常微分方程期中测试试卷(11)
常微分方程习题集

《常微分方程》测试题1一、填空题30%1、形如的方程,称为变量分离方程,这里.分别为的连续函数。
2、形如-的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数-对于所有函数称为在R上关于满足利普希兹条件。
4、形如-的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一10、线性微分方程组的解是的基本解组的充要条件是.二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C《常微分方程》测试题31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是().(A)y=±1,x=±1, (B)y=±1(C)x=±1 (D)y=1,x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A) (B) (C)2(D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+22.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)=+y=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题7一. 解下列方程(80%)1.x=+y2.tgydx-ctydy=03.{y-x(+)}dx-xdy=04.2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
常微分方程习题集

《常微分方程》测试题 1一、填空题 30%1、形如的方程,称为变量分离方程,这里.分别为x.y的连续函数。
2、形如 -的方程,称为伯努利方程,这里的连续函数.n3、如果存在常数 -对于所有函数称为在R上关于满足利普希兹条件。
4、形如 -的方程,称为欧拉方程,这里5、设的某一解,则它的任一解- 。
二、计算题40%1、求方程2、求方程的通解。
3、求方程的隐式解。
4、求方程三、证明题30%1.试验证=是方程组x=x,x=,在任何不包含原点的区间a上的基解矩阵。
2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%>《常微分方程》测试题 2一、填空题:(30%)1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的微分方程是 .2、方程的通解中含有任意常数的个数为 .3、方程有积分因子的充要条件为 .4、连续是保证对满足李普希兹条件的条件.5、方程满足解的存在唯一性定理条件的区域是.6、若是二阶线性齐次微分方程的基本解组,则它们 (有或无)共同零点.7、设是方程的通解,则.8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一解 .9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线性无关解是 .10、线性微分方程组的解是的基本解组的充要条件是 .二、求下列微分方程的通解:(40%)1、2、3、4、5、求解方程.三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计.(10分)四、求解微分方程组满足初始条件的解. (10%)五、证明题:(10%)设,是方程的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题 31.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)dx + N(x, y)dy= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________.3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)dx+y(x2-1)dy=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或<%建设目标%>《常微分方程》测试题 41.辨别题指出下列方程的阶数,是否是线性方程:(12%)(1)(2)(3)(4)(5)(6)2、填空题(8%)(1).方程的所有常数解是___________.(2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________.(3).若方程M(x, y)dx + N(x, y)dy= 0是全微分方程,同它的通积分是________________.(4).设M(x0, y0)是可微曲线y= y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________3、单选题(14%)(1).方程是().(A)可分离变量方程(B)线性方程(C)全微分方程(D)贝努利方程(2).方程,过点(0,0)有().(A) 一个解(B)两个解(C) 无数个解(D)三个解(3).方程x(y2-1)dx+y(x2-1)dy=0的所有常数解是().(A)y=±1, x=±1, (B) y=±1(C) x=±1 (D) y=1, x=1(4).若函数y(x)满足方程,且在x=1时,y=1, 则在x = e时y=( ).