即0≤x≤2时,0<OP≤2,∴在射线OP上一定存在一点P′,使得OP +OP′=2,∴点P关于⊙O的反称点存在,其中点P与点E或点F重合时,OP=2,点P关于⊙O的反称点为O,不符合题意,∴0<x<2.(ii)当点P不在线段EF上,即x<0或x>2时,OP>2,∴对于射线OP上任意一点P′,总有OP+OP′>2,∴点P关于⊙O的反称点不存在.综上所述,点P的横坐标x的取值范围是0<x<2.(2)若线段AB上存在点P,使得点P关于⊙C 的反称点P′在⊙C的内部,则1<CP≤2.依题意可知点A的坐标为(6,0),点B的坐标为(0,2 3),∠BAO=30°.设圆心C的坐标为(x,0).①当x<6时,过点C作CH⊥AB于点H,如图②,∴0<CH≤CP≤2,∴0<CA≤4,∴0<6-x≤4,∴2≤x<6,并且,当2≤x<6时,CB>2,CH≤2,∴在线段AB上一定存在点P,使得CP=2,∴此时点P关于⊙C的反称点为C,且点C 在⊙C的内部,∴2≤x<6.②当x≥6时,如图③.∴0≤CA≤CP≤2,∴0≤x-6≤2,∴6≤x≤8.并且,当6≤x≤8时,CB>2,CA≤2,∴在线段AB上一定存在一点P,使得CP=2,∴此时点P关于⊙C的反称点为C,且点C 在⊙C的内部,∴6≤x≤8.综上所述,圆心C的横坐标x的取值范围是2≤x≤8.2.解:(1)y=1x(x>0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3.(2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎨⎧-2≤-b +1<2,b >a ,∴-1<b ≤3.(3)由题意,函数平移后的表达式为y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ;当x =m 时,y =m 2-m .根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m .当m >1时,1-m <m 2-m .①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m .当34≤t ≤1时,0≤m ≤14,∴0≤m≤1 4.②当12<m≤1时,1-m<m. 由题意,边界值t=m.当34≤t≤1时,34≤m≤1,∴34≤m≤1.③当m>1时,由题意,边界值t≥m,∴不存在满足34≤t≤1的m值.综上所述,当0≤m≤14或34≤m≤1时,满足34≤t≤1.3.解:(1)①如图(a)所示,过点E作⊙O的切线,设切点为R.∵⊙O的半径为1,∴RO=1.∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°,∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0), ∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°,故在点D ,E ,F 中,⊙O 的关联点是D ,E .②由题意可知,若P 刚好是⊙C 的关联点, 则点P 到⊙C 的两条切线PA 和PB 之间所夹的角为60°,由图(b)可知∠APB =60°,则∠CPB =30°.连接BC ,则PC =BC sin ∠CPB=2BC =2r , ∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2,如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°,∴∠OGF =60°,OG =2,可得点P1与点G重合.过点P2作P2M⊥x轴于点M,可得∠P2OM=30°,∴OM=OP2cos30°=3,从而若点P为⊙O的关联点,则P点必在线段P1P2上,∴0≤m≤ 3.(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF的中点.考虑临界情况,如图(d),即恰好点E,F为⊙K的关联点时,则KF=2KN=12EF=2,此时,r=1,故若线段EF上的所有点都是某个圆的关联点,则这个圆的半径r的取值范围为r≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C 与点E 的“非常距离”的最小值为1.北京专题训练1.解:(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y=2015x在第一象限,y随x的增大而减小,当x=1时,y=2015;当x=2015时,y=1,即图象过点(1,2015)和(2015,1),∴当1≤x≤2015时,有1≤y≤2015,符合闭函数的定义,∴反比例函数y=2015x是闭区间[1,2015]上的“闭函数”.(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为直线x=1,∴二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,∴k=-2.当x=2时,y=2,∴k=-2.即图象过点(1,1)和(2,2),∴当1≤x≤2时,有1≤y≤2,符合闭函数的定义,∴k=-2.(3)因为一次函数y=kx+b⎝⎛⎭⎫k≠0是闭区间⎣⎡⎦⎤m ,n 上的“闭函数”,根据一次函数的图象与性质,有: (Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎨⎧mk +b =m ,nk +b =n , 解得⎩⎨⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎨⎧mk +b =n ,nk +b =m , 解得⎩⎪⎨⎪⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n .2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min ⎩⎨⎧⎭⎬⎫x 2-1,-2=-2.(2)∵x 2-2x +k =⎝⎛⎭⎫x -12+k -1,∴⎝⎛⎭⎫x -12+k -1≥k -1.∵min{x2-2x+k,-3}=-3,∴k-1≥-3.∴k≥-2.(3)-3≤m≤7.3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M在y轴上,⊙M上只有一个点为T1-T2联络点,阴影部分关于y轴对称,∴⊙M与直线AC相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M的半径r=1,∴点M的坐标为(0,-1)或(0,2).经检验:此时⊙M与直线AD,BC无交点,⊙M上只有一个点为T1-T2联络点,符合题意.∴点M的坐标为(0,-1)或(0,2).∴点M的纵坐标为-1或2.②阴影部分关于直线y=12对称,故不妨设点M位于阴影部分下方.∵点M在y轴上,⊙M上只有一个点为T1-T2联络点,阴影部分关于y轴对称,∴⊙M与直线AC相切于O(0,0),且⊙M 与直线AD相离.过点M作ME⊥AD于点E,设AD与BC 的交点为F,如图(c).∴MO=r,ME>r,F(0,1 2).在Rt△AOF中,∠AOF=90°,AO=1,OF=1 2,∴AF=AO2+OF2=52,sin∠AFO=AOAF=2 55.在Rt△FEM中,∠FEM=90°,FM=FO+OM=r+12,sin∠EFM=sin∠AFO=2 5 5,∴ME=FM·sin∠EFM=5(2r+1)5.∴5(2r+1)5>r.又∵r>0,∴0<r<5+2.4.解:(1)4 2a (2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1), ∴y 2=23⎝⎛⎭⎫x -12+1. ②F 1,F 2,…,F n 的碟宽的右端点在一条直线上;其解析式为y =-x +5.5.解:(1)A 、B(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎨⎧k +b =-2,4k +b =2,解得⎩⎪⎨⎪⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1.直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3,∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3. 又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n ,∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-3-2≤b ≤1+ 2.7.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎨⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8.∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m =t;当x<1时,y的值小于-[(1-t)2+t],即n =-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。

