微生物生理学2016

合集下载

微生物生理学习题汇总(华农生科院王教授的课)

微生物生理学习题汇总(华农生科院王教授的课)

微⽣物⽣理学习题汇总(华农⽣科院王教授的课)微⽣物⽣理学习题11.1…6是通过筛选获得的6株对某种氨基酸(F)营养缺陷型脉孢霉突变菌株,A…E五种不同的有机化合物,它们可能是氨基酸F合成代谢中的中间产物。

下表是进⾏补充养料获得的突变菌株的⽣长结果,+表⽰在基础培养基中添加某种有机物突变菌株能够⽣长,-表⽰突变菌株不能⽣长。

请根据表中结果推断氨基酸F的合成途径及各突变菌株发⽣突变的位点。

BECDAFA B C D E F1 +----+2 +-++++3 -----+4 +-++-+5 +--+-+6 +-++-+2.粗糙脉孢菌有两个缬氨酸营养缺陷型val1和val2,菌株val1的培养液中有物质B积累,val2的培养液中有物质A积累。

菌株val1能在含有缬氨酸或val2⽣长过的培养液中⽣长。

菌株val2能在含有缬氨酸的培养液中⽣长,但不能在val1⽣长过的培养液中⽣长。

说明基因val1,val2以及物质A,B和缬氨酸的关系。

B Val1 → A Val2 →缬氨酸5.已经证明T4噬菌体rII型快速溶菌突变由两个顺反⼦rIIA和rIIB控制。

现有⼀T4噬菌体,在rIIB中有⼀个点突变F。

此突变噬菌体与突变噬菌体1,2,3混合感染⼤肠杆菌K时,能够出现rII型噬菌斑,但是和突变噬菌体4则不能出现噬菌斑。

如何解释这⼀现象。

6. 1…10是10个表型相同的突变型.下表结果说明1…10分属于⼏个基因(+表⽰有互补作⽤,-表⽰⽆互补作⽤) 突变型 123456789101 ? + + + + + + + + +2 ? + ? + ? ? + + ?3 ? + ? + + ? ? +4 ? + ? ? + + ? 突变分别发⽣在两个基因中,顺式、反式均能互补。

A+ B? A?B+A+A? B+B?反式顺式6 ??+ + ?7 ?+ + ?8 ??+9 ?+10 ?7. 沙门⽒菌从⾕氨酸合成脯氨酸的途径如下图:说明下列部分⼆倍体菌株哪⼀个为⾕氨酸营养缺陷型。

微生物生理复习题及答案

微生物生理复习题及答案

微⽣物⽣理复习题及答案第⼀章绪论1、什么是微⽣物⽣理学?研究热点是什么?微⽣物⽣理学是从⽣理⽣化的⾓度研究微⽣物的形态与发⽣、结构与功能、代谢与调节、⽣长于繁殖等的机理,以及这些过程与微⽣物⽣长发育以及环境之间的关系的学科。

研究热点:环境修复;微⽣物发电、⽣物燃料;资源开发利⽤。

2、简要说明微⽣物⽣理学与其他学科的关系。

微⽣物⽣理学既是⼀门基础学科⼜是⼀门应⽤学科。

它的发展与其他学科有着密切的联系,既依赖于微⽣物学、⽣物化学、细胞⽣物学、遗传学基础学科的理论和技术,还需要数学、物理学、化学、化学⼯程、电⼦信息学和设备制造⼯程等的理论和技术。

