石墨烯的研究综述 7021214215 周新汇总

合集下载

石墨烯的研究综述 7021214215 周新重点讲义资料

石墨烯的研究综述  7021214215  周新重点讲义资料

化学信息学课程论文化学还原法制备石墨烯的研究进展学号7021214215学生姓名周新所属学院生命科学学院专业应用化学班级18—2日期2016-10-2石墨烯的研究综述摘要:近年来,石墨烯以其独特的结构和优异的性能,在化学、物理和材料学界引起了广泛的研究兴趣。

石墨烯这样特殊的二维结构蕴含了多种奇特的物理现象,本文大量引用最新参考文献、综述了石墨烯的制备方法:物理方法 (微机械剥离法、液相或气相直接射离法)与化学法 (化学气相沉积法、晶体外延生长法、氧化还原法),并详细介绍了石墨烯的各种修饰方法,指出了石墨烯制备方法的发展趋势。

关键词:石墨烯;性能;结构;综述.Abstract: in recent years, the graphene with its unique structure and excellent performance, in chemistry, physics, and material field has attracted a great deal of research interest. Graphene such special two-dimensional structure contains a variety of unique physical phenomena, in this paper, a large number of references the latest references, reviews the preparation of graphene: physical methods (micro mechanical stripping method, the direct shot from liquid or gas phase method) with chemical method, chemical vapor deposition method, crystal epitaxial growth method, oxidation-reduction method), and various modification methods of graphene was introduced in detail, points out the development trend of graphene preparation.Key words: graphene, Performance; Structure; Reviewed in this paper.0 引言2004年,英国曼彻斯特大学的 Geim研究小组首次制备出稳定的石墨烯,推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论,震撼了整个物理界,引发了石墨烯的研究热潮。

石墨烯 研究总结报告

石墨烯 研究总结报告

石墨烯研究总结报告石墨烯是一种由碳原子构成的二维晶体结构,具有极高的导电性、热导性和机械强度,是材料科学领域的热门话题之一。

本文将对石墨烯的研究进行总结和分析,并引述最新研究结果和专家观点。

一、石墨烯的制备及性质石墨烯可以通过多种方法制备,包括化学气相沉积法、化学还原法、机械剥离法等。

其中,化学气相沉积法是目前最为常用的方法之一,可以制备出高质量石墨烯晶体。

石墨烯的性质非常突出,其电子传输速度可以达到光速的1/300,因此被誉为“未来电子器件的材料之王”。

二、石墨烯在电子器件中的应用石墨烯的高导电性和机械强度使得其在电子器件中具有广泛应用前景。

研究人员已经成功地将石墨烯应用于场效应晶体管、面向柔性电子学的透明电极、低功耗逻辑门等领域。

其中,石墨烯场效应晶体管因其快速响应和高灵敏度,成为了研究重点。

三、石墨烯在能源领域的应用石墨烯作为一种新型材料,也在能源领域拥有广阔的应用前景。

石墨烯电极可以用于超级电容器,其高导电性和高比表面积使得其具有出色的电容性能。

同时,石墨烯还可以用于太阳能电池和锂离子电池等领域,有效提高其能量转换效率。

四、石墨烯在医疗领域的应用石墨烯可以被用于制备纳米药物载体和生物传感器等医疗领域,其高导电性和化学稳定性为医疗领域带来了新的可能性。

有研究表明,将石墨烯制成导电纳米线可以用于治疗神经损伤等疾病。

五、未来的研究方向未来的研究将集中在石墨烯的应用和制备方面,包括石墨烯的可扩展性、材料生产量的提高、制备高结晶度石墨烯等方面的研究。

同时,研究人员也需要学习如何将石墨烯与其他材料结合起来,以扩展其应用前景。

六、专家观点石墨烯研究的进展之快受到了国内外许多著名科学家的关注。

他们认为,石墨烯作为一种新型材料能够解决众多问题,有望成为未来科学发展中的一大亮点。

同时,他们也提出了一些建议:未来应更多关注石墨烯的生产技术和应用领域,并加强科学家之间的交流与合作,加快技术落地进程。

七、结论综上所述,石墨烯作为一种新型材料,在电子器件、能源、医疗领域都有广泛应用前景。

关于石墨烯相关知识的综述

关于石墨烯相关知识的综述

关于石墨烯的相关知识1、石墨烯概述自从2004年英国的K.S.Novoselov和A.K.Geim发现了石墨烯(RGO)以后,它就成为了碳材料界的新星,在理论和实验方面开发它的可能性应用引起了很大的热潮。