中考数学压轴选择填空专题——新定义问题(有答案)

中考数学压轴选择填空专题——新定义问题(有答案)

新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14(12+22−(√5)22)=1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题练习一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 (√32) = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得:∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。

新定义问题(习题及答案)

新定义问题(习题及答案)

A. 3
B. 3
C. 3
D. 2 3
A
B
C
3. (2018 成都)设双曲线 y k (k>0)与直线 y=x 交于 A,B 两点(点 A 在第三象 x
限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A,将双曲线 在第三象限的一支沿射线 AB 的方向平移,使其经过点 B,平移后的两条曲线相交 于 P,Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲 线的“眸”,PQ 为双曲线的“眸径”,当双曲线 y k (k>0)的眸径为 6 时,k
1
5. (2019 黔东南)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符 号,他们将其中某些材料摘录如下: 对于三个实数 a,b,c,用 M{a,b,c}表示这三个数的平均数,用 min{a,b,c}表 示这三个数中最小的数,例如 M{1,2,9}= 1 2 9 4 ,min{1,2,-3}=-3, 3 min{3,1,1}=1.请结合上述材料,解决下列问题: (1)①M{(-2)2,22,-22}=__________, ②min{sin30°,cos60°,tan45°}=__________; (2)若 min{3-2x,1+3x,-5}=-5,则 x 的取值范围为______________; (3)若 M{-2x,x2,3}=2,求 x 的值; (4)如果 M{2,1+x,2x}=min{2,1+x,2x},求 x 的值.
6. (2020 内江)我们知道,任意一个正整数 x 都可以进行这样的分解:x=m×n(m,n 是正整数,且 m≤n),在 x 的所有这种分解中,如果 m,n 两因数之差的绝对值最 小,我们就称 m×n 是 x 的最佳分解.并规定: f (x) m . n 例如:18 可以分解成 1×18,2×9 或 3×6,因为 18-1>9-2>6-3,所以 3×6 是 18 的 最佳分解,所以 f (18) 3 1 . 62 (1)填空:f(6)=_________;f(9)=________; (2)一个两位正整数 t(t=10a+b,1≤a≤b≤9,a,b 为正整数),交换其个位上的 数字与十位上的数字得到的新数减去原数所得的差为 54,求出所有的两位正整数; 并求 f(t)的最大值; (3)填空: ①f(22×3×5×7)=__________;②f(23×3×5×7)=___________; ③f(24×3×5×7)=__________;④f(25×3×5×7)=___________.