3、简述微⽣物⽣理学中常⽤的技术与⽅法。

(1)电⼦显微技术,⼀种公认的研究⽣物⼤分⼦、超分⼦复合体及亚细胞结构的有⼒⼿段,也是研究微⽣物不可缺少的⼿段。

(2)DNA分⼦铺展技术,可⽤来检查细菌、噬菌体的染⾊体结构,还可进⾏动态跟踪。

(3)超速离⼼技术(4)光谱分析技术,包括可见光光度法(定量分析),紫外分光光度法,荧光分光光度法,红外分光光度法。

(5)层析技术,⼀种基于被分离物质的物理、化学及⽣物学特性的不同,使它们再某种基质中移动速度不同⽽进⾏分离和分析的⽅法。

纸层析,薄层层析,柱层析。

(6)电泳技术,⽤于对样品进⾏分离鉴定或提纯的技术。

等电聚焦电泳,双向电泳,⽑细管电泳,变性梯度凝胶电泳。

(7)同位素⽰踪技术,利⽤放射性核素作为⽰踪剂对研究对象进⾏标记的威廉分析⽅法。

(8)基因芯⽚与⾼通量测序技术第⼆章微⽣物的细胞结构与功能1.细胞壁及细胞膜的⽣理作⽤是什么?(2)控制细胞⽣长扩⼤(3)参与胞内外信息的传递(4)防御功能(5)识别作⽤(ps1、维持细胞形状,控制细胞⽣长,保护原⽣质体。

细胞壁增加了细胞的机械强度,并承受着内部原⽣质体由于液泡吸⽔⽽产⽣的膨压,从⽽使细胞具有⼀定的形状,这不仅有保护原⽣质体的作⽤,⽽且维持了器官与植株的固有形态.另外,壁控制着细胞的⽣长,因为细胞要扩⼤和伸长的前提是要使细胞壁松弛和不可逆伸展.2.细胞壁参与了物质运输与信息传递细胞壁允许离⼦、多糖等⼩分⼦和低分⼦量的蛋⽩质通过,⽽将⼤分⼦或微⽣物等阻于其外。