石墨烯是由单层碳原子紧密排列堆积而成的二维蜂窝状平面晶格结构,它是构建其它维度碳材料的基本单元,它不但可以分解成零维的富勒烯[1],卷曲成一维的碳纳米管[2],而且还可以堆叠成金刚石和石墨[3]。

图1 石墨烯与富勒烯、碳纳米管和石墨的结构关系示意图[4]石墨烯由于其特殊的单原子层结构使得其拥有很多独特的物化性能,如优异的导电导热性能、超大的比表面积、良好的机械性能等,它的导热能力是金刚石的3倍[5],且由于其各碳原子之间以共价键的形式结合,连接非常柔软,即使有外力的作用依旧可以保持很好的稳定性。

石墨烯的这些特殊性能使得其在多方面领域发挥着很大的作用,例如在太阳能电池、微电子装置、液体结晶设备、传感器和复合材料方面都有着广泛的应用前景。

1.1石墨烯的制备石墨烯的制备方法主要有物理法和化学法。

物理法通常是以石墨或者膨胀石墨作为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法等制备石墨烯,物理法制备石墨烯主要有操作简便、原料价格低廉、生成的石墨烯缺陷较少等优点。

而化学方法主要有化学还原法、化学气相沉积法等。

(1)机械剥离法机械剥离法[6]是通过施加机械力直接将石墨烯薄片从晶体上剥离下来,是最简单的一种方法。

2004年K.S.Novoselov等[7]就是采用机械剥离法利用离子束从高定向热解石墨上剥离下来石墨烯并观察到其单层结构。

机械剥离法制备出来的石墨烯虽然纯度较高、缺陷较少,但是尺寸不容易控制,不能准确地制备出足够长度的石墨烯,难以进行大规模生产。

(2)取向附生法取向附生法是利用稀有金属钌作为生长基质,通过基质的原子结构来生成石墨烯。

Peter W.Sutter等以钌为基底,高温下将C原子渗入钌中,冷却后大量的C 原子浮在钌表面,最终形成一片完整的石墨烯。

石墨烯调研报告

石墨烯调研报告

石墨烯调研报告石墨烯是一种新型的二维碳材料,由单层的碳原子以六角形排列构成。

它具有很多独特的特性,如高导电性、高导热性、高强度、高柔韧性和超薄透明等。

石墨烯被认为是未来材料科学和纳米技术的前沿领域之一,在各个领域都有广泛的应用前景。

首先,石墨烯具有优良的导电性。

石墨烯可以被认为是一个零带隙半金属。

石墨烯的电子在其平面上的传输速度非常快,在低温下,它的电子迁移率可以达到200,000 cm2/Vs,是现有最高电子迁移率的材料之一。

因此,石墨烯在电子器件领域有着广泛的应用前景,如高性能晶体管、集成电路等。

其次,石墨烯具有优异的导热性。

石墨烯的热导率达到3000W/m·K,是铜的5倍,砷化镓的三次方,是传统散热材料的十几倍。

因此,石墨烯可以应用于高效散热材料、热界面材料等领域,有望解决电子器件热量过高引起的故障。

此外,石墨烯还具有高强度和高柔韧性。

石墨烯的强度是钢的200倍,柔韧性又比橡皮还要好,可以在极端温度环境下保持结构稳定。

因此,石墨烯可以作为复合材料的增强剂,用于制造轻巧、高强度的材料,如飞机、汽车、船舶等。

另外,石墨烯还具有超薄透明的特性。

石墨烯的单层厚度只有0.335纳米,可以达到透明度为97.7%,在可见光和红外光波段都具有优异的透明性。

因此,石墨烯可以应用于太阳能电池、自适应眼镜、柔性显示屏等领域。

然而,石墨烯的大规模生产和应用还面临着一些挑战。

首先,石墨烯的制备成本较高,且存在稀土金属等资源的依赖。

其次,目前对石墨烯的性能和应用研究还处于初级阶段,还需要进一步探索和优化。

总之,石墨烯作为一种新型的二维碳材料,具有了许多独特的特性,显示了巨大的应用前景。

随着石墨烯制备和应用技术的不断发展,相信石墨烯将会在各个领域得到广泛应用,并为我们的生活带来更多的便利和创新。

石墨烯的研究与应用综述、产业现状

石墨烯的研究与应用综述、产业现状

石墨烯的研究与应用综述一、石墨烯的结构与特性石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是最薄的二维材料,单层的厚度仅0.335nm。

