空速表

合集下载

第3讲 马赫与空速表

第3讲 马赫与空速表

1
k
k 1 2k Ps Pt k 或 1 k 1 s Ps k 1 Qc k 2k 或 RTs 1 1 k 1 Ps
k 1 Pt k 2k 或 RTs 1 k 1 Ps
s
s
2013年2月3日11时24分
第15/共45
空速与动压的关系
qc((×9.8Pa) 当飞机在同一高度、 同一速度飞行时, 考虑空气压缩性比 不考虑空气压缩性 所得的动压大。 马赫数为0.6~0.7时, 不考虑空气的压缩 性,计算空速时, 会造成9~13%的误差。
2013年2月3日11时24分
第5/共45
2013年2月3日11时24分
空气流速小于音速时空速测量的 理论基础(一)


空气流速小于音速时 假设空气在绝热的流管中流动,并假设空气 在流动时,在空间任何一点所具有的状态参 数不随时间而改变。 参见P35图3-2,在流管上取垂直流管中心线 的切面。流入切面的能量由动能和势能两部 分构成。 动能(Q为空气质量流量)如下:

7M a2 1

1.492 1 2 Ma
第17/共45
2013年2月3日11时24分
真空速、指示空速、马赫数



真空速 空气与物体之间相对运动的真实流速,即飞 机相对空气运动的真实速度。 指示空速 将飞机所具有的空速归化为标准海平面上飞 机相对于空气的运动速度,即不考虑飞机所 在处大气参数随高度而变化的空速。指示空 速只与动压有关。 马赫数 真空速与当地音速的比值。
s
s
s
k V 2 k V 4 k 2 k V 6 Ps 1 1 48 a 2 a 8 a

飞机各种速度

飞机各种速度

飞机各种速度V1起飞决断速度V2 起飞安全速度。

有一发失效时,此速度可保证飞机安全起飞。

V2mi n 最小起飞安全速度V3收襟翼速度V4稳定起始爬升速度V A设计机动速度,也叫最大控制偏转速度。

V B最大阵风强度设计速度V C设计巡航速度,也称优选巡航速度。

V EF起飞关键发动机失效速度V F设计襟翼速度V FC飞机稳定最大速度V FE襟翼放出最大速度V FTO最后起飞速度V H最大连续推力水平飞行最大速度V LE起落架放出最大速度。

V LO起落架操作最大速度。

即起落架收起放出的最大速度。

V LOF离地速度V MC一发失效最小控制速度Vmca空中最小控制速度Vmcg地面最小控制速度Vmcl 一发失效着陆最小控制速度V MO最大操作限制速度V MU最小离地速度V NE绝对不许操作速度V NO最大巡航结构速度或正常运行最大速度13限制与性能以F涉及的速度均是以海里/小时为卓位的指示空速(表空速〉KIAS V VE> Vg V A, V FE的数值和意义*V VF最大极限速度』Vw结构强度限制的展大遛航速度・I29ktV A机动連度(酊以完个控制或突然运动的最大速度九99kt (2450lbs) Vhh襟鞍放卜的最大糾f速度,標翼10, 110炸襟製1卜3葩沾kl最大开窗速度皿U空速表上红弧、白弧、绿弧、黄弧和红线的意义和范I愉红弧不可操彎度,0・阳虹白弧仝襟翼使用速度,3芥跖虹绿弧正常便用速度,体129kt黄弧警戒速度,129J殆好V R 抬前轮速度VRef 着陆基准速度或跑道入口速度。

