冀教版八年级下册数学知识点总结
八年级数学下册课件(冀教版)函数

知识点 2 函数的表示法 图像法
波长 l (m) 300 500 600 1000 1500 频率 f (kHz) 1000 600 500 300 200
列表法
f 300 000,S r 2 l
解析法
表示函数关系的方法通常有三种:
1. 解析法;(用式子的方法来表示)
2. 列表法;(用列表的方法来表示)
例1 判断下面各量之间的关系是不是函数关系,若是,请指 出自变量与因变量.
(1)长方形的一边长b 一定时,与其相邻的另一边长a 与 周长C,其中C=2(a+b);
(2)y=|x |中的x 与y; (3)小刚计划用20元购买本子,所能购买的本子数n (本)
与单价a (元),其中n= 20 .
a
解:(1)长方形的周长C=2(a+b), 当一边长b 一定时,与其相邻的另一边长a 所取 的每一个确定的值,周长C 都有唯一的值与它对 应,所以C 是a 的函数. 自变量是a,因变量是C.
的函数吗?若能,写出函数关系式.
导引:这是一个由表格方式呈现出来的函数关系.由表中信息可得, 每多挂1 kg重物,弹簧就会伸长0.5 cm.在这个变化过程中,有
两个变量,即所挂物体的质量x (kg)和弹簧的长度y (cm).给定 一个x 值,有唯一的y 值与其对应,符合函数的概念. 解:弹簧的长度y (cm)可以看成是所挂物体质量x (kg)的函数.
知识点 3 函 数 值
函数值:如果在自变量取值范围内给定一个数值
a,函数对应的值为b,那么b叫做自变量的值为a
时的函数值.
要点精析 (1)函数表示的是两个变量之间的一种关系,而函数值是 一个数值. (2)一个函数的函数值是随着自变量的变化而变化的,故 在求函数值时,一定要指明自变量为多少时的函数值.
22,1 平行四边形的性质 第一课时八年级数学下册课件(冀教版)

如图,四边形ABCD 是平行四边形,记作 “□ABCD ”,读作“平行四边形ABCD ”.线段AC, BD 为□ABCD 的两条对角线,点O 为它的中心.
1. 定义:两组对边分别平行的四边形叫做平行四边形.
2. 表示方法:平行四边形用符号“▱ ”表示,如图,平
行四边形ABCD 记作“▱ABCD ”,
这样我们证明了平行四边形具有以下性质: 平行四边形的对边相等.
1. 边的性质:平行四边形对边平行;平行四边形对边相等. 2. 数学表达式:如图,
∵四边形ABCD 是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
例3 如图,在▱ABCD 中,BM 是∠ABC 的平分线, 交CD 于点M,且MC=2,▱ABCD 的周长是14, 则DM 等于( C )
2 如图,▱ABCD 中,EF∥GH∥BC,MN∥AB,则图中平行四
边形的个数是( D ) A.13 B.14 C.15 D.18
知识点 2 平行四边形的中心对称性
1. 如图,在半透明的纸上画一个▱ABCD,再复制一个.将两个图形
完全重合,用大头针钉在中心处.使下面的图形不动,将上面的图
形绕中心O 旋转180°.这两个图形能完全重合?平行四边形是不是
分别平行”外,它的边之间还有什么关系? 通过观察和度量,我们猜想:平行四边形的对边相等;
下面我们对它进行证明.
证明:如图,连接AC. ∵AD//BC,AB//CD,
∴∠1=∠2,∠3=∠4.
又AC 是△ABC 和△CDA 的公共边, ∴ △ABC ≌△CDA. ∴AD =CD,AB =CD.
归纳
中心对称图形?如果是中心对称图形,哪个点是它的对称中心?
被对角线分成的三角形中,关于点O 成中心对称的三角形有几对?