(A)(B) (C)2 (D) e(5).阶线性齐次方程的所有解构成一个()线性空间.(A)维(B)维(C)维(D)维(6). 方程()奇解.(A)有三个(B)无(C)有一个(D)有两个(7).方程过点().(A)有无数个解(B)只有三个解(C)只有解(D)只有两个解4.计算题(40%)求下列方程的通解或通积分:(1).(2).(3).(4).(5).5. 计算题(10%)求方程的通解.6.证明题(16%)设在整个平面上连续可微,且.求证:方程的非常数解,当时,有,那么必为或《常微分方程》测试题 5一、填空题(30%)1.若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为.2.方程满足解的存在唯一性定理条件的区域是.3.连续是保证方程初值唯一的条件.一条积分曲线.4. 线性齐次微分方程组的一个基本解组的个数不能多于个,其中,.5.二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是.6.方程满足解的存在唯一性定理条件的区域是.7.方程的所有常数解是.8.方程所有常数解是.9.线性齐次微分方程组的解组为基本解组的条件是它们的朗斯基行列式.10.阶线性齐次微分方程线性无关解的个数最多为个二、计算题(40%)求下列方程的通解或通积分:1.2.3.4.5.三、证明题(30%)1.试证明:对任意及满足条件的,方程的满足条件的解在上存在.2.设在上连续,且,求证:方程的任意解均有.3.设方程中,在上连续可微,且,.求证:该方程的任一满足初值条件的解必在区间上存在.《常微分方程》测试题 6一、填空题(20%)1.方程的所有常数解是.2.方程的常数解是.3.一阶微分方程的一个特解的图像是维空间上的一条曲线.4.方程的基本解组是.二、选择题(25%)1.阶线性齐次微分方程基本解组中解的个数恰好是()个.(A)(B)-1 (C)+1 (D)+2 2.李普希兹条件是保证一阶微分方程初值问题解惟一的()条件.(A)充分(B)必要(C)充分必要(D)必要非充分3. 方程过点共有()个解.(A)一(B)无数(C)两(D)三4.方程()奇解.(A)有一个(B)有两个(C)无(D)有无数个5.方程的奇解是().(A)(B)(C)(D)三、计算题(25%)1.x=+y2.tgydx-ctydy=03.4.5.四、求下列方程的通解或通积分(30%)1.2.3.《常微分方程》测试题 7一 . 解下列方程 (80%)1. x=+y2. tgydx-ctydy=03. {y-x(+)}dx-xdy=04. 2xylnydx+{+}dy=05. =6-x6. =27. 已知f(x)=1,x0,试求函数f(x)的一般表达式。
常微分方程计算题及答案

计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
(完整版)常微分方程练习试卷及答案

常微分方程练习试卷一、填空题。
1. 方程23210d xx dt+=是 阶 (线性、非线性)微分方程. 2. 方程()x dyf xy y dx=经变换_______,可以化为变量分离方程 . 3. 微分方程3230d yy x dx--=满足条件(0)1,(0)2y y '==的解有 个.4. 设常系数方程x y y y e αβγ'''++=的一个特解*2()x x xy x e e xe =++,则此方程的系数α= ,β= ,γ= .5. 朗斯基行列式()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件.6. 方程22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 .7. 已知()X A t X '=的基解矩阵为()t Φ的,则()A t = .8. 方程组20'05⎡⎤=⎢⎥⎣⎦x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程.10 .是满足方程251y y y y ''''''+++= 和初始条件 的唯一解.11.方程的待定特解可取 的形式:12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是二、计算题1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直.2.求解方程13dy x y dx x y +-=-+. 3. 求解方程222()0d x dx x dt dt+= 。
4.用比较系数法解方程..5.求方程 sin y y x '=+的通解.6.验证微分方程22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.7.设 3124A -⎡⎤=⎢⎥-⎣⎦ , ⎥⎦⎤⎢⎣⎡-=11η ,试求方程组X A dt dX =的一个基解基解矩阵)(t Φ,求X A dt dX=满足初始条件η=)0(x 的解. 8. 求方程2213dyx y dx=-- 通过点(1,0) 的第二次近似解.9.求 的通解试求方程组x Ax '=的解(),t ϕ 12(0),ηϕηη⎡⎤==⎢⎥⎣⎦并求expAt 10.若三、证明题1. 若(),()t t Φψ是()X A t X '=的基解矩阵,求证:存在一个非奇异的常数矩阵C ,使得()()t t C ψ=Φ.2. 设),()(0βαϕ≤≤x x x 是积分方程],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx的皮卡逐步逼近函数序列)}({x n ϕ在],[βα上一致收敛所得的解,而)(x ψ是这积分方程在],[βα上的连续解,试用逐步逼近法证明:在],[βα上)()(x x ϕψ≡.3. 设 都是区间 上的连续函数, 且 是二阶线性方程的一个基本解组. 试证明:(i) 和 都只能有简单零点(即函数值与导函数值不能在一点同时为零); (ii) 和 没有共同的零点; (iii) 和没有共同的零点.4.试证:如果)(t ϕ是AX dtdX=满足初始条件ηϕ=)(0t 的解,那么ηϕ)(ex p )(0t t A t -= .2114A ⎡⎤=⎢⎥-⎣⎦32()480dy dy xy y dx dx -+=答案一.填空题。