V S 失速速度或最小稳定飞行速度V S0 失速速度或着陆最小飞行速度V S1 失速速度或特殊构型最低稳定飞行速度V SR 基准失速速度V SR0 基准着陆失速速度V SR1 特殊构型基准失速速度V SW 失速告警速度V X 最佳爬升角速度V Y 最佳爬升率速度V BE 久航速度V BG 最长滑行距离速度V BR 远航速度V FS 一发失效最后离场段速度Vimd 最小阻力速度Vimp 最小推力速度Vmbe 最大刹车能量速度Vmd 最小阻力速度Vmp 最小推力速度Vra 不稳定气流速度(减轻颠簸速度)V SL 特殊构型失速速度Vs1g 最大升力系数失速速度Vsse 单发安全速度Vt 跑道入口速度Vtos 一发失效正爬升梯度最小速度Vtmax 跑道入口最大速度V ZRC 双发飞机零爬升率速度。

仪表类航电设备

仪表类航电设备

一、仪表类
1、空速表(Air Speed Indicator)
通过测量伸出机身的空速管处的总压和静压的压差,间接测出空速,也就是飞机在空气中的相对运动速度。

仪表盘上的数字单位是Knots(nm/h,海里每小时,节)。

2、气压高度表(Altimeter)
用于显示飞机的气压高度。

仪表有三根指针,分别表示数字的万、千、百读数,高度表右侧有一个小窗,里面数字29.9叫做高度表拨正值。

主要作用就是在不同的大气条件下,把相应的海平面气压修正到标准大气条件下。

3、升降速度表
显示爬升或者下降率,通过检测气压高度表变化的情况给出指示数字。

单位是百英尺每分钟。

1英尺约为0.3米。

4、航向指示器
航向指示器是一个典型的惯导设备,指示飞机目前的航向。

航向指示器是对基本磁罗盘的改进。

5、航空地平仪
航空地平仪是用于测量和显示飞机俯仰及倾斜姿态的一种陀螺仪表,亦称陀螺地平仪。

仪表上部蓝天代表天空,下部黄色代表大地,之间的分界线叫做人工地平(Artificial Horizon)。

飞机的姿态就通过中间代表飞机的标志相对于人工地平的位置体现。

1测量飞机高度速度的仪表

1测量飞机高度速度的仪表

根据飞机升降速度与气压变 化率的对应关系,利用毛细 管把压力变化率转变为开口 膜盒内外压力差,从而测量 升降速度。
二、结构
开口膜盒、毛细管、传送机构、指示部分等。
1.5
全静压系统(pitot-static system)
功用:收集并传送气流的全压和静压。 一、组成 全压管、静压孔、备用静压源、转换开关、加温装 置和全、静压导管等。
一、飞行高度及测量方法
1、高度的种类
高度的种类

相对高度--飞机到某一机场场面的垂直距离 真实高度--飞机到正下方地面的垂直距离 绝对高度--飞机到平均海平面的垂直距离 标准气压高度(HQNE)--飞机到标准气压平面的垂直 距离。航线上使用。 标 准 气 压 平 面 : 气 压 为 760mmHg 或 1013mb 或 29.92inHg的气压平面。
(一) 全压管和静压孔

分别收集气流的全压和静压,提高可靠性和 准确性。
全压管和静压孔
转换开关
二、系统误差

全压管堵塞,而管上的排水孔未堵塞 由于外界空气不能进入全压系统,系统内已有的空气又 会从排水孔流出,管内余压将逐渐降至环境(外界)空气压力。 空速表感受到全压和静压之差为零,表上的读数会逐渐降至 零。也就是说,空速表上会出现与飞机在停机坪上静止不动 时相同的指示。但空速表指示一般不是立即降至零,而是逐 渐降至零。 全压管和排水孔都堵塞 由于外界空气不能进入全压系统,系统中已有的空气又 流不出来,从而造成实际空速改变时,管内空气压力无变化, 空速表上的指示也无明显变化。若静压孔在此情况下未堵塞, 空速仍会随高度变化。当飞行高度超过全压管和排水孔堵塞 时的高度时,由于静压降低,全压与静压之差增大,空速表 指示空速增加。当飞行高度低于堵塞出现时的高度时,就会 出现与上面相反的指示。