【冀教版】2019年春八年级数学下册:第二十二章复习

第二十二章四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1) AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5) AB=CD, ∠A=∠C ( ?)2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
(二)归纳整理,形成体系1、性质判定,列表归纳2、基础练习:(1)矩形、菱形、正方形都具有的性质是( C )A .对角线相等 (距、正) B. 对角线平分一组对角 (菱、正) C .对角线互相平分D. 对角线互相垂直 (菱、正) (2)、正方形具有,矩形也具有的性质是( A )A .对角线相等且互相平分 B. 对角线相等且互相垂直 C. 对角线互相垂直且互相平分 D. 对角线互相垂直平分且相等 (3)、如果一个四边形是中心对称图形,那么这个四边形一定( D ) A .正方形B .菱形C .矩形D .平行四边形 都是中心对称图形,A 、B 、C 都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是( B )A. 对角线互相平分B. 对角线相等C. 对边平行且相等D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。
八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版

D.y=60-0.12x,0≤x≤500
感悟新知
知2-练
4. 等腰三角形的周长是40 cm,底边长y(cm)是腰长 x(cm)的函数,此函数表达式和自变量取值范围正确 的是( C ) A.y=-2x+40(0<x<20) B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20) D.y=-0.5x+20(0<x<20)
x-2 0, 解:要使函数关系式有意义,需满足 x+3 0.
解得x≥2. 故自变量的取值范围是x≥2.
感悟新知
4. 【中考·赤峰】能使式子 2 x x 1 成立的
x的取值范围是( C )
A.x≥1
B.x≥2
C.1≤x≤2
D.x≤2
知1-练
感悟新知
5. 【中考·娄底】在函数y= x 中,自变量x的取 知1-练 x2
课时导入
探究新知 你坐过摩天轮吗?想一想,如果你坐在摩天轮上,
随着时间的变化,你离开地面的高度是如何变化的?
感悟新知
知1-讲
知识点 1 函数表达式的自变量的取值范围
1. 前面讲到的“欣欣报亭1月〜6月的每月纯收入S(元) 是月份T的函数”.其中自变量T可取哪些值?当T=1.5 或T=7时,原问题有意义吗?
为0; (3)当关系式是二次根式时,其自变量的取值范围须
使被开方数为非负实数;
知1-讲
感悟新知
归纳
知1-讲
(4)当关系式有零指数幂(或负整数指数幂)时,其自 变量应使相应的底数不为0;
(5)当关系式是实际问题的关系式时,其自变量必须 有实际意义;
(6)当关系式是复合形式时,则需列不等式组,使所 有式子同时有意义.
八年级数学函数冀教版知识精讲

初二数学函数冀教版【本讲教育信息】一、教学内容: 1. 变量与函数.2. 函数关系的表示方法.3. 函数的应用.二、知识要点: 1. 变量与常量在一个变化过程中,可以取不同数值的量叫变量,而数值保持不变的量为常量. 区别变量与常量的方法就是:看它们在这一“变化过程中”数值是否发生变化.如:以60千米/时的速度匀速行驶的汽车,路程s 随时间t 而变化,其中__________是不变的,所以是常量,__________和__________都是变化的,所以是变量. 2. 函数一般地,在某个变化过程中,有两个变量x 与y ,如果给定x 一个值,就能相应地确定y 的一个值,我们就说y 是x 的函数,其中,x 叫做自变量. 如果y 是x 的函数,那么也说y 与x 具有函数关系.(1)函数涉及两个变量,不是一个,也不是两个以上. 如y =xz 表示的就不是函数关系. (2)对于x 的每一个确定的值,y 都有唯一确定的值与其对应. 如y 2=x ,y 不是x 的函数,而y =x 2,y 是x 的函数. 3.4. 自变量的取值范围(1)使函数关系式有意义. ①分母中含有字母的函数式,分母不能为0. 如要使y =x -1x -2有意义,必须x -2≠0,即x ≠2. ②二次方根的被开方数非负. 