微生物生理学

微生物生理学

微生物生理学微生物,这个微小却又充满神秘力量的世界,一直以来都在我们身边默默地发挥着巨大的作用。

而微生物生理学,就是探索微生物生命活动规律和机制的科学领域。

想象一下,那些我们肉眼无法直接看到的微小生物,它们有着自己独特的生活方式和生理过程。

微生物生理学,就像是一把神奇的钥匙,帮助我们打开这个微观世界的大门,去了解它们是如何生存、繁衍和与周围环境相互作用的。

首先,让我们来谈谈微生物的营养需求。

微生物虽然小,但它们也需要“吃东西”来获取能量和构建自身的物质。

不同的微生物有着不同的“口味”。

有的喜欢利用简单的糖类,比如葡萄糖;有的则能够分解复杂的有机物,甚至可以利用无机物来合成自身所需的物质。

例如,自养型微生物能够通过光合作用或者化能合成作用,将无机物转化为有机物质,从而满足自身的生长和代谢需求。

而异养型微生物则需要从外界摄取现成的有机物作为营养来源。

微生物获取营养的方式也是多种多样的。

有的通过扩散作用吸收周围环境中的小分子物质;有的则通过主动运输,耗费能量将所需的物质“拉”进体内。

而且,微生物对于营养物质的吸收和利用还受到环境因素的影响。

比如,温度、pH 值、渗透压等条件的变化,都可能影响微生物对营养物质的吸收效率和利用方式。

接下来,我们来看看微生物的代谢过程。

代谢就像是微生物体内的一场繁忙的“工厂生产活动”。

微生物通过一系列复杂的化学反应,将摄入的营养物质转化为能量和各种生物分子。

其中,呼吸作用和发酵作用是微生物获取能量的重要方式。

呼吸作用类似于我们人类的呼吸过程,但微生物的呼吸方式更加多样。

有的进行有氧呼吸,充分利用氧气来产生大量的能量;有的在无氧条件下进行无氧呼吸,也能获取一定的能量维持生命活动。

发酵作用则是一种特殊的代谢方式,在无氧或缺氧的条件下,微生物通过分解有机物产生少量的能量和代谢产物。

微生物的代谢产物也是丰富多样的,有的是对人类有益的,比如抗生素、维生素等;有的则可能是有害的,比如毒素。

微生物的生理学和遗传学特性

微生物的生理学和遗传学特性

微生物的生理学和遗传学特性微生物是指那些不能自己看到的生物体,包括细菌、真菌、病毒等,它们是地球上最古老的生物体之一,陪伴我们共同演化了几十亿年。

微生物隐藏在我们身体和周围环境中,很多时候都是隐藏在黑暗中的无形之力。

然而,微生物却是人类生存不可或缺的一部分,它们不仅有良好的效果,例如在地球生态系统中的原初生态环境中,维持了许多生物之间的生存平衡;同时对生态环境的污染控制有着行之有效的作用。

其中,微生物的生理学和遗传学特性尤其值得我们研究探索。

微生物的生理学特性1.能量来源微生物的能量来源主要是来自它所寄生的生物环境中的有机物,通过光合作用、化学反应来得到自身所需的能量来源,从而保证微生物生命的能量供应。