新手必读——飞机座舱基本仪表及基础飞行注意力分配浅谈

新手必读——飞机座舱基本仪表及基础飞行注意力分配浅谈

新手必读FSAAC飞行学院飞行技术基础理论课程——飞机座舱基本仪表及基础飞行注意力分配浅谈AAC-4541民航飞机的座舱内,主要有六个最基本的仪表,其仪表分布规则为两排,每排三个仪表,上排按秩序为空速表、姿态仪、高度表;下排为转弯侧滑仪、航向仪、升降速度表。

其中,空速表、姿态仪、高度表及航向仪为飞机最最重要且必不可少的四个仪表。

常被称作BasicT,如下图中红色T所表示的部分。

一、飞机6个基本仪表介绍空速表(Airspeed Indicator):指示飞机相对于空气的速度即指示空速的大小,单位为海里/小时(Kt)。

姿态仪(Attitude Indicator):指示飞机滚转角(坡度)和俯仰角的大小。

有固定的横杠或小飞机和人工活动的天地线背景组成,参照横杠与人工天地线的相对姿态模拟了真实飞机与实际天地线的相对姿态。

高度表(Altitude Indicator):指示飞机相对于某一气压基准面的气压高度,单位为英尺(ft),一米等于3.28英尺。

拨动气压旋钮可以选择基准面气压,基准气压的单位通常为英寸汞柱和毫巴(百帕)。

当基准气压设定为标准海平面气压29.92inHg(1013.2Hpa)时,高度表读数即为标准海压高度。

转弯侧滑仪(Turn Coordinator),指示飞机的转弯速率和侧滑状态,可以转动的小飞机指示转弯中角速度大小和近似坡度,可以左右移动的小球指示飞机的侧滑状态。

航向仪(Heading Indicator)或水平状态指示器(HIS):指示飞机航向,有固定的航向指针和可以转动的表盘组成。

HIS为较高级别的仪表形式,它除了可以提供航向仪的所有功能外,还可用于VOR导航和仪表着陆系统(ILS)的使用。

升降速度表(Vertical Speed Indicator):指示飞机的垂直速度单位为英尺/分钟(Ft/Min)。

不管飞机如何变化,“BasicT”的相对位置的固定的。

转弯侧滑仪可以在电子仪表中集合到姿态仪里,升降速度表可以集合到高度表中。

航空仪表01

航空仪表01

航空仪表飞行员需要不断地了解飞机的飞行状态、发动机的工作状态和其他分系统如座舱环境系统、电源系统等的工作状况,以便按飞行计划操纵飞机完成飞行任务;各类自动控制系统需要检测控制信息以便实现自动控制。