常微分方程1

常 微 分 方 程试卷(一至十) 试 卷(一)一、填空题(3′×10=30′)1、以y 1=e 2x ,y 2=e x sinx ,y 3=e x cosx 为特解的最低阶常系数齐次线性微分方程是 。
2、微分方程4x 3y 3dx+3x 4y 2dy=0的通积分是 。
3、柯西问题x dxdy=,y (0)=1的解是 。
4、方程ydx-xdy=0的积分因子可取 。
5、证明初值问题的毕卡定理所构造的毕卡序列是 。
6、微分方程F(x ,y ,p)=0若有奇解y=ϕ (x),则y=ϕ (x) 满足的P-判别式是 。
7、线性微分方程组Y x A dxdY)(=的解组Y 1(x ),Y 2(x )…,Y n (x )在某区间上线性无头的充分必要条件是。
8、设A ,则矩阵指数函数e xA = 。
9、方程0=+'+''y y y 的通解是 。
10、由方程033=+'+''+'''y y a y a y 的通解是 。
二、解下列各方程(7′×4=28) 1、求方程31-++-=y x y x dx dy 的通解: 23、621y x y xdx dy =+ 4、x e x y y y 2)53(23+=+'-''三、求单参数曲线族xy=c 的正交轨线族(10′)12′)=dxdYY五、设二阶方程0442=-'+''y y x y x 有特解y 1(x)=x ,求此方程的通解(8′)六、有一容积为10000m 3的车间。
车间的空气含有0.12%的CO 2,今用一台风量为1000m 3/min 的鼓风机通入新鲜空气,新鲜空气中含有0.04%的CO 2,向鼓风机开动10min 后,车间内CO 2的百分比降到多少?(12′)试卷(二)一、填空题(31、微分方程组的阶数是 。
2、以y 1=e x ,y 2=xe x ,y 3=e 2x xin2x 为特解的最低阶实常系数齐次线性微分方程是 。
《常微分方程》期中试卷-解答

)()()(2cos 31cos 31sin 21)(**t x t x t x tt t t t x c +=∴-+=通解 五. 证明题(5分)证明:性无关解,下面只要证明其线是对应齐次方程的两个、是非齐方程的解,、、)()()()()()()(3231321t x t x t x t x t x t x t x --∴ 是齐次方程的基解线性无关,、,,线性无关,、、即:令∴--∴=+==⇒=+-+=-+-)()()()(000)()()(0)()()()(0)]()([)]()([323121213213212211322311t x t x t x t x k k k k t x t x t x t x k k t x k t x k t x t x k t x t x k)()]()([)]()([)(1322311t x t x t x c t x t x c t x +-+-=非齐次方程的通解:六. 应用题(任选1题, 10分)1.设运动员从跳落到开伞前为自由落体运动, 开伞后在空气中下落时受到的空气阻力与速度平方成正比(比例系数为k )。
一运动员从高空跳下T 秒后才打开降落伞。
试建立微分方程, 求开伞后, 该运动员在下降过程中速度与时间关系, 并求出极限速度。
解:kmgt v aeae k mg v a gT kmggT kmgc gT v c t m kg v kmgvkmgv gTv m k g dt dvt t v t t mkg t m kg =⇒+-=⇒∆-+=⇒=+=-+⇒⎪⎩⎪⎨⎧=-=+∞→)(lim 11ln ln)0(2ln)0()(22112由第二定律得:秒时的速度,根据牛顿表示运动员开伞用第 4 页2. 在一个电阻R 、电感L 、电容C 和电源E 串联而成的闭合回路中, 已知E=100sin60t(V)R=2欧姆, L=0.1(H ), C=1/260(F )。
复旦大学常微分期中试卷

˙ = A(t)x, 其中 A(t) 为 R 上以 T (T > 0) 为周期的 考虑线性方程 n 维线性常微分方程: x 连续矩阵值函数. (1) 设 上 述 方 程 的 一 个 基 本 解 方 阵 为 ϕ(t), 证 明 存 在 一 个 ϕ(t + T ) = ϕ(t) · B . (2) 如 果 已 知 存 在 n 阶 矩 阵 C 使 得 eC T = B , 我 们 对 原 方 程 进 行 坐 标 变 换 y (t) = eC t ϕ−1 (t)x(t). 证明在此坐标变化下, 存在常数 C1 , C2 > 0 使得 C2 ∥x(t)∥ ≤ ∥y (t)∥ ≤ C1 ∥x(t)∥, 对于 t ∈ R 成立,并求出 y (t) 满足的微分方程. (3) 若 (2) 中得到的矩阵 C 的一切特征值实部都小于 0, 设 H (t) 为 R 上的 n 阶 连 常 值 矩 阵 B, 使 得
, ∥A∥2 2 =
得分 . .