石墨烯可塑性极大,是构建其他维数碳材料的基本单元,可以包裹成零维的富勒烯结构,卷曲成一维的碳纳米管,以及堆垛成三维的石墨等。

石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,二人因此荣获2010年诺贝尔物理学奖。

石墨烯具有一些奇特的物理特性:导电性极强:石墨烯中的电子没有质量,电子的运动速度能够达到光速的1/300,是世界上电阻率最小的材料。

良好的导热性:石墨烯的导热性能优于碳纳米管和金刚石,单层石墨烯的导热系数可达5300瓦/米水度,远高于金属中导热系数高的银、铜等。

极好的透光性:石墨烯几乎是完全透明的,只吸收2.3%的光,并使所有光谱的光均匀地通过。

超高强度:石墨烯被证明是当代最牢固的材料,硬度比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,可以弯曲。

超大比表面积:石墨烯拥有超大的比表面积(单位质量物料所具有的总面积),这使得石墨烯成为潜力巨大的储能材料。

石墨烯特殊的结构形态,具备目前世界上最硬、最薄的特征,同时具有很强的韧性、导电性和导热性,这些极端特性使其拥有巨大发展空间,应用于电子、航天、光学、储能、生物医药、日常生活等大量领域。

二、石墨烯的制备方法石墨烯的制备方法主要有机械法和化学法2种。

机械法包括微机械分离法、取向附生法和加热碳化硅法;化学法包括外延生长法、化学气相沉积法与氧化石墨还原法。

微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,不适合量产;取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀;加热碳化硅法能可控地制备出单层或多层石墨烯,是一种新颖、对实现石墨烯的实际应用非常重要的制备方法,但制备大面积具有单一厚度的石墨烯比较困难。

石墨烯论文总结范文

石墨烯论文总结范文

摘要:石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。

本文对石墨烯的制备方法、特性、应用领域进行了综述,旨在为石墨烯材料的研究提供参考。

一、引言石墨烯是一种由单层碳原子构成的二维晶体,具有优异的力学、电学、热学和光学性能。

自2004年石墨烯被发现以来,其研究取得了显著的进展。

本文对石墨烯的制备方法、特性、应用领域进行综述,以期为石墨烯材料的研究提供参考。

二、石墨烯的制备方法1. 机械剥离法:机械剥离法是制备石墨烯的一种简单、高效的方法。

通过将石墨片在金刚石针尖下进行机械剥离,可以得到单层石墨烯。

2. 化学气相沉积法:化学气相沉积法是一种制备高质量石墨烯的方法。

该方法在高温下将碳源气体在金属催化剂上分解,形成石墨烯。

3. 水热法:水热法是一种制备石墨烯的新技术。

通过将石墨烯前驱体在高温高压下进行反应,可以得到高质量的石墨烯。

4. 微机械剥离法:微机械剥离法是一种基于微机械加工技术制备石墨烯的方法。

通过在石墨烯上施加应力,使其发生剥离,从而获得单层石墨烯。

三、石墨烯的特性1. 优异的力学性能:石墨烯具有极高的强度和韧性,是已知材料中最强的二维材料。

2. 良好的电学性能:石墨烯具有优异的电导率,是已知材料中最高的二维材料。

3. 热学性能:石墨烯具有优异的热导率,可以有效传递热量。

4. 光学性能:石墨烯具有优异的光吸收和光催化性能。

四、石墨烯的应用领域1. 电子器件:石墨烯具有优异的电学性能,可以应用于制备高性能电子器件,如场效应晶体管、晶体管等。

2. 能源存储与转换:石墨烯具有良好的电化学性能,可以应用于锂离子电池、超级电容器等能源存储与转换领域。

3. 光学器件:石墨烯具有优异的光学性能,可以应用于制备高性能光学器件,如光子晶体、光学传感器等。

4. 生物医学领域:石墨烯具有良好的生物相容性,可以应用于生物医学领域,如药物载体、生物传感器等。

五、结论石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。

石墨烯研究总结报告(一)

石墨烯研究总结报告(一)

