两独立样本和配对样本T检验
SPSS独立样本与配对样本检验

在SPSS中独立样本T检验所检验的是独立样本,配对样本T检验检验的是相关样本。 如何判断是独立样本还是相关样本呢? 举例说明: (独立样本)“已知人们一般状况下的脉搏。考察焦虑状况下人的脉搏与一般状况下的有无差别”CDA数据分析师能够 熟练运用Excel、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数 据的处理与分析,并得出逻辑清晰的业务报告。
(相关样本)“考察家庭中夫妻之间收入的差异性”相关样本有一 一对应关系. 我觉得一般情况下,比较两个(类)人之间的差异就是独立样本【除了丈夫妻子(以家庭为两者的联系对应)、同卵双生子研 究(当成一个人)等特殊情况】一个人对两种不同事物的反应就是相关样本。 前测后测的情况属于相关样本,因为会对同一个人测两次,前测和后测的结果都有一个人对应;实验组控制组的情况属于独立样本 ,因为是把人分成两类,每类人之接受一种实验处理,如一部分人A处理一部分人B处理,A处理和B处理中间找不到一个人连接 起来,因为没有人接受了两种处理.
文章来源:/view/8128.html
二 如何对SPSS结果进行分析 首先,对两个样本进行方差检验,使用F检验. (若为小样本,则使用T检验对两个样本的均值差进行检验的前提是两个总体分布的方
差必须相等.大样本则不作要求 . — 书) 图பைடு நூலகம்F值的Sig为0.013<0.05,拒绝方差相等的原假设。看下面一行方差不相等的T值。
其次,对T检验值进行分析。 图中t=-0.0287,检验值=0.007<0.05,拒绝原假设。即,两组数据得分均值方面存在差异。
1. 假如人造纤维缩水后能够复原。那么,如果同一根人造纤维,在60度测试后再在80度中测试,使用配对检验。如果同一批人 造纤维的样品,一半测试60度,一半测试80度,则使用独立检验。
t检验(t test)

t检验(t test)
首都医科大学 公共卫生与家庭医学学院
李霞
目的
1.掌握t检验的功能、应用前提 2.掌握t检验的SPSS操作方法
单样本t检验 配对样本t检验 独立样本t检验
②正态性检验:方法同前,将变量”weight”选入 Test Variable List的变量列表中—>选中 “Nor; Split File 进入数据分割模块选择“Analyze all cases, do not create
groups” —> OK
都符合正态分布。
(2)t检验结果:因为方差齐性检验结果F=0.089, P=0.770>0.05, 两组资料方差齐,故采用方差齐的t 检验结果。t=1.973, υ =17,双侧检验P=0.065 >0.05,因此接受H0,认为二组资料差异没有统计学 意义,即不能认为两组膳食对小白鼠体重增加有不 同。
泊松分布
指数分布
均匀分布
Exact Tests Asymptotic only:渐进方法,默认。
要求数据量足够大 Monte Carlo:蒙特卡洛估计方法 Exact:精确计算显著性水平的方法
Options:
•Statistics(统计量选项):
Descriptive:描述性统计量,显示均数、标准差、 最大值、最小值和非缺失个案数
Quartiles:四分位数 •Missing Values(缺失值):
Exclude cases test-by-test:默认。剔除正在分析 的变量中含有缺失值的观察单位
两独立样本和配对样本T检验

两独立样本T检验目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。
检验前提:样本来自的总体应服从或近似服从正态分布;两样本相互独立,样本数可以不等。
两独立样本T检验的基本步骤:提出假设原假设H_0:μ_1-μ_2=0备择假设H_1:μ_1-μ_2≠0建立检验统计量如果两样本来自的总体分别服从N(μ_1,σ_1^2)和N(μ_2,σ_2^2),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。
第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2)则两样本均值差的估计方差为:σ_12^2=s^2 (1/n_1 +1/n_2 )构建的两独立样本T检验的统计量为:t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) )此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。
第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2构建的两独立样本T检验的统计量为:t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 )此时,T统计量服从修正自由度的t分布,自由度为:f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 )可见,两总体方差是否相等是决定t统计量的关键。
所以在进行T检验之前,要先检验两总体方差是否相等。
SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。
三、计算检验统计量的观测值和p值将样本数据代入,计算出t统计量的观测值和对应的概率p值。
t检验的原理