已知 h(t) 为 (α, β ) 上的实值连续函数,x0 ∈ R, t0 ∈ (α, β ). 用逐次逼近法证明以下初值问 dx = h(t)(x + t2 sin x + t), dt 题 的解在 (α, β ) 上存在且惟一. x(t ) = x
(1) 若 A(t) ≡ A, 试用常数变易公式写出上述方程满足初值条件 x(t0 ) = x0 (t0 ∈ R, x0 ∈ Rn ) 的解. (2) 在 (1) 的条件下,若 A 的一切特征值实部大于 0,证明该方程存在唯一在 R 上有界 的解. 1 2 t2 + 1 , f (t) ≡ 0. 证明存在 x0 ∈ R , 使得该方程满 cos 2t
6
, 分 6 分, 5 分 6 分, 6 分 12
(整理)《常微分方程》试题.

常微分方程试卷1一、填空题(每题3分,共15分)1.一阶微分方程的通解的图像是 维空间上的一族曲线.2.二阶线性齐次微分方程的两个解)(),(21x y x y 为方程的基本解组充分必要条件是 .3.方程02=+'-''y y y 的基本解组是 . 4.一个不可延展解的存在在区间一定是 区间. 5.方程21d d y xy-=的常数解是 .二、单项选择题(每题3分,共15分)6.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 7. 方程1d d +=y xy ( )奇解.(A )有一个 (B )有两个 (C )无 (D )有无数个 8.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 9.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间 (B )构成一个3维线性空间 (C )不能构成一个线性空间 (D )构成一个无限维线性空间10.方程323d d y xy=过点(0, 0)有( ). (A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解三、计算题(每题6分,共30分)求下列方程的通解或通积分:11. y y x yln d d = 12. x y x y x y +-=2)(1d d 13. 5d d xy y xy+= 14.0)d (d 222=-+y y x x xy15.32y y x y '+'=四、计算题(每题10分,共20分)16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=x ty ty t x d d sin 1d d五、证明题(每题10分,共20分)18.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+ 的一切解)(x y ,均有0)(lim =+∞→x y x .19.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.常微分方程试卷1答案及评分标准一、填空题(每题3分,共15分)1.22.线性无关(或:它们的朗斯基行列式不等于零) 3.xxx e ,e 4.开5.1±=y二、单项选择题(每题3分,共15分)6.D 7.C 8.B 9.C 10.A三、计算题(每题6分,共30分)11.解 当0≠y ,1≠y 时,分离变量取不定积分,得 C x y y y+=⎰⎰d ln d (3分) 通积分为xC y e ln = (6分)12.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= (3分) 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin= (6分)13.解 方程两端同乘以5-y ,得x y xyy+=--45d d 令 z y =-4,则xz x y y d d d d 45=--,代入上式,得 x z xz=--d d 41 (3分)通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C yx (6分)14.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. (2分) 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx =-⎰⎰020d d 2 (4分)即 C y y x =-3231 (6分)15.解 原方程是克莱洛方程,通解为32C Cx y += (6分)四、计算题(每题10分,共20分)16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += (4分) 因为0=α是特征根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程期中测试试卷(11)
班级__________姓名__________学号________得分__________
1 微分方程0)(
2
2=+-+
x
y dx
dy dx dy n
的阶数是____________
2 若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是 _________________________
3 _________________________________________ 称为齐次方程.
4 如果),(y x f ___________________________________________ ,则
),(y x f dx
dy =存在
唯一的解)(x y ϕ=,定义于区间h x x ≤-0 上,连续且满足初始条件)(00x y ϕ= ,其中
=h _______________________ .
5 对于任意的),(1y x ,),(2y x R ∈ (R 为某一矩形区域),若存在常数)0(>N N 使 ______________________ ,则称),(y x f 在R 上关于y 满足利普希兹条件.
6 方程
2
2
y x dx
dy +=定义在矩形区域R :22,22≤≤-≤≤-y x 上 ,则经过点 )0,0(的解
的存在区间是 ___________________
7 若),.....2,1)((n i t x i =是齐次线性方程的n 个解,)(t w 为其伏朗斯基行列式,则)(t w 满足一阶线性方程 ___________________________________
8 若),.....2,1)((n i t x i =为齐次线性方程的一个基本解组,)(t x 为非齐次线性方程的一个特
解,则非齐次线性方程的所有解可表为 _________________________
9 若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有≤-)()(x x n ϕϕ __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解
)(x y ,则经过变换 ___________________ ,可化为伯努利方程.