石墨烯研究总结报告(一)引言概述:石墨烯作为一种新型二维材料,具有出色的电子、光学和力学性能,引起了广泛的研究兴趣。

本文通过梳理相关文献,对石墨烯的研究进展进行总结,以期为石墨烯的应用开发和进一步研究提供参考。

正文:一、石墨烯的制备方法1. 机械剥离法2. 化学气相沉积法3. 液相剥离法4. 氧化石墨烯还原法5. 其他新型制备方法的研究进展二、石墨烯的物理性质研究1. 石墨烯的带电输运性质2. 石墨烯的光学特性3. 石墨烯的力学性能4. 石墨烯的热导率研究5. 石墨烯的磁性研究三、石墨烯的化学功能化1. 石墨烯的表面修饰\ta. 按照种类分类\tb. 按照表面修饰方法分类2. 石墨烯复合材料的研究进展\ta. 石墨烯在聚合物复合材料中的应用 \tb. 石墨烯在金属基复合材料中的应用 \tc. 石墨烯在陶瓷基复合材料中的应用四、石墨烯的生物应用研究1. 石墨烯在生物传感器中的应用\ta. 生物传感器制备方法研究\tb. 石墨烯在DNA传感器中的应用\tc. 石墨烯在蛋白质传感器中的应用2. 石墨烯在药物传输和治疗中的应用\ta. 载药石墨烯的制备方法\tb. 石墨烯在癌症治疗中的应用\tc. 石墨烯在抗菌治疗中的应用五、石墨烯的应用前景展望1. 石墨烯在电子器件中的应用前景2. 石墨烯在能源领域中的应用前景3. 石墨烯在环境保护中的应用前景4. 石墨烯在医疗领域中的应用前景5. 石墨烯在材料领域中的应用前景总结:通过对石墨烯的制备方法、物理性质研究、化学功能化以及生物应用研究的详细梳理,我们可以看出石墨烯具有广泛的应用潜力。

虽然石墨烯的应用仍面临一些挑战,但可以预见,随着研究的深入和技术的进步,石墨烯将在各个领域发挥重要作用,并成为未来材料研究的热点之一。

石墨烯研究报告

石墨烯研究报告

石墨烯研究报告石墨烯是一种由碳原子薄层构成的材料,具有许多独特的物理和化学性质,使其在电子学、电磁学、力学和光学领域中展现出重要的应用前景。

近年来,石墨烯的研究迅速发展,在各个领域中都取得了重要的成果和突破。

一、最新石墨烯研究成果1.提高石墨烯量子化合成效率的新方法石墨烯量子化合成是一种利用金属催化剂在气相中将碳原子聚集成石墨烯的方法。

由于石墨烯的高表面能和化学惰性,使其在制备过程中难以控制,从而导致反应产物不确定、量子化合成效率低下等问题。

为了解决这个问题,研究人员提出了一种新的方法——在反应过程中加入适量的乙烯,可以有效提高石墨烯的量子化合成效率。

根据发表在ACS Nano上的最新研究论文,使用这种新方法制备的石墨烯,结晶度更高、结构更完整,并具有更好的导电性能和可控性。

2.石墨烯在DNA纳米电子学中的应用DNA纳米电子学是一种与基因组学、纳米技术和电子学相关的交叉学科领域。

最近,研究人员发现,石墨烯可以用于制备DNA纳米电子学中的电极、传感器和探针等。

这是因为石墨烯具有高度可调控的电导性和相对稳定的生物相容性。

关于这一点,Research Fellow Krishnan Shrikanth博士在接受媒体采访时表示,“我们的研究解决了DNA转录的可控和准确性问题,同时也展现出石墨烯在基因测序、基因诊断和纳米药物递送中的潜力。

”3.利用石墨烯改善水氧化还原反应效率的新途径水氧化还原反应是一种非常重要的电化学反应,具有广泛的应用领域,如能源、环境和化学生产等。

由于石墨烯具有高表面积、良好的电化学特性和生物相容性等独特性质,近年来被广泛应用于水氧化还原反应中。

最近,研究人员发现,通过控制石墨烯与金属离子的相互作用,可以实现更高效的水氧化还原反应。

这种新途径将在开发新型电化学催化剂和改进电池和燃料电池等重要应用方面具有重要的作用。

二、石墨烯的应用前景石墨烯在电子学、电磁学、力学和光学领域中具有重要的应用前景,其中一些可能打破传统技术的局限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学信息学课程论文化学还原法制备石墨烯的研究进展学号7021214215学生姓名周新所属学院生命科学学院专业应用化学班级18—2日期2016-10-2石墨烯的研究综述摘要:近年来,石墨烯以其独特的结构和优异的性能,在化学、物理和材料学界引起了广泛的研究兴趣。