t检验的原理t检验是统计学中一种常用的假设检验方法,用于检验样本均值是否与总体均值有显著差异。
t检验的原理是基于样本均值与总体均值之间的差异,以及样本大小和样本标准差的影响。
本文将详细介绍t检验的原理,包括t检验的基本概念、t检验的类型、t检验的假设检验过程、t检验的统计推断及t检验的应用。
一、t检验的基本概念t检验是一种比较两个样本均值是否有显著差异的方法,它的基本概念包括:1. 样本均值:样本中所有数据的平均值,用于代表样本的中心位置。
2. 总体均值:总体中所有数据的平均值,用于代表总体的中心位置。
3. 样本标准差:样本中所有数据离均值的距离的平均值,用于表示样本的离散程度。
4. 样本大小:样本中数据的个数,用于表示样本的大小。
5. t值:用于比较两个样本均值之间的差异,计算公式为:t = (样本均值1 - 样本均值2) / (标准误差)其中,标准误差为:标准误差 = 样本标准差 / √样本大小二、t检验的类型t检验根据样本的数量、总体是否已知、样本是否独立等不同情况,可以分为以下几种类型:1. 单样本t检验:用于检验单个样本均值是否与总体均值有显著差异。
2. 独立样本t检验:用于检验两个独立样本均值是否有显著差异。
3. 配对样本t检验:用于检验两个配对样本均值是否有显著差异,如同一组人在不同时间点的得分情况。
4. 单侧t检验和双侧t检验:用于检验样本均值是否大于或小于总体均值,或者是否有显著差异。
三、t检验的假设检验过程t检验的假设检验过程包括以下几个步骤:1. 提出假设:根据研究问题提出原假设和备择假设。
2. 确定显著性水平:根据实际情况确定显著性水平,通常为0.05或0.01。
3. 计算t值:根据样本数据和公式计算t值。
4. 计算自由度:根据样本大小计算自由度。
5. 查表得到临界值:根据自由度和显著性水平查表得到临界值。
6. 判断是否拒绝原假设:如果计算得到的t值大于临界值,则拒绝原假设;否则不拒绝原假设。
三种常用的T检验

独立样本的T检验(independent-samples T Test)对于相互独立的两个来自正态总体的样本,利用独立样本的T 检验来检验这两个样本的均值和方差是否来源于同一总体。
在SPSS 中,独立样本的T检验由“Independent-Sample T Test”过程来完成。
例:双语教师的英语水平有高低之分,他们(她们)所教的学生对双语教学的态度是否有显著差异?例题分析:——研究目的:寻找差异——自变量:双语教师的英语水平(ordinal data等级变量),有两个水平:;level1低水平,level2高水平——因变量:学生的双语教学态度(interval data等距变量)SPSS操作步骤·Analyze→Compare Means→Independent Samples T Test·Click the双语教学态度to the column of“Test V ariable(s)”andthe教师英语水平分组to the column of“Grouping variable”·Click the button of“Define Groups…”and put the group numbers“1”and“3”into Group1and Group2,and“Continue”back,then“OK”.结果在论文中的呈现方式独立样本T检验结果显示,双语教师的英语水平不同,其所教学生对双语教学的态度有显著差异(t=-3,249,df=72,p<0.05)。
双语教师英语水平较低所教的学生,他们对双语教学态度的得分也显著低于英语水平较高的双语教师所教的学生(MD=-0.65)。
这可能是因为……练习:文科生和理科生对双语教学的态度是否有显著差异?配对样本T检验(Paired-samples T Test)配对样本T检验,用于检验两个相关的样本(配对资料)是否来自具有相同均值的总体。
统计学两样本均数比较的t检验