如要使y =2x +1有意义,必须2x +1≥0,即x ≥-12.(2)注意问题的实际意义. 如在圆周长L =2πr 中r 不能为负数,需r ≥0;游客、乘客人数等必须是非负整数;气温、山高、水深等都要合理. 5. 函数值(1)求函数值,实质上就是求代数式的值,就是将自变量的值代入自变量所在的代数式得到的值,如在y =2x +6x -3中,求当x =1时的函数值?(2)当函数值确定,求相应的自变量的值时,实际上就是解关于自变量的方程. 如在y =2x +3中,当x 为何值时,函数值是5? 6. 画函数图像以画函数y =6x(x >0)的图像为例.(1)列表,如下:(2)描点,如图1. (3)连线,如图2.图1图2三、重点难点:本讲重点:函数的一般概念,即变化与对应意义下的函数定义是本讲的重点. 本讲难点:由于函数概念的含义比较抽象、深刻,往往不能一下子从其文字的定义真正地理解它. 突破难点的办法是由具体例子逐步过渡到抽象定义,多分析归纳具体问题,在具体问题中理解定义.四、考点分析:在中考试题中“函数”内容的考点一般有两个:确定函数自变量的取值范围;根据函数图像回答问题. 难度可大可小,综合性较强.【典型例题】例1. 用总长为60m 的篱笆围成长方形场地,求长方形面积S (m 2)与一边长l (m )之间的关系式,并指出式中的常量与变量,自变量与函数.分析:用总长为60m 的篱笆围成长方形,对边的长相等,那么一组邻边的长度和为30m ,如果一边长为l (m ),则另一边的长为(30-l )m ,所以其面积与一边长l 的关系式是S =l (30-l ).解:S =l (30-l ). 其中,30是常量,S 与l 是变量;l 是自变量,S 是l 的函数. 评析:确定变量与常量时应具体问题具体分析.例2. 已知变量x 与y 的四种关系:y =︱x ︱,︱y ︱=x ,2x 2-y =0,2x -y 2=0其中y 是x 的函数的有__________个.分析:依函数定义判断,︱y ︱=x 与2x -y 2=0中,x 每取一个大于0的值,y 都有两个与之对应,例如x =4时,︱y ︱=4有y =±4,故y 不是x 的函数;只有y =︱x ︱和2x 2-y =0中y 是x 的函数.解:2评析:本题没有指出变量x 与y 哪个是自变量,哪个是函数,但是由问题“y 是x 的函数”可判断x 是自变量.例3. (1)在函数y =x -3中,自变量x 的取值范围是 ( ) A. x ≥-3 B. x ≤-3 C. x ≥3 D. x ≤3(2)在函数y =12x -1中,自变量x 的取值范围是__________.分析:(1)中x -3≥0,即x ≥3(2)中分母不能为零,2x -1≠0,即x ≠12.解:(1)C (2)x ≠12评析:确定自变量的取值范围时,不仅要考虑使函数关系式有意义,而且还要注意问题的实际意义.例4. (1)已知摄氏温度(℃)与华氏温度(℉)之间的转换关系是:摄氏温度=59×(华氏温度-32). 若华氏温度是68℉,则摄氏温度是__________℃.(2则m 与v 之间的关系最接近于下列各关系式中的 ( ) A. v =2m -2 B. v =m 2-1 C. v =3m -3 D. v =m +1分析:(1)如果设摄氏温度为f ,华氏温度为c ,则f =59(c -32),当c =68时,f =59×(68-32)=20. (2)从表格中很难推算出m 与v 间的关系式,可以把它们的每一对值代入四个选项验证.解:(1)20(2)B 评析:(1)求函数值,实质上就是将自变量的值代入函数关系式,求代数式的值. (2)有些实际问题不能准确地用函数解析式表示,但可以用一个近似关系式表示.例5. 拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中的余油量Q (升)与工作时间t (时)之间的函数表达式; (2)求出自变量t 的取值范围; (3)画出函数的图像.分析:由于函数图像是函数关系的反映,因此所画的图像要与自变量的取值范围相一致,本题中自变量t 的取值范围是0≤t ≤6,因此它的图像是直线Q =-5t +30上的一部分(即一条线段).解:(1)所求的函数关系表达式为Q =-5t +30; (2)自变量t 的取值范围是0≤t ≤6; (3)①列表:②描点、连线,图像如图所示.t /时评析:写函数关系式之前,要认真分析题意,看一个量是如何随另一个量的变化而变化的,找出它们之间的数量关系,然后用含一个量的式子来表示另一个量. 在求自变量的取值范围时,要注意自变量的实际意义,而其中应特别关注临界点是否能取到——看实际中是否存在这种情形.