石墨烯这样特殊的二维结构蕴含了多种奇特的物理现象,本文大量引用最新参考文献、综述了石墨烯的制备方法:物理方法 (微机械剥离法、液相或气相直接射离法)与化学法 (化学气相沉积法、晶体外延生长法、氧化还原法),并详细介绍了石墨烯的各种修饰方法,指出了石墨烯制备方法的发展趋势。

关键词:石墨烯;性能;结构;综述.Abstract: in recent years, the graphene with its unique structure and excellent performance, in chemistry, physics, and material field has attracted a great deal of research interest. Graphene such special two-dimensional structure contains a variety of unique physical phenomena, in this paper, a large number of references the latest references, reviews the preparation of graphene: physical methods (micro mechanical stripping method, the direct shot from liquid or gas phase method) with chemical method, chemical vapor deposition method, crystal epitaxial growth method, oxidation-reduction method), and various modification methods of graphene was introduced in detail, points out the development trend of graphene preparation.Key words: graphene, Performance; Structure; Reviewed in this paper.0 引言2004年,英国曼彻斯特大学的 Geim研究小组首次制备出稳定的石墨烯,推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论,震撼了整个物理界,引发了石墨烯的研究热潮。

理想的石墨烯结构可以看作被剥离的单原子层石墨,基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料,这是目前世界上最薄的材料一单原子厚度的材料。

这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质,石墨烯不仅有优异的电学性能,突出的导热性能,超常的比表面积,其杨氏模量和断裂强度也可与碳纳米管媲美,如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质。

石墨烯的主要性能均与之相当,甚至更好,避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题,而且制备石墨烯的原料价格便宜.正是由于石墨烯材料具有如此众多奇特的性质,引起了物理、化学、材料等不同领域科学家的极大研究兴趣,也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。

1.石墨烯碳—元素周期表中最有意思的元素,具有多种同素异形体:从早为人知的金刚石和石墨,到上世纪被发现的富勒烯[1]、碳纳米管[2],碳家族一直在给我们带来惊喜,而近年来,碳家族又添新成员——石墨烯(Gphene)[3],如图1.1 1所示。

石墨烯被认为是其它维度石墨材料的基本结构单元[4,5]:它可围裹成OD的富勒烯,卷曲成ID的纳米管,堆砌成3D的石墨。

2石墨烯的性能石墨烯的晶体结构2.1机械性能石墨烯材料抗拉强度达125GPa,是钢的100 多倍,1μm 长的石墨烯需要55N 的力才能断裂.原子间的强大作用力也使石墨烯具有很好的柔韧性,用原子力显微镜针尖测量其力学性能时,研究人员发现其弹性系数为105 N/m,其弹性模量为1.1TPa,而且厚度仅为0.335nm,物理学家安德烈·海姆说过,石墨烯是目前研究发现的自然界最薄、强度最高的材料,可以被无限拉伸,而且可以弯曲到很大角度不发生断裂,并且能够承受很大的压力[6]。

如果科学家将其制成普通塑料包装袋的厚度(约100nm),大概需要两万牛顿的压力才能把它扯断,也就是说将可以承受大约两吨重量的物体。

[7]而且可降解,对环境可以起到很好的保护作用,具有这样特性的石墨烯将作为添加剂在新型高强度复合材料中进行应用。

2.2电磁学性能由于石墨烯的各碳原子间连接柔软并具韧性,当外力接触时,碳原子层发生弹性形变,保证了化学结构的稳定,且石墨烯中碳原子以sp2 杂化连接,π电子于轨道平面之外垂直存在形成π键轨道,在轨道外,电子可以自由移动,使石墨烯具有优异的导电性。