处理方式
对于异常值,可以采用删除、替换或用中位数修正等方式进行处理。具体处理方式应根 据实际情况和数据分布特点进行选择,并确保处理后的数据仍然能够反映总体情况。
实验设计和伦理考虑
实验设计
在进行t检验之前,应进行充分的实验设计, 确保实验的合理性和科学性。实验设计应考 虑各种因素对实验结果的影响,并尽量减小 误差和干扰因素。
确定p值:根据t统计量和自由 度,查表或使用统计软件计算 p值。
步骤1
收集数据:分别从两个独立样 本中收集数据,并记录在表格 中。
步骤3
计算t统计量:根据两组样本的 均数和标准差,计算t统计量。
步骤5
结果解读:根据p值判断两组 样本均数之间的差异是否具有 统计学上的显著性。
结果解读
• 结果解读:根据p值的大小来判断两 组样本均数之间的差异是否具有统计 学上的显著性。通常,如果p值小于 0.05,则认为两组样本均数之间存在 显著差异;如果p值大于0.05,则认 为两组样本均数之间无显著差异。
对差值数据进行描述性统计分析, 计算差值的均值和标准差。
计算t统计量
根据差值的均值、标准差以及自 由度,计算t统计量。
收集两个配对样本的数据
确保两个样本具有相同的样本量, 且每个样本中的数值都是配对的。
判断显著性
பைடு நூலகம்根据t分布表或使用统计软件,查 找对应的p值,判断两个配对样本 均数是否存在显著差异。
结果解读
伦理考虑
在实验设计过程中,还应考虑伦理问题。应 尊重受试者的权益和尊严,确保受试者的安 全和隐私。同时,应遵循国际公认的伦理准 则和法律法规,如《赫尔辛基宣言》等。
06 案例分析
t检验 标准

t检验标准一、确定样本数据是否符合t检验的前提条件在应用t检验之前,需要确定样本数据是否符合以下前提条件:1. 样本数据应来自随机抽样的样本,而不是总体数据。
2. 样本数据应具有一定的数量,通常要求样本容量不小于30。
3. 样本数据应来自正态分布的总体,或者经过适当的转换后满足正态分布。
4. 样本数据应具有方差齐性,即不同样本间的方差应无显著差异。
二、选择正确的t检验类型根据实际问题的需求,选择合适的t检验类型。
以下是三种常见的t检验类型:1. 单样本t检验(One-Sample t-test):用于检验单个样本的均值是否与已知的参考值存在显著差异。
2. 双样本t检验(Two-Sample t-test):用于比较两个独立样本的均值是否存在显著差异。
3. 配对t检验(Paired t-test):用于比较两个相关样本的均值是否存在显著差异,例如同一组对象在不同条件下的观察值。
三、确定显著性水平(α)和置信水平(β)显著性水平(α)表示假设检验中拒绝原假设的概率,通常设定为0.05或0.01。
置信水平(β)表示对研究结果的置信程度,通常设定为95%或99%。
四、计算t统计量及其自由度根据选择的t检验类型和样本数据,计算t统计量及其自由度。
以下是计算步骤:1. 根据样本数据计算出均值(μ)和标准差(σ)。
2. 根据假设检验问题,确定要检验的统计量(例如μ1和μ2,或μ1和μ1-μ2等)。
3. 根据样本数据和确定的统计量,计算t统计量及其自由度。
具体的计算方法可以参考相应的统计书籍或软件说明。
五、根据t分布表确定P值根据t统计量和自由度,在t分布表中找到对应的临界值和P值。
以下是计算步骤:1. 在t分布表中,根据自由度找到相应的临界值(tα/2)和P 值(1-α)。
2. 将计算的t统计量与临界值进行比较,如果t统计量大于临界值,则P值小于α,拒绝原假设;否则,接受原假设。
3. 根据P值和显著性水平判断是否拒绝原假设。
生物统计学实验报告T检验