例 6. 三军受命,我解放军各部队奋力进入抗震救灾一线. 现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图像,四位同学观察此函数图像得出有关信息,其中正确的个数是 ( )A. 1B. 2C. 3D. 4分析:根据题意,过原点的那条曲线是甲队的图像,另一条是乙队的图像. 在4.5小时处甲、乙所走过的路程相等,则乙队出发2.5小时后追上甲队;乙队到达小镇用了6-2=4小时,平均速度是24÷4=6 km /h ;甲队比乙队早出发2小时,他们同时到达小镇;甲队到达小镇用了6小时,从3小时到4小时,路程没有变化,表示停顿了1小时.解:D 评析:函数的图像是一个由点组成的曲线,其中所有点的横坐标的集合恰好是自变量的取值范围. 各点的纵坐标,分别是自变量取值为各横坐标时对应的函数值.【方法总结】1. 理解y 是x 的函数,需抓住一个“前提”和一个“要素”. “前提”是在某个变化过程中,有两个变量x 和y ,就是说在不变化的事物中,不存在函数关系,而且这一前提中要求有两个变量(与用何字母表示变量无关). “要素”指如果给出了一个x 值,就能确定唯一的y 值.2. 对于有函数关系的两个变量,其中哪个是自变量,哪个是函数,关键要看两个变量所起的作用. 居主导地位的是自变量,随着自变量的取值而确定的变量是函数.【模拟试题】(答题时间:60分钟)一. 选择题1. 下列各式中,不是函数的是( ) A. y =x B. y =x 2+1 C. y =∣x ∣D. y =±x2. 函数y =x +4x -3中,若x =2,则函数值为( )A. 6B. -6C. 5D. -53. 甲、乙两地相距S 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt =S ,在这个变化过程中,下列判断中错误的是( )A. S 是变量B. t 是变量C. v 是变量D. S 是常量 4. 若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s (千米)与行驶的时间t (时)之间的函数关系式是( )A. s=50+50tB. s=50tC. s=50-50tD. 以上都不对5. 如图所示的程序,若输入的x的值为-52,则输出的y的值为()输入x值y=-x-1-4≤x<-1y=x2-1-1≤x≤1输出y值y=x-11<x≤4A. -72 B.32 C.214 D.726. 2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离S(千米)与行进时间t(小时)的函数大致图像,你认为正确的是()*7. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)如果获奖运动员李伟领取的奖品是43(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()A. 270B. 255C. 260D. 265*8. 如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水. 在这则乌鸦喝水的故事中,设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,下列图像中最符合故事情景的是()二. 填空题1. 一根弹簧的半径为R(cm),周长为l(cm),则周长l与半径R之间的关系式是________,其中常量是________,变量是________,________是________的函数,________是自变量.2. 函数y=xx-1自变量x的取值范围是__________.3. 函数y=x-1中,自变量x的取值范围是__________.4. 自由下落的物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t2. 现在有一铁球从离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是__________秒. 5. 一个梯形的上底长为5,下底长为x ,高为6,则梯形的面积y 与下底长x 之间的函数关系式是__________,当下底长x =7时,梯形面积y =__________.6. 已知函数f (x )=3x +2,则f (1)=__________.*7. 