2.营养要素微生物对营养要素的需求比人类、动植物都要低一些,它们可以在比较恶劣的环境下依靠几乎不需要营养的生存能力生存。

但是,与大多数生命体一样,微生物对于碳、氮、磷、铁等元素也是非常关注的,在人类和动植物身上可以发现它们能吸附、分离、转化所需的营养来源。

3.生长条件微生物温度范围极其广阔,能包容非常悬殊的环境温度,而且在酸性、碱性、加盐等多种极端环境下,都有其不同能力的生存表现。

它们的适应能力超乎我们的想象,如果能够利用它们的适应能力,在生产、环保、生态建设等领域都将能够上一个新水平。

微生物的遗传学特性1.基因载体微生物基因组的大小是非常小的,但是集合在其身上的基因是极其珍贵的,并以不同的方式维持着微生物的生理学表现。

微生物基因含量少,但因为它们的基因组非常简单以及在不同环境下因为寄生物的不同而有所变化带来的重要启示值得细细品味。

2.基因转移微生物的基因转移现象是目前的生物学研究中的热点之一。

微生物基因可以通过转化、嗜酸乳杆菌介导基因转移等方式,在不同的染色体间进行转移。

这种现象常出现在超级细菌中,是人们在对细菌药物抵抗性研究过程中经常遇到的问题,而且越来越引起了人们注意。

总的来说,微生物的生理学和遗传学特性非常值得我们关注,它们的适应性和调节功能都非常珍贵。

微生物的生理学功能与代谢机制

微生物的生理学功能与代谢机制

微生物的生理学功能与代谢机制微生物是一种在我们日常生活中无所不在的微小生物,它们存在于我们周围的土壤、水源、空气和人体等各种环境中。

虽然它们通常被视为致病的元凶,但实际上,微生物在地球上发挥着至关重要的作用,它们可以分解有机物质、促进土壤肥力、发酵食品以及合成药物等。

了解微生物的生理学功能和代谢机制可以帮助我们更好地利用它们的作用,并对我们的生活和健康产生积极的影响。

1. 微生物的生理学功能微生物具有多种不同的生理学功能,包括分解、协同和共生。

其中,分解是微生物最重要的功能之一,它们能够分解化学物质,使其成为直接或间接的生命体建筑材料。

微生物可以分解糖、脂肪和蛋白质等有机物质,并将其转换成能量、碳和氮等营养元素。

此外,微生物还能够利用电子受体转移链(ETC)来释放能量,并产生氧化还原反应的能量。

微生物在短时间内就可以完成这些工作,速度非常快。

协同是微生物的另一种生理学功能,微生物经常在生态系统中协同工作,例如共同分解有机物质,互相提供其他营养元素以及互相防止其他有害微生物的入侵。

这种协同作用对适应环境和生存至关重要。

共生是微生物的第三种生理学功能,其中包括与其他生物体的相互作用。

有些微生物在其他生物体中营养良好,例如肠道中的某些菌群。

这些微生物可以合成一些维生素和有机酸,使它们可以在肠道中重复生长。

2. 微生物的代谢机制微生物的代谢机制包括分解代谢、发酵代谢和呼吸代谢。

分解代谢是微生物将复杂的有机物质分解成较简单的物质。

它们通过酶水解营养物质,因此也被称为酶解代谢。

微生物不断地分解和合成不同的化学物质,以满足自己的生长、分裂和代谢需求。

发酵代谢是微生物在没有氧气的情况下产生能量的一种方式。

这种代谢方式可以将有机物质转化为小分子的有机酸、酒精和丙酮等,产生大量的能量。

发酵代谢常被应用于酿酒、食品发酵和生物燃料生产中,是微生物工业的一个重要方面。

呼吸代谢是微生物在有氧气的情况下产生能量的一种方式,它使微生物能够更有效地利用氧气。

食品微生物学 第三章微生物的生理 第二节微生物的生长

食品微生物学 第三章微生物的生理  第二节微生物的生长

微生物的生理
(1)微生物的生长曲线 将少量单细胞微生物纯菌种接 种到新鲜的液体培养基中,在最适条件下培养,在培养过程 中定时测定细胞数量,以细胞数的对数为纵坐标,时间为横 坐标,可以画出一条有规律的曲线,这就是微生物的生长曲 线(growth curve)。生长曲线严格说应称为繁殖曲线,因 为单细胞微生物,如细菌等都以细菌数增加作为生长指标。 这条曲线代表了细菌在新的适宜环境中生长繁殖至衰老死亡 的动态变化。根据细菌生长繁殖速度的不同可将其分为四个 时期(见图3-1)。
微生物的生理
第三章
微生物的生理
3.1 微生物的营养 3.2 微生物的生长 3.3 微生物生长的控制 3.4 微生物的代谢
微生物的生理
3.2 微生物的生长
3.2.1 微生物生长与繁殖
微生物在适宜的条件下,不断从周围环境中吸收营养物 质,并转化为细胞物质的组分和结构。同化作用的速度超过 了异化作用,使个体细胞质量和体积增加,称为生长。单细 胞微生物,如细菌个体细胞增大是有限的,体积增大到一定 程度就会分裂,分裂成两个大小相似的子细胞,子细胞又重 复上述过程,使细胞数目增加,称为繁殖。单细胞微生物的 生长实际是以群体细胞数目的增加为标志的。霉菌和放线菌 等丝状微生物的生长主要表现为菌丝的伸长和分枝,其细胞 数目的增加并不伴随着个体数目的增多而增加。
微生物的生理
(4)比浊法 在细菌培养生长过程中,由于细胞数量的 增加,会引起培养物混浊度的增高,使光线透过量降低。在 一定浓度范围内,悬液中细胞的数量与透光量成反比,与光 密度成正比。比浊管是用不同浓度的BaCl2与稀H2SO4配制成 的10支试管,其中形成的BaSO4有10个梯度,分别代表10个 相对的细菌浓度(预先用相应的细菌测定)。某一未知浓度 的菌液只要在透射光下用肉眼与某一比浊管进行比较,如果 两者透光度相当,即可目测出该菌液的大致浓度。 如果要 作精确测定,则可用分光光度计进行。在可见光的450~ 650nm波段内均可测定。

微生物生理学实验教案

微生物生理学实验教案

微⽣物⽣理学实验教案实验⼀酸乳制品中乳酸菌的分离⼀、实验⽬的学会并掌握从酸乳中分离乳酸菌的技术进⼀步巩固⽆菌操作技术。

⼆、实验原理酸乳中乳酸菌的分离采⽤溴甲酚绿(BCG)⽜乳营养琼脂平板分离法。

溴甲酚绿指⽰剂在酸性环境中呈黄⾊,在碱性环境中呈蓝⾊。

在分离培养基(pH6.8)中加⼊溴甲酚绿指⽰剂后呈蓝绿⾊,乳酸菌在该培养基中⽣长并分解乳糖,产⽣乳酸,使菌落呈黄⾊,菌落周围的培养基也变为黄⾊。

乳酸可⽤纸上层析法鉴别。

三、实验器材1、材料:市售酸奶2、培养基:(1) BCG脱脂乳粉培养基:A(溶液):脱脂奶粉100g,⽔500mL,加⼊1.6%溴甲酚绿(B.C.G)⼄醇溶液1mL,80℃灭菌20min。