(完整版)中考专题复习——“新定义”问题(学案)

(完整版)中考专题复习——“新定义”问题(学案)

(完整版)中考专题复习——“新定义”问题(学案) 专题复习——“新定义"问题(学案)班级姓名一、专题诠释所谓”新定义”型试题,是指试题在某种运算、某个基本概念或几何图形基础上或增加条件,或改编条件,或削弱条件,构造一些创意新奇、情境熟悉但又从未接触过的新概念的试题。

其特点是源于初中数学内容,但又是学生没有遇到的新信息,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。

“新定义”型试题常常以运算模式、函数模式、几何模式等形式出现。

二、解题策略解决此类问题的常见思路:给什么,用什么。

即:正确理解新定义,并将此定义作为解题的重要依据,分析并掌握其本质,用类比的方法迅速地同化到自身的认知结构中,然后解决新的问题.三、典例精析(一)运算模式例1 (2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5。

(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.练习 1 (2012·莱芜)对于非零的两个实数a、b,规定abba11-=⊕,若()1122=-⊕x,则x的值为()A.65B.45C.23D.61-(二)函数模式例2 (2015•衢州)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于点A、B两点,与y 轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.”(完整版)中考专题复习——“新定义”问题(学案)练习2(2015•绍兴)如果抛物线c bx ax y ++=2过定点M (1,1),则称次抛物线为定点抛物线。

中考真题分类整理:新定义型(附答案)

中考真题分类整理:新定义型(附答案)