生物统计学实验报告T检验T检验是一种用于比较两个样本均值是否有显著差异的统计方法。
在生物统计学中,T检验经常被用于比较实验组和对照组在某个特定变量上的差异,以确定是否存在显著差异。
T检验的基本原理是通过计算两个样本的均值和方差,然后应用统计学中的t分布来判断两个样本均值是否有显著差异。
在进行T检验之前,需要明确以下几个方面的内容:假设检验的零假设和备择假设、显著性水平、检验的类型(单尾检验或双尾检验)以及样本数据的收集和处理。
在进行T检验时,首先要设定零假设与备择假设。
零假设表示两个样本均值无显著差异,备择假设则表示两个样本均值存在显著差异。
接下来要设定显著性水平,通常使用的显著性水平为0.05,即p值小于0.05时,认为存在显著差异。
然后要确定T检验的类型,通常分为单尾检验和双尾检验。
单尾检验适用于预测两个样本均值的相对大小,而双尾检验适用于预测两个样本均值是否存在显著差异。
在进行T检验之前,还需要选择合适的T检验方法,主要有独立样本T检验和配对样本T检验,根据实验设计的不同选择相应的方法。
当以上设定完成后,需要收集实验数据,并计算两个样本的均值和方差。
接下来根据公式计算出T值,并据此计算出p值。
最后,根据p值与设定的显著性水平进行比较,判断两个样本均值是否存在显著差异。
如果p值小于显著性水平,则拒绝零假设,认为两个样本均值存在显著差异;如果p值大于显著性水平,则接受零假设,认为两个样本均值无显著差异。
总之,T检验是一种常用的比较两个样本均值是否有显著差异的统计方法。
在生物统计学中,T检验可以帮助我们分析实验组和对照组在某个特定变量上是否存在显著差异,从而验证实验的有效性。
然而,在进行T检验之前,需要明确假设检验的设定、显著性水平和检验类型,并正确收集和处理实验数据,以获得准确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两独立样本T检验
目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。
检验前提:
样本来自的总体应服从或近似服从正态分布;
两样本相互独立,样本数可以不等。
两独立样本T检验的基本步骤:
提出假设
原假设H_0:μ_1-μ_2=0
备择假设H_1:μ_1-μ_2≠0
建立检验统计量
如果两样本来自的总体分别服从N(μ_1,σ_1^2 )和N(μ_2,σ_2^2 ),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。
第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2)
则两样本均值差的估计方差为:
σ_12^2=s^2 (1/n_1 +1/n_2 )
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) )
此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。
第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为:
σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2
构建的两独立样本T检验的统计量为:
t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 )
此时,T统计量服从修正自由度的t分布,自由度为:
f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 )
可见,两总体方差是否相等是决定t统计量的关键。
所以在进行T检验之前,要先检验两总体方差是否相等。
SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。
三、计算检验统计量的观测值和p值
将样本数据代入,计算出t统计量的观测值和对应的概率p值。
四、在给定显著性水平上,做出决策
首先,利用F统计量判断两总体方差是否相等,Levene F检验的原假设为两独立总体方差相等。
概率p<0.05时,有充分理由拒绝原假设,说明方差不齐;否则,两样本方差无显著性差异。
其次,将设定的显著性水平α与检验统计量的p值比较,如果t统计量的p值小于α,落入拒绝域内,则我们有充分理由拒绝原假设,认为两总体均值有显著差异。
SPSS实现过程:
菜单:Analyze -> Compare Means-> Independent Samples T test
Test Variable(s):待检验的变量(一般是定距或定序变量)
Grouping Variable :分组变量(只能比较两个样本)
结果中比较有用的值:方差齐次性检验F统计量对应的P值和方差相等或不相等T统计量对应的P值。
例:利用pkustedu.sav数据,检验不同性别学生的平均月生活费是否存在差异。
扩展案例:
独立样本T检验只能比较两个总体的均值是否相等,这要求自量恰好分成两组,但更多时候,自变量的分类超过两类,或是自变量是连续时,这时我们要对自变量进行处理后,才能进行T检验。
如,要分析不同身高儿童的体重是否有显著差异,此时做为分组变量的身高就是连续变量。
SPSS中使用cut point功能重新处理自变量。
例:现有一组儿童身高、体重的调查资料,数据见data08-01.sav,试分析身高高于1.55m的儿童与身高不足155cm的儿童体重是否有显著差异。
SPSS实现过程:在cut point单选框中,输入1.55即可。
配对样本T检验
配对样本与独立样本的区别,
独立样本中两个样本来自两个独立的总体,而配对样本实际上来自一个总体,是对同一个体前后不同观测的分析,如同一组喝某品牌减肥茶的人群,比较他们喝茶前与喝茶后的体重是否有显著差异。
SPSS实现过程:
菜单:Analyze -> Compare Means-> Paired Samples T test
例:利用st2004.sav,检验1995年人均国民生产总值与2004年人均国民生产总值是否存在显著差异?
练习:
通过st2004.sav数据,检验东部地区和西部地区人均国民生产总值是否存在差异。
通过jobsat1.sav数据,分析收入(income1)低于3000元和收入高于3000元的职工的工作快乐感是否有显著差异。
问卷调查分析:
影响学习成绩的因素分析:
学习成绩的综合评价:高考成绩、四六级成绩、是否有其他考试证书;影响因素分析:
个人因素:学习时间安排、学习效率、学习动力
外部因素:
家庭因素:父母文化程度,家庭和睦,学生生活来源,
学校因素:社团活动、辅导班。