B(溶液):酵母膏10g,⽔500mL,琼脂20g,pH6.8,121℃灭菌20min以⽆菌操作趁热将A B溶液混合均匀后倒平板。

(2)10%脱脂乳粉培养基:脱脂乳粉10g,⽔100mL,121℃灭菌20min。

2、器材:涂布器、培养⽫、⽆菌⽣理盐⽔/⽆菌⽔四、操作步骤1、制备BCG⽜乳营养琼脂培养基。

①称取脱脂奶粉10g,溶于50mL⽔中,加⼊1.6%溴甲酚绿酒精溶液0.1mL,0.075MPa压⼒下灭菌20min。

②另取琼脂2g,溶于50mL⽔中,加酵母膏1g,溶解后调pH值⾄6.8,0.1MPa压⼒下灭菌20min。

③趁热将上述两液以⽆菌操作混合均匀,倒平板4个。

2、梯度稀释:将样品以10倍稀释法稀释⾄10-6,取其中10-5、10-6 2个稀释度的稀释液各0.1~0.2mL,分别置于上述各营养平板上,⽤⽆菌涂布器依次涂布2个⽫,置43℃培养48h,如出现圆形稍扁平的黄⾊菌落及其周围培养基亦为黄⾊者初步定为乳酸菌。

3、将典型菌落转⾄10%脱脂乳发酵管,43℃培养8~24h,若⽜乳管凝固,⽆⽓泡,呈酸性,镜检细胞杆状或链球状,⾰兰⽒染⾊呈阳性,则将其连续传代若⼲次,43℃培养,挑选出在3~4h能凝固的乳管,保存备⽤。