如图所示的是一辆汽车油箱里剩余油量y (L )与行驶时间x (h )的图像,根据图像回答下列问题:(1)汽车行驶前油箱里有__________L 油;(2)当汽车行驶2h 后油箱里还有__________L 油;(3)汽车最多能行驶__________h ,它每小时耗油__________L ;(4)油箱中剩油量y (L )与行驶时间x (h )之间的函数关系是__________.**8. 某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是__________.三. 解答题1. 一根弹簧原来长12cm ,每挂1千克的物体就伸长0.5cm ,已知弹簧所挂物体的质量不能超过20千克,求弹簧长度y (cm )与所挂物体质量x (千克)之间的函数关系式.2. 如图所示,正方形ABCD 的边长为5,P 为BC 上一动点,若CP =x ,△ABP 的面积为y ,求出y 与x 之间的函数关系式,并写出自变量x 的取值范围.AB CDP3. 某工人要完成24个零件的生产任务;(1)写出该工人完成任务的时间t (小时)与每小时定额a (件)之间的函数关系式; (2)求出这个函数的自变量的取值范围; (3)画出这个函数的图像.4. 一棵树苗的高度h(1)求第n年时,树苗的高度h;(2)求第几年时,树苗高度为130厘米.5. 如图所示,某气象研究中心观测了一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2千米,4小时后,沙尘暴经过开阔的荒漠地区,风速变为平均每小时增加4千米,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米,最终停止,结合风速与时间的图像回答下列问题:(1)在y轴的括号内填入相应的数值;(2)这场沙尘暴从发生到结束共经历了多少小时?千米/时【试题答案】一. 选择题1. D2. B3. A4. B5. B6. C7.D8. D二. 填空题1. l =2πR ,2π,l 、R ,l R ,R2. x ≠13. x ≥14. 25. y =3x +15,366. 17. (1)40(2)30(3)8,5(4)y =40-5x (0≤x ≤5)8. 4(提示:从第2天后,甲、乙一起播种,到第3天的一天时间里共播种350-200=150(亩),第3天到最后播种了800-350=450(亩),450÷150=3(天),所以乙一共播种了4天.三. 解答题1. y =12+0.5x (0≤x ≤20)2. y =12×5×(5-x )=-52x +252(0≤x ≤5)3. (1)t =24a(2)a >0(3)略4. (1)h =100+5(n -1)=5n +95 (2)当h =130时,130=5n +95 解得n =7答:第7年时,树苗高度为130厘米.5. (1)8;32(2)由题意得321=32,∴25+32=57(小时),即这场沙尘暴从发生到结束共经历了57小时。
冀教版八年级下册数学第22章 四边形 三角形的中位线

知1-练
2
感悟新知
知识点 2 三角形中位线在四边形中的应用
知2-讲
例如2图,在▱ABCD中,E,F分别是AD,BC的中点, 连接AF,DF分别交BE,CE于点M,N,连接MN.
求证:MNBC. =∥1 2
感悟新知
知2-讲
导引:欲证MNB=∥C1,只需证明MN 是△EBC的中位线2即可.而要证得M,N分别为
∴MN是△EBC的中位线.∴MNBC.
=∥ 1 2
知2-讲
感悟新知
归纳
知2-讲
(1)证明两直线平行的常用方法: ①利用同平行(垂直)于第三条直线;②利用同位角、 内错角相等,同旁内角互补;③利用平行四边形 的性质;④利用三角形的中位线定理.
感悟新知
归纳
知2-讲
(2)证明一条线段是另一条线段的2倍的常用方法: ①利用含30°角的直角三角形;②利用平行四边 形的对角线;③利用三角形的中位线定理.
1 2
感悟新知
3. 如图,△CDE为△ABC沿AC方向平移得到的, 延长AB,ED相交于点F.请指出图中有哪些相等 的线段,有哪些平行的线段.
知1-练
解:相等的线段有AB=BF=CD, BC=DF=DE,AC=CE. 平行的线段有AF∥CD,AB∥CD, BF∥CD,BC∥DF,BC∥DE,BC∥EF.
∴DE=DF=BC.
11 22
感悟新知
归纳
知1-讲
三角形的中位线平行于第三边,并且等于第三边 的一半.
感悟新知
知1-讲
例已1知:如图,在四边形ABCD中,AD=BC,P为对角线 BD的中点,M为DC的中点,N为AB的中点.
求证:△PMN是等腰三角形.