一、选择题1.(2020·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2020·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2020·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2020·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2020·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2020·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2020·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破(十) 新定义问题1. 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12. 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y =1x (x >0)和y =x +1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足34≤t ≤1?图Z10-23. 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0).(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.图Z10-34. 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值. (2)已知C 是直线y =34x +3上的一个动点,①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.图Z10-41.模] b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”.(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =x 2-2x -k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).2.模] 定义符号min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,min {}a ,b =a .如:min {}1,-2=-2,min {}-1,2=-1.(1)求min {}x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号); ①(0,2);②(-4,2);③(3,2).(2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.一模] 如图Z10-6,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.图Z10-6(1)抛物线y =12x 2的碟宽为________,抛物线y =ax 2(a >0)的碟宽为________.(2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a =________.(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的函数解析式.②请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.模] 定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”.(1)若P (1,2),Q (4,2).①在点A (1,0),B (52,4),C (0,3)中,PQ 的“等高点”是________;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值. (2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图Z10-86.模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H (m ,n )在一次函数y =x -1的图象上,且是线段AB 的“邻近点”,求m 的取值范围;(3)若一次函数y =x +b 的图象上至少存在一个邻近点,直接写出b 的取值范围.图Z10-97.模] 在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()-2,5的限变点的坐标是()-2,-5.(1)①点()3,1的限变点的坐标是________;②在点A ()-2,-1,B ()-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.模] 给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A (1,0),则点B (2,3)和射线OA 之间的距离为________,点C (-2,3)和射线OA 之间的距离为________.(2)如果直线y =x 和双曲线y =kx 之间的距离为2,那么k =________.(可在图Z10-11(a )中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图(b )中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y =x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.图Z10-11参考答案1.解:(1)①点M (2,1)关于⊙O 的反称点不存在. 点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T (1,3)关于⊙O 的反称点存在,反称点T ′(0,0).②如图①,直线y =-x +2与x 轴、y 轴分别交于点E (2,0),点F (0,2).设点P 的横坐标为x .(i )当点P 在线段EF 上,即0≤x ≤2时,0<OP ≤2, ∴在射线OP 上一定存在一点P ′,使得OP +OP ′=2,∴点P 关于⊙O 的反称点存在,其中点P 与点E 或点F 重合时,OP =2,点P 关于⊙O 的反称点为O ,不符合题意,∴0<x <2.(ii )当点P 不在线段EF 上,即x <0或x >2时,OP >2, ∴对于射线OP 上任意一点P ′,总有OP +OP ′>2, ∴点P 关于⊙O 的反称点不存在.综上所述,点P 的横坐标x 的取值范围是0<x <2.(2)若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,则1<CP ≤2.依题意可知点A 的坐标为(6,0),点B 的坐标为(0,2 3),∠BAO =30°. 设圆心C 的坐标为(x ,0).①当x <6时,过点C 作CH ⊥AB 于点H ,如图②,∴0<CH ≤CP ≤2,∴0<CA ≤4, ∴0<6-x ≤4,∴2≤x <6,并且,当2≤x <6时,CB >2,CH ≤2, ∴在线段AB 上一定存在点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴2≤x <6. ②当x ≥6时,如图③.∴0≤CA ≤CP ≤2,∴0≤x -6≤2,∴6≤x ≤8.并且,当6≤x ≤8时,CB >2,CA ≤2,∴在线段AB 上一定存在一点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴6≤x ≤8. 综上所述,圆心C 的横坐标x 的取值范围是2≤x ≤8. 2.解:(1)y =1x (x >0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3. (2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎪⎨⎪⎧-2≤-b +1<2,b >a ,∴-1<b ≤3.(3)由题意,函数平移后的表达式为 y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ; 当x =m 时,y =m 2-m . 根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m . 当m >1时,1-m <m 2-m . ①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m . 当34≤t ≤1时,0≤m ≤14, ∴0≤m ≤14.②当12<m ≤1时,1-m <m .由题意,边界值t =m . 当34≤t ≤1时,34≤m ≤1, ∴34≤m ≤1. ③当m >1时,由题意,边界值t ≥m , ∴不存在满足34≤t ≤1的m 值.综上所述,当0≤m ≤14或34≤m ≤1时,满足34≤t ≤1.3.解:(1)①如图(a)所示,过点E 作⊙O 的切线,设切点为R .∵⊙O 的半径为1,∴RO =1. ∵EO =2,∴∠OER =30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°, ∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0),∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°, 故在点D ,E ,F 中,⊙O 的关联点是D ,E . ②由题意可知,若P 刚好是⊙C 的关联点,则点P 到⊙C 的两条切线P A 和PB 之间所夹的角为60°, 由图(b)可知∠APB =60°,则∠CPB =30°.连接BC ,则PC =BCsin ∠CPB =2BC =2r ,∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2, 如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°, ∴∠OGF =60°,OG =2, 可得点P 1与点G 重合.过点P 2作P 2M ⊥x 轴于点M , 可得∠P 2OM =30°,∴OM =OP 2cos30°=3,从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴0≤m ≤ 3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF 的中点.考虑临界情况,如图(d),即恰好点E ,F 为⊙K 的关联点时,则KF =2KN =12EF =2,此时,r =1,故若线段EF 上的所有点都是某个圆的关联点,则这个圆的半径r 的取值范围为r ≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C1.解:(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y =2015x 在第一象限,y 随x 的增大而减小,当x =1时,y =2015; 当x =2015时,y =1,即图象过点(1,2015)和(2015,1),∴当1≤x ≤2015时,有1≤y ≤2015,符合闭函数的定义, ∴反比例函数y =2015x是闭区间[1,2015]上的“闭函数”.(2)由于二次函数y =x 2-2x -k 的图象开口向上,对称轴为直线x =1, ∴二次函数y =x 2-2x -k 在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1,∴k =-2. 当x =2时,y =2,∴k =-2. 即图象过点(1,1)和(2,2),∴当1≤x ≤2时,有1≤y ≤2,符合闭函数的定义, ∴k =-2.(3)因为一次函数y =kx +b ()k ≠0是闭区间[]m ,n 上的“闭函数”, 根据一次函数的图象与性质,有:(Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎪⎨⎪⎧mk +b =m ,nk +b =n , 解得⎩⎪⎨⎪⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎪⎨⎪⎧mk +b =n ,nk +b =m ,解得⎩⎨⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n . 2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min {}x 2-1,-2=-2. (2)∵x 2-2x +k =()x -12+k -1, ∴()x -12+k -1≥k -1.∵min{x 2-2x +k ,-3}=-3, ∴k -1≥-3. ∴k ≥-2. (3)-3≤m ≤7. 3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M 的半径r =1,∴点M 的坐标为(0,-1)或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为T 1-T 2联络点,符合题意.∴点M 的坐标为(0,-1)或(0,2). ∴点M 的纵坐标为-1或2.②阴影部分关于直线y =12对称,故不妨设点M 位于阴影部分下方.∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离.过点M 作ME ⊥AD 于点E ,设AD 与BC 的交点为F ,如图(c). ∴MO =r ,ME >r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,OF =12,∴AF =AO 2+OF 2=52,sin ∠AFO =AO AF =2 55. 在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin ∠EFM =sin ∠AFO =2 55,∴ME =FM ·sin ∠EFM =5(2r +1)5.∴5(2r +1)5>r .又∵r >0,∴0<r <5+2.4.解:(1)4 2a(2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1),∴y 2=23()x -12+1.②F 1,F 2,…,F n 的碟宽的右端点在一条直线上; 其解析式为y =-x +5. 5.解:(1)A 、B (2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎪⎨⎪⎧k +b =-2,4k +b =2,解得⎩⎨⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1. 直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-37.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎪⎨⎪⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8. ∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y =x 2-2tx +t 2+t =(x -t )2+t , ∴顶点坐标为(t ,t ).若t >1,b ′的取值范围是b ′≥m 或b ′≤n ,与题意不符. 若t ≥1,当x ≥1时,y 的最小值为t ,即m =t ;当x <1时,y 的值小于-[(1-t )2+t ],即n =-[(1-t )2+t ]. ∴s =m -n =t +(1-t )2+t =t 2+1.∴s 关于t 的函数解析式为s =t 2+1(t ≥1). 当t =1时,s 取最小值2. ∴s 的取值范围是s ≥2.8.解:(1)3 13 (2)-1(3)①如图,过点O 分别作射线OE ,OF 的垂线OG ,OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分).说明:(图形M 也可描述为:y 轴正半轴,直线y =33x 下方与直线y =-33x 下方重叠的部分(含边界)②43.。

相关文档
最新文档