微生物生理学

微生物生理学

一、氨基酸的分泌
表3-10 乳酸发酵短杆菌细胞内磷脂含量与谷氨酸分泌的关系
干燥菌体内磷脂含量/% 菌体外L-谷氨酸量 /mg.mL-1
2.0
15.4
2.2
12.1
3.1
1.9
3.6
1.2
▪ 谷氨酸发酵控制
生物素:作为催化脂肪酸生物合成最初反应的关键 酶乙酰CoA的辅酶,参与脂肪酸的生物合成,进而 影响磷酯的合成。
三、胞外酶的分泌
第四章 异养微生物的生物氧化 第五章 自养微生物的生物氧化 第六章 微生物的合成代谢
第七章 微生物代谢调节
一、微生物代谢过程中的自我调节
☆微生物代谢调节系统的特点:精确、可塑性强,细胞水 平的代谢调节能力超过高等生物。
成因:细胞体积小,所处环境多变。 举例:大肠杆菌细胞中存在2500种蛋白质,其中上千 种是催化正常新陈代谢的酶。每个细菌细胞的体积只 能容纳10万个蛋白质分子,所以每种酶平均分配不到 100个分子。如何解决合成与使用效率的经济关系? 解决方式:组成酶(constitutive enzyme)经常以高 浓度存在,其它酶都是诱导酶(inducible enzyme), 在底物或其类似物存在时才合成,诱导酶的总量占细 胞总蛋白含量的10%。
E、在生物素丰富时,培养中途如果添加青霉素、 头孢霉素C,可以使谷氨酸生成。青霉素的作用 机制与控制生物素、控制油酸或添加表面活性剂 以及控制甘油的机制都不同。
添加青霉素是抑制细菌细胞壁的后期合成,
对细胞壁糖肽生物合成系统起作用。这是因为青 霉素取代合成糖肽的底物而和酶的活性中心结合, 使网状结构连接不起来,结果形成不完全的细胞 壁。没有细胞壁保护的细胞膜由于膜内外的渗透 压差,是细胞膜受到机械损伤,失去了作为渗透 障碍物的作用,从而使谷氨酸排出。另一种解释 是:青霉素虽不能抑制磷脂的合成,但能造成磷 脂向胞外分泌。表6-5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与 周围环境分开,以细胞质膜作 为渗诱屏障,控制着物质的流 入和流出细胞。
26
目录
细胞质膜外围的坚实的细胞壁则保护细胞免于遭 受渗透冲击而导致的细胞崩解。原生动物和少数细菌 的细胞没有细胞壁,但它们的细胞质膜另有加固机制。 其他的细胞外部结构,如细菌的荚膜,也起保护作用。 有些细胞的表面有运动器官,用以找到适合它们生活 的环境和避开不利的环境。
47
目录
弹道法
将细胞悬液与小玻璃珠混合后,装入细胞振荡磨 中,高速往返振荡(2000-4000次/min),在3-5min 内就 将细胞破碎,破碎效果好,价格比较便宜,也容易操 作。为了降温,可在容器外围通入液体二氧化碳。
48
目录
超声波法
超声波探头的高频振荡可造 成溶液中形成“空穴”,即生成 许多微小的气泡,它们在探头附 近高速运动,产生强大的剪切力, 足以破碎悬浮的细胞。这种方法 破碎的效率虽高,但缺点是在处 理的过程中,所有的细胞不能同 步破碎,有的先破了,有的后破。 因此,先破的细胞仍继续遭受剪 切力而形成更小的碎片。
14
目录
1944.细菌的转化作用和转化物质的提纯等,第一 次确定了 DNA 是遗传的物质基础。 1947.细菌重组。 1949.噬菌体重组。 1952.细菌转导的相继发现。 1953.Watson和Crick. DNA 分子双螺旋结构的建 立。 1955.基因细微结构的分析。 1958.DNA 复制机制。 1964. DNA 和 RNA 的分子杂交等重要成就,为建 立分子遗传学打下了坚实的基础。
抗生素已成为现代化的大企 业生产; 微生物酶制剂已广泛用于农、 工、医; 微生物的其他产物,如有机 酸、氨基酸、维生素等都在进行 大量生产。
17
目录
1 . 3微生物生理活动的研究
1.3.1 生物化学方面