二 求下列方程的解 1 3
y
x y dx
dy +=
2 求方程2
y x dx
dy +=经过)0,0(的第三次近似解
3 讨论方程2
y dx
dy = ,1)1(=y 的解的存在区间
4 求方程01)(2
2=-+y dx
dy 的奇解
5 0)1(
)1(cos 2
=-
++dy y
x y
dx y
x
6 x x x y y y 2
2
'
sin cos sin 2-=-+
7 0)37()32(2
32
=-+-dy xy dx y xy
三 证明题
1 试证:若已知黎卡提方程的一个特解,则可用初等积分法求它的通解
2 试用一阶微分方程解的存在唯一性定理证明:一阶线性方程
)()(x Q y x P dx
dy += , 当
)(x P , )(x Q 在[]βα,上连续时,其解存在唯一
参考答案
一 填空题 1
1 2 )()1)(
(
y M
x N y
M φ=-∂∂-∂∂
3 形如
)(x
y g dx
dy =的方程
4 在R 上连续且关于y 满足利普希兹条件 ),m i n (
m b a h =
5 2121),(),(y y N y x f y x f -≤- 6
4
14
1≤
≤-x
7 0)(1'
=+w t a w
8 x x c
x n
i i i
+=
∑=1
9
1
)!
1(++n n
h
n ML
10 形如
)()()(2
x r y x q y x p dx
dy ++=的方程 y z y +=
二 求下列方程的解 1 解:2
3
y y
x y
y
x dy dx +=
+=
,
则 )(12
1⎰+⎰
⎰
=-
c dy e
y e x dy
y
dy
y
所以 cy y
x +=
2
3
另外 0=y 也是方程的解 2 解:0)(0=x ϕ []
2
020
121)()(x dx x x x x =+=
⎰ϕϕ []
5
2
21
2
20121)()(x x dx x x x x +=+=⎰ϕ
ϕ []
8
11
5
20
22
3160
14400
120
12
1)()(x x
x x dx x x x x +
+
+
=
+=
⎰ϕ
ϕ
3 解:
dx y
dy =2
两边积分 c x y
+=-
1
所以 方程的通解为 c x y +-=1 故 过1)1(=y 的解为 2
1--=
x y
通过点 )1,1(的解向左可以延拓到∞-,但向右只能延拓到 2, 所以解的存在区间为 )2,(-∞ 4 解: 利用p 判别曲线得
⎩
⎨
⎧==-+020122p y p 消去p 得 12
=y 即 1±=y 所以方程的通解为 )sin(c x y += , 所以 1±=y 是方程的奇解
5 解:
y
M ∂∂=2--y ,
x
N ∂∂=2--y ,
y
M ∂∂=
x
N ∂∂ , 所以方程是恰当方程.
⎪⎪⎩⎪⎪⎨⎧-=∂∂+=∂∂2
11cos y x y y v y
x x u
得 )(sin y y x x u ϕ++= )('
2
y xy
y
u ϕ+-=∂∂- 所以y y ln )(=ϕ
故原方程的解为 c y y
x x =++
ln sin
6 解: x x x y y y 2
2'si n
cos si n 2-++-= 故方程为黎卡提方程.它的一个特解为 x y sin = ,令x z y sin += , 则方程可化为
2
z dx
dz -= , c
x z +=
1
即 c
x x y +=
-1sin , 故 c
x x y ++
=1sin
7 解: 两边同除以2y 得
037322
=-+-xdy dy y
ydx xdx
0732
=--y d
xy d dx
所以 c y
xy x =--732 , 另外 0=y 也是方程的解
三 证明题
1 证明: 设黎卡提方程的一个特解为 y y =
令 y z y += , dx
y d dx
dz dx
dy += 又 )()()(2
x r y x q y x p dx
dy ++=
dx
y d x r y z x q y z x p dx
dz -
++++=)())(())((2
由假设
)()()(2
x r y x q y x p dx
y d ++= 得
[]
z x q y x p z x p dx
dz )()(2)(2
++=
此方程是一个2=n 的伯努利方程,可用初等积分法求解
2 证明: 令R : x ∈[]βα, , R y ∈
)(x P , )(x Q 在[]βα,上连续, 则
)()(),(x Q y x P y x f += 显然在R 上连续 ,
因为 )(x P 为[]βα,上的连续函数 ,
故)(x P 在[]βα,上也连续且存在最大植 , 记为 L 即 )(x P L ≤ , x ∈[]βα,
1y ∀,R y ∈2 2121)()(),(),(y x P y x P y x f y x f -=-=)(x P 21y y -21y y L -≤
因此 一阶线性方程当)(x P , )(x Q 在[]βα,上连续时,其解存在唯一。