感悟新知
证明:在△ABD中, ∵N,P分别为AB,BD的中点,
冀教版八年级下册数学知识点总结

冀教版八年级下册数学知识点总结第十六章:统计的初步知识1、 调查的一般过程:实际问题——搜集数据——整理数据——表示数据——统计分析——合理决策。
2、调查的方法:抽样调查与普查。
普查:对全体对象的调查。
抽样调查:从总体中抽出部分个体进行调查。
总体:抽查对象的全体叫做总体。
个体:调查的每一个对象叫做个体。
样本:总体中抽取的部分个体叫做样本。
样本容量:样本所包含的个体的数量叫做样本容量。
(样本容量不带单位) 例:为了解一批炮弹的杀伤力,抽取100枚炮弹作调查。
总体:一批炮弹的杀伤力;个体:每枚炮弹的杀伤力;样本:被抽到的100枚炮弹的杀伤力;样本容量为100。
3、简单的随机抽样:抽样调查时每个个体被抽到的可能性相同的抽样叫做简单的随机抽样。
4、抽样调查的注意事项:(1)样体要具有代表性 (2)样本容量要适当,不能太少。
5、频数分布直方图 (1)将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数. 某个组的频数与样本容量的比值叫做这个组的频率。
(2)分组一般采用等距分组的方法。
(3)极差:一组数据的最数据与最小数据的差。
(4)组距:把所有数据分成若干个组,每个小组的两个端点的距离。
组数=[(极差/组数)]+1([]表示取整)第十七章:平面直角坐标系1、平面内物体位置的确定:(1)有序数对法(2)方位角+距离法(3)经纬法2、平面直角坐标系象限内点的特征:第一象限(+,+);第二象限(-,+); 第三象限(-,-);第四象限(+,-)。
3、平面直角坐标系内图形的变化与点的坐标变化特征 (1)轴对称:横轴对称纵相反,纵轴对称横相反。
'(,)x P P x y −−−→-轴对称(x,y ) '(,)P P x y −−−→-y 轴对称(x,y ) (2)关于原点对称(即中心对称:绕原点旋转180度后能构互相重合): 方法:原点对称横纵坐标都相反'(,)P P x y −−−→--y 轴对称(x,y ) (3)点的平移:左右平移横(坐标)加减,上下平移纵(坐标)加减(上加下减,右加左减)'(,)m P P x y m −−−−−→+上平移个单位(x,y )'(,)m P P x y m −−−−−→-下平移个单位(x,y ) '(,)m P P x m y −−−−−→-左平移个单位(x,y )'(,)m P P x m y −−−−−→-右平移个单位(x,y )'(,)m P P x m y n −−−→-+左上n(x,y ) '(,)m PP x m y n −−−→+-右下n (x,y ) (4)图形的缩放:在平面直角坐标系内,图形上点的坐标都乘以k (或1k),图形横向纵向将拉长为原来的k 倍(或压缩为原来的1k),图形边长扩大为原来的k 倍(或缩小为原来的1k ),图形的面积扩大为原来的2k 倍(或缩小为原来的21k) 22(,)k (,)1111()P kx ky k P x y P x y k k k k ⎧→→⎪⎨→→⎪⎩边长扩大倍,面积扩大倍,边长压缩为原来的,面积压缩为原来的(5)两点之间的距离公式:数轴上:两点对应的数分别为1x ,1y ,则12dx x =-平面直角坐标系内:两点A 、B 坐标分别为(11,x y )(22,x y )则AB =若C 为线段AB 的中点,则点C 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭4、平面直角坐标系中图形面积求法(1)条件具备时利用面积公式求(2)条件不具备时,三角形面积可采用求差法。
冀教版八年级下册数学第21章 一次函数 一次函数与二元一次方程的关系

感悟新知
[例中1考·呼和浩特]如图所示的四条直线,其中直线上每 个点的坐标都是二元一次方程x-2y=2的解的是
() C
知1-讲
感悟新知
知1-讲
导引:对于二元一次方程x-2y=2,当x=0时, y=-1;当y=0时,x=2,故直线x-2y=2与 两坐标轴的交点坐标是(0,-1),(2,0).对 照四个选项中的直线,可知选C.