初级代谢的调节、次级代谢产物合成 途径与次级代 谢的调节、能量转换的基础; 集中研究一些特殊类型生物的生理活动 纤维素分解菌 产甲烷细菌 石油分解菌 有机农药分解菌 单细胞蛋白产生菌等 人工合成大分子物质分解菌、共生菌、寄生菌等
研磨法
45
目录
这种方法的原理是利 用高压破碎细胞。 French 压榨机,它 的结钩是在一个耐高压的不锈钢筒,装 配有可移动的密封活塞。钢筒下有一可 调微孔的细管与外界相通。操作时,关 闭微孔,风筒中加入浓细胞悬液,加高 压使活塞下降,并保持最大压力。缓慢 地打开微孔,当细胞悬液通过微孔时, 由于高压的强烈剪切力,致使细胞破碎, 流出收集备用。
9
目录
柯赫
是与巴斯德同时代的一 位德国乡村医生。他首先证 明动物炭疽病的病原是细菌, 并发明了分离和培养纯菌的 方法。 他提出的著名的证病律 , 至今仍指导着动、植物病原 的确定。 罗伯特•柯赫 (1843-1910)
10
目录
微生物生理学进一步的发展应归功于俄国的微生 物学家维诺格拉德斯基和荷兰的微生物学家贝格林克。 维诺格拉德斯基发现了微生物的自养生活 硫细菌 氧化 H 2 S 获得能量 利用 CO 2作为碳源而生长 化能无机营养型的细菌生活方式。其后他又研究 了铁细菌和硝化细菌,再次揭示和确定了这类自养细 菌的特性。
27
目录
2 . 1 微生物细胞的化学组成
2.1.1 生物元素
组成细胞的化学元素,称为生物元素。在自然界常见的 90 多种化学元素中,只有约 20 种元素参与生命活动,其中包括:
C 、 H 、 O 、 N 、 P 、S 、 组成细胞的有机化合物和水 Na 、 K 、 Mg 、 Mn 、 Ca 、 或以离子游离于细胞质中, CI 、 或与有机酸化合成易被解离 的盐类 Fe 、 Zn 、 Cu 、 Co 、 Ni 、 组成各种酶的辅基,它们在 Mo 、 Se 和 W 。 细胞中的含量甚微,通常称 为微量元素。
压榨法
46
目录
为了避免高压产生热,在操作前可将压榨机预先冷却,并 在冰浴中收集压榨液。 French 压榨机破碎 G -细菌和 G +杆菌的效果好,破碎 G + 球菌和细菌芽孢的效果差。
X-压榨机
的结构与French压榨机的结构相似,不同的是它压榨的不 是细胞悬液,而是冻结的细胞。细胞中的冰晶在高压下产生强 烈的剪切力,使细胞破碎。因此, X-压榨机需要在低温下(30℃)操作,设备昂贵,但破碎效率高。对G –和G +细菌都有 效。
Add your company slogan
微生物生理学
徐诚蛟
目录
目录
1
绪 论 微生物的营养
2
微生物的细胞化学和结构 微生物代谢概论 微生物的合成代谢 微生物的代谢调节 微生物的分化与发育
3
4
5
微生物的产能代谢
微生物的次级代谢 微生物的生长、繁殖与 环境
2
6
7
8
9
10
第1章
绪 论
目录
厨房抹布 (含有细菌、真菌菌丝和酵母菌)
残渣 酚相(蛋白)
界面(蛋白、肽聚糖)
43
目录
2.2 细胞结构研究方法
上节所述细胞化学组成的分析,只能说明细胞是 由哪些物质组成的以及它们的大致含量,但不能提供 细胞结构和功能的信息。 为了进一步了解是哪些物质组成了什么亚细胞结 构以及这些亚细胞结构的生理功能,需要将细胞破碎, 分离出各种不同的亚细胞结构后,再加以研究。
4
目录
1 . 1 微生物生理学研究对象与范围
微生物生理学是微生物学的一个主要分支学科, 是一门研究在实验室和自然条件下微生物生理活动特 点与规律的学科 。 研究对象:微生物生命活动规律以及和周围环境 之间的关系。 研究范围:微生物细胞的重建方式与一般规律。 微生物与周围环境之间的关系。 微生物生理活动与人类的关系。
18
目录
1.3.2 生物大分子结构与功能的研究
1) 阐明微生物遗传信息传递与表达的方式和规律;研 究膜结构与功能; 2) 继续发现与研究新的细胞结构与功能; 3) 研究极端环境条件下微生物抗性与敏感性的机理及 其调节,从分子水平上阐明生命的本质。