这些信息都是由航空仪表以及相应的传感器和显示系统提供的。

飞机要测量的参数很多,归纳起来可以分为飞行参数、发动机参数和系统状态参数(如座舱环境参数、飞行员生理参数、飞行员生命保障系统参数等)。

相应的,航空仪表按功用可分为飞行仪表、发动机仪表和系统状态仪表等。

同一个参数的测量原理和测量方法也很多,几乎涉及机械、电气、电子、无线电、光学等领域,这里主要介绍一些重要参数的测量原理。

3.5.1 飞行仪表这类仪表反映飞机运动状态和飞行参数,使驾驶员能正确地驾驶飞机。

主要可分为全静压系统仪表、指示飞行姿态和航向的仪表等。

全静压系统仪表全静压系统利用感受的全压和静压,分别输人膜盒内外,压力差促使膜盒变形,带动指针指示飞机的速度、高度等飞行参数,从而构成各种仪表。

这类仪表有空速表、气压式高度表、升降速度表和大气数据中心系统等。

用来测量气流全压和静压的管子称为全静压管,因用它测量飞机相对于空气运动的速度(即空速),故又称空速管(图3.5.1)。

全静压管是一根细长的管子,远远伸在飞机机头或翼尖受气流干扰最小的地方,以免所感受到的气压受到飞机的影响。

全静压管正对气流的小口叫全压口,后面是全压室,这里感受的是迎面气流的全压(总压,即动压加静压)。

离头部一定的距离处,沿管周开几个小孔叫静压孔,这里不是正对迎面气流,在静压室中感受的是大气的静压。

由于全静压系统仪表是利用大气压强随高度、速度的变化,使金属膜盒产生膨胀或压缩变形带动仪表指针转动,所以也称为膜盒仪表、气压仪表。

空速表。

空速是指飞机在纵轴对称平面内相对于气流的运动速度。

空速是重要的飞行参数之一。

根据空速,飞行员可以判断作用在飞机上的空气动力的情况,从而正确地操纵飞机;根据空速,还可以进行领航计算。

一分钟识别飞行基本仪表

一分钟识别飞行基本仪表

一分钟识别飞行基本仪表民航飞机的座舱内,主要有六个最基本的仪表,其仪表分布规则为两排,每排三个仪表,上排按秩序为空速表、姿态仪、高度表;下排为转弯侧滑仪、航向仪、升降速度表。

其中,空速表、姿态仪、高度表及航向仪为飞机最最重要且必不可少的四个仪表。

常被称作BasicT,如下图中红色T所表示的部分。

飞机6个基本仪表介绍:空速表(Airspeed Indicator):指示飞机相对于空气的速度即指示空速的大小,单位为海里/小时(Kt)。

姿态仪(Attitude Indicator):指示飞机滚转角(坡度)和俯仰角的大小。

有固定的横杠或小飞机和人工活动的天地线背景组成,参照横杠与人工天地线的相对姿态模拟了真实飞机与实际天地线的相对姿态。

高度表(Altitude Indicator):指示飞机相对于某一气压基准面的气压高度,单位为英尺(ft),一米等于3.28英尺。

拨动气压旋钮可以选择基准面气压,基准气压的单位通常为英寸汞柱和毫巴(百帕)。

当基准气压设定为标准海平面气压29.92inHg (1013.2Hpa)时,高度表读数即为标准海压高度。

转弯侧滑仪(Turn Coordinator):指示飞机的转弯速率和侧滑状态,可以转动的小飞机指示转弯中角速度大小和近似坡度,可以左右移动的小球指示飞机的侧滑状态。

航向仪(Heading Indicator)或水平状态指示器(HIS):指示飞机航向,有固定的航向指针和可以转动的表盘组成。

HIS为较高级别的仪表形式,它除了可以提供航向仪的所有功能外,还可用于VOR导航和仪表着陆系统(ILS)的使用。

升降速度表(Vertical Speed Indicator):指示飞机的垂直速度单位为英尺/分钟(Ft/Min)。

不管飞机如何变化,“BasicT”的相对位置是固定的。

转弯侧滑仪可以在电子仪表中集合到姿态仪里,升降速度表可以集合到高度表中。

现代大型飞机上普遍采用多功能组合型仪表,将以前需要多个仪表才能提供的信息显示在单个仪表上,使用由计算机驱动的阴极射线管或液晶显示屏显示飞机飞行数据,除此之外,还提供了许许多多传统仪表所不能提供的信息。