(2)求a,b的值.
y+x=b
解:(1) x=1,
(2)将y代=入2. 可得 所以a=x-=13,,b=3. ax y= 5,
y=2.
y+x=b
a 2= 5, 2+1=b
感悟新知
知2-练
2. 解方程组并由2x此指y=出2,在同一直角坐标系内,一次函 y+2x=6,
数y=2x-2与y=-2x+6图像交点的坐标.
b 1,
b 1. 1
2
感悟新知
归纳
知2-讲
“交点”是解决问题的关键,从“形”的角度讲, 它是两个函数图像的公共点即自变量值相等时函数值 也相等的点;从“数”的角度讲,它是两个函数表达 式的公共解,即二元一次方程组的解.
感悟新知
1. 已知关于x,y的方程组的x解+为y=1,
x= 1, 知2-练
(1)写出一次函数y=-x+1和的a图x+像3y交=8点P的坐标y.=2.
感悟新知
解:因为方程组的y解=为ax+2, 所以交点A的坐y=标k为x+(2b,,1),
x=2, y=1.
知2-讲
所以2a+2=1,解得a=-.
又因为函数y=kx+b的图像1过交点A(2,1)和点B
(0,-1),所以解得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冀教版八年级下册知识点总结第十八章数据的收集与整理一、知识网络知识点一:总体、样本的概念1.总体:要考察的全体对象称为总体.2.个体:组成总体的每一个考察对象称为个体.3.样本:被抽取的那些个体组成一个样本.4.样本容量:样本中个体的数目叫样本容量(不带单位).注意:为了使样本能较好地反映总体的情况,除了要有合适的样本容量外,抽取时还要尽量使每一个个体都有同等的机会被抽到.知识点二:全面调查与抽样调查调查的方式有两种:全面调查和抽样调查:1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据(划记法);(3)描述数据(条形图或扇形图等).2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况. ②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.调查方法:问卷,观察,走访,试验,查阅资料。
知识点三:扇形统计图和条形统计图及其特点1.生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的,即10%. 同理,圆心角是72°的扇形占整个圆面积的,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.2.用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.(1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.知识点四:频数、频率和频数分布表1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.公式:.由以上公式还可得出两个变形公式:(1)频数=频率×数据总数.(2).注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.知识点五:频数分布直方图与频数折线图1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.2.条形图和直方图的异同:直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽表示各组的组距,各长方形的高和宽都有意义. 此外由于分组数据都有连续性,直方图的各长方形通常是连续排列,中间没有空隙,而条形图是分开排列,长方形之间有空隙.3.频数折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图.4.频数分布直方图的画法:(1)找到这一组数据的最大值和最小值;(2)求出最大值与最小值的差;(3)确定组距,分组;(4)列出频数分布表;(5)由频数分布表画出频数分布直方图.5.画频数分布直方图的注意事项:(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多。
第十九章 平面直角坐标系1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1)点P (y x ,)所在的象限 横、纵坐标x 、y 的取值的正负性; (2)点P (y x ,)所在的数轴 横、纵坐标x 、y 中必有一数为零;5、 在平面直角坐标系中,已知点P ),(b a ,则(1) 点P 到x 轴的距离为b ; (2)点P 到y 轴的距离为a ; (3) 点P 到原点O 的距离为PO = 22b a6、 平行直线上的点的坐标特征:a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;象限 横坐标x 纵坐标y第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负P ()-3 -2 -1 0 1 ab1-1 -2 -3P(a,b)YxXYA BmXY CDnab7、 对称点的坐标特征:a) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; b) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; c) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称 关于y 轴对称 关于原点对称 8、 两条坐标轴夹角平分线上的点的坐标的特征:a) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; b) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上9、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; • 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
10、用坐标表示平移:见下图P (x ,y ) P (x ,y -a )P (x -a ,y ) P (x +a ,y ) P (x ,y +a ) 向上平移a 个单位向下平移a 个单位向右平移a 个单位向左平移a 个单位Xy PO XyPOXyPOXyPOyPOX第二十章函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
第二十一章 四边形一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234AB CDABDOCAD BC AD BCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( (1) (2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.CDABA BCD OE FD ABCE DCBAABCDOA BC D O第二十二章 一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。