19
目录
1.3.3 细胞的重建、形态发生、分化过程与趋向性 1) 重点是研究微生物组建成一个完整的有生物活 性细胞结构过程; 2) 研究微生物形态发生与分化的分子机理; 3) 研究微生物的趋向性(趋化性、趋光性、趋磁 性等)与运动的本质和生命与环境之间的本质 联系等。
细 上清液(小分子) 胞 沉淀(大分子)
甲醇-乙醚(1:1)抽提 10 %三氯醋酸, 0 -4 ℃ 下浸提过液,5000g离心10min
抽提液(脂类)
残渣
残渣
0.5mol/LNaOH,37 ℃浸提40min, 冷却后,加冷三氯醋酸
抽提液(RNA)
5%三氯醋酸,80 ℃抽提30min
抽提液(DNA) 水相(多糖)
22
第 2 章 微生物的细胞 化学和结构
目录
微生物界是一大群微小的生物,其中包括非细胞形态的类 病毒和病毒,以及具有细胞结构的细菌、真菌、藻类和原生动 物。类病毒和病毒结构简单,不能营独立生活,只有寄生在寄 主的细胞内才能繁殖。 因此,通常认为细胞是组成生命的基本单位,能独立生长 和繁殖,是一个高度有组织的生命系统。
29
目录
2.1.2研究方法
2.1.2.1细胞鲜重测定 培养基中微生物 过滤或离心 收集菌体细 胞 洗净细胞表面培养基 吸去细胞外水分 称重 得细胞的鲜重,以每升培养液中所含有的细 胞鲜重( g / L )表示。
由于细胞在收集过程中会聚集成团,细胞与细胞之间的水 分难以除去,因此,用上述方法所测得的细胞鲜重往往比实际 的重量要 细胞之间的水可用加入同位素标记的蛋白质的方法,加以 测量,因为蛋白质不能掺入细胞,只是溶于细胞外围的水中, 测定细胞团的放射活性,可以推算出细胞外围的水量。
32
目录
2.1.2.5 生物分子的分离
由各种生物元素所组成的细胞有机化合物称为生 物分子,以区别于非生物来源的有机化合物。
103
小分子
氨基酸 核苷酸 脂肪酸 甘油及 中间代 谢产物
109 结合
大分子
蛋白质 核酸 多糖 脂类
装配
超分子 亚细胞结构
细胞壁 细胞质膜 细胞核 线粒体 叶绿体等
40
目录
生物分子分离流程简图
31
目录
2.1.2.2干重测定
将一定重量的鲜细胞,在 105 ℃ 高温下,或在低 温( 60℃)真空下干燥至恒重,测出细胞干重,通常 以 g/l 或 mg/ml 表示。 大肠杆菌在适合的培养条件下,每升培养液可产 生 25-30g干细胞。酵母菌可产生 40g以上干细胞。近 年来,采用高密度培养技术,可达到 120g / L干酵母 的产量。
15
目录
1961.遗传密码的破译和蛋白质生物合成机制的阐 明,是继发现 DNA 作为遗传物质之后,生物科学上 最重要的一项成就。 由于分子遗传学的迅速发展,使得人们有可能利 用分子遗传学的技术,有目的地改造旧物种和创造新 生物,这是当今兴起的一项崭新的 DNA 重组技术。
16
目录
在本世纪 40 年代后,微生物的应用有了重大 的发展。
5
目录
1 . 2 微生物生理学的发展
微生物生理学建立于 19 世纪中后期。尽管古 代人民在和疾病作斗争、食品酿造和农业生产过程 中,不自觉地利用了微生物,但由于它们形体小, 肉眼难见,人们并不知道疾病、酿造和土壤中的物 质转化是微生物活动的结果。
6
目录
1676 年
荷兰的吕文虎克才打开了微生 物界的大门
24
目录
根据细胞中贮存的遗传信息的结构,通常将生物 分成为两大类型: 原核生物和真核生物。 原核生物细胞中的遗传信息虽然和真核生物的相 同,都是贮存在 DNA 大分子中,但原核生物的 DNA 却不像真核生物那样为膜包围成为一个明确的细胞核。 此外,原核生物细胞中也缺少由膜包围的其他细胞器 (如线粒体和叶绿体)和沟通并协调细胞内部生命活 动的内质网络。 近年来,用新发展核酸测序技术,分析了各类生 物的 16SrRNA 序列,提出了被称为第三型生物的古 细菌 , 与真细菌和真核生物并列。
相关文档
最新文档