空速的测量rev1

空速的测量rev1
(高度单位为米)
例题:
1、H=5000ft tH=-10o EAS=130kt
求TAS=? 2、H=8000ft 求EAS=? tH=+10o TAS=184kt
例题:
1、H=5000ft tH=-10o EAS=130kt
求TAS=136kt 2、H=8000ft tH=+10o TAS=184kt 求EAS=160kt
例:BAS370KM/h,飞行高度5000米,空中温度为
-30°,求TAS是多少?
TAS=465 KM/h
2、心算方法
在中、低空,通常高度每升高1000米,TAS比IAS约 增加5%。
(二)表真速与真空速的换算 例:EAS=450 KM/h ,飞行高度HQNE4000米,
空中温度是-30℃,求真空速是多少? TAS=435 KM/h
2、空气动力误差 (Position Error)(ΔVp)
是 由于气流经过空速管时产生弯曲和紊乱引起 的。
指示的少误差为正;指示的多误差为负。
修正该误差后叫指示空速(Indicated Airspeed)(IAS)。
指示空速(IAS) =修正表速(CAS)+ ΔVp
3、空气压缩性修正量误差(Compressibility
是在前者的基础上,增加了一个真空膜盒,补 偿高度引起的空气密度误差。 该表既能用粗针指示仪表空速,又能用细针指 示近似的真空速。
3、真空速表是在前者的基础上,又增加了同感温器相
连的开口膜盒,补偿由于温度变化引起的空气密度误差。 指示的是真空速。
4、马赫数指示器(M数表)
指示的是马赫数,即飞机真空速与飞行高 度上音速的比值。
马赫数测量
马赫数是真实空速与飞机所在高 度上的音速之比,后者与大气静温有关。由理 论分析可知,马赫数是动、静压比值(或总、 静压比值)的函数。因此马赫数表与真实空速 表的基本结构相似。在接近音速飞行时,飞机 的某些部位会出现局部激波,使阻力急剧增加, 飞机的稳定性和操纵性变坏,甚至产生激波失 速。这时的马赫数指示具有与低速飞行时的指 示空速相类似的重要作用。马赫数还是超音速 飞行时衡量飞机各部位气动特性的主要参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 5 Airspeed Indicator 第5章 空速表
PRINCIPLE OF THE AIRSPEED INDICATOR (ASI) When an aeroplane is stationary on the ground it is subject to normal atmospheric or static pressure. In flight, the aeroplane experiences an additional pressure due to the aeroplanes motion through the air, which is known as dynamic pressure. PT=1/2V2 + Ps or THE ASI
COLOUR CODING OF THE ASI
White arc This arc marks the flap operating speed range. Green arc This arc is the normal operating speed range. Yellow This arc denotes the cautionary speed range. Red Radial line This line marks VNE
Leaks A leak in the pitot system causes the ASI to under-read,
whilst a leak in the static line causes the ASI to over-read in
an unpressurised fuselage (cabin pressure is usually lower
A useful formula for estimating TAS is: TAS = CAS + (1.75% of CAS per 1000 ft of altitude)
The relationship between the various airspeeds is as follows: Airspeed Indicator Reading (ASIR) + Instrument Error Correction = IAS IAS + Pressure Error Correction = CAS CAS + Compressibility Error Correction = EAS
airspeed and air density. Density also varies with temperature and pressure. The values used are the sea level values of the ICAO International Standard Atmosphere.
The airspeed indicator thus measures the pressure differential between the two sources, and provides a display indication graduated in units of speed.
ASI FAULTS
Blockage of the static line
If the static line is blocked, the ASI over-reads altitudes at lower altitudes, and under-reads at higher altitudes than when the line became blocked.
OPERATION OF A SIMPLE ASI
CALIBRATION OF THE ASI Standard datum values are used in the calibration of
airspeed indicators since dynamic pressure varies with
than the atmospheric static pressure), and under-read in a
pressurised aeroplane (cabin pressure higher than static).
ASI ERRORS
Instrument Error
Pressure Error
Position of the Pitot-Static Sensors
Manoeuvre Induced Error
Compressibility Error
Density Error
Compressibility causes an increase in the measured value of dynamic pressure, which causes the ASI to over-read. Compensation for the error and correction is on some mechanical navigation Computers.
EAS + Density Error Correction = TAS
In practice, the combined corrections give: ASIR + Instrument Error Correction + Pressure Error Correction = CAS CAS + Compressibility Error Correction + Density Error Correction = TAS
ASI FAULTS
Blockage of the pilot tube
A blockage of the pilot tube causes the ASI to not respond to changes of speed in level flight. If the aeroplane climbs, the ASI indicates an increase in airspeed (over-read) and if it descends, it indicates a decrease in airspeed (under-read).
相关文档
最新文档