杂化结构中大共轭体系也使电子传输能力很强,其电子迁移率达200000cm2/V/s,电子间具有的强相互作用力使石墨烯是零带隙半导体[6]。

单层石墨烯的电子结构表现出非约束抛物线电子式分散关系,使得石墨烯具有室温量子霍尔效应。

并且因为晶格结构稳定,有作用力,电子沿轨道运行的时候,不会发生散射,常温下即使碳原子间发生碰撞,电子仍能维持基本特性。

而且石墨烯中的电子运行速度是光速的1/300,远远超过了电子在一般导体中的运动速度,由此可见石墨烯的导电性质十分优异。

石墨烯边缘呈锯齿型,使其拥有孤对电子,这也使石墨烯具有铁磁性及磁开关等潜在的磁学性质。

研究人员还认为石墨烯是理想的自旋电子学材料,其自旋轨道作用小,碳元素核磁矩几乎没有。

用非局域磁阻效应能够测量出,在室温下,自旋注入石墨烯薄膜的可靠性很高,可以观测到自旋相干长度超过1 微米,使用电闸,还可以控制自旋电流的极性。

2.3热学性能室温下可测得石墨烯的导热率为(5.3±0.48)×103W/m/K,明显高于纳米级碳纳米管的导热率(3500W/m/K),是铜热导率的14倍。

常温下其载流子迁移率达15000cm2/V/s,是目前已知高迁移率的锑化钢材料的两倍,是商用硅的载流子迁移率的10倍以上,与单壁碳纳米管和多壁碳纳米管相比有明显提高。

如果处于低温骤冷的特定的温度下,石墨烯的载流子迁移率高达250000cm2/V/s,其热导率可达5000W/m/K,是目前世界上导热率最好、电阻率最低的材料。

综上表明石墨烯作为良好导热材料前景可观。

2.4光学特性由于石墨烯特有的低能量电子结构,所以单层石墨烯入射白光的吸收率约为2.3%。

这是因为在狄拉克点,电子和空穴的圆锥形能带会相遇,从而产生上述现象。

2.5力学特性石墨烯的杨氏模量和抗拉强度等基本力学性能参数是近年来石墨烯力学性能研究的主要内容之一。

由于“杨氏模量等力学参数属于连续介质框架下的.力学概念,所以必须在其厚度采用连续介质假设后计算其力学性能参数才有意义。

美国哥伦比亚大学的Hone研究小组通过纳米压痕仪技术测得石墨烯的断裂强度为(130士10)GPa,杨氏模量为(l .0士0. 1)TPa。

2.6功能化特性石墨烯特殊的二维高度共扼的结构形成了石墨烯片层之间具有较强的相互作用,溶解度很差.使石墨烯易于堆积不易剥离分散。

然而,石墨烯具有优异的功能化特性,通过引进特定的官能团,可以赋予石墨烯新的特性,让其在溶剂中分散,进而增强了石墨烯的成型加工性:石墨烯的功能化分为共价功能化和非共价功能化两种方式。

石墨烯的共价功能化是指通过化学反应在石墨烯表面形成共价键形式的官能团,通过这些官能团石墨烯增加了一些原来不具有的特性。

石墨烯共价功能化包含.石墨烯的小分子共价功能化、石墨烯聚合物共价功能化两种形式。

两者的区别为石墨烯聚合物共价功能化可以在较低功能程度上引入长的聚合物链从而辅助其分散。

浙江大学高超课题组和复旦大学卢红斌课题组在石墨烯共价功能化方面做得较为成功。

石墨烯的非共价功能化是指石墨烯通过π—π作用、疏水作用、范德华力、离子键等非共价键的方式在石墨烯上附加功能化官能团。

这种方法的好处是不破坏石墨烯的共扼结构,也不影响原有石墨烯的结构和功能,同时还能够使原有石墨烯达到不具备的功能特性。

石墨烯的非共价功能化包含石墨烯的二键功能化、石墨烯的疏水功能化以及石墨烯的离子功能化。

3石墨烯的制备3.1石墨层间插层法石墨插层复合物(GICs)是一种以大然鳞片白墨为原料·在石墨层间插人非碳物质的原子、分子甚至原一团等,形成新的层状化合物。

这种插层化合物不仅保留了石墨原有的性质。

同时也增加了一些新的物理化学特性。

G.Chen等早期采用了超声波粉碎并经过插层的膨胀石墨,自一次大量制备出厚度为几十纳米的纳.米石墨微片。

3.2微机械剥离法第一片独立的单层石墨烯片[31]就是通过所谓的微机械力剥离法得到的:即使用所谓的“scotchtape”将石墨片从高取向热解石墨(highlyorientedpyrolytic graphite,简写为HOPG)上反复剥离下来,后将石墨片转移到Si.Si02衬底上,得到需要的单层石墨烯。

但通过此法得到的不仅仅是单层石墨烯,往往是大量的多层石墨片中夹杂着单层、双层的石墨烯,需要使用光学显微镜结合AFM从中选出单层石墨烯1361,这将是一个非常庞大的工程,而且此法得到的独立石墨烯尺寸仅约10岬,只适合进行实验室理论研究,限制了其实际应用。

3.3化学气相沉积法微机械力剥离法虽然能得到高质量的石墨烯,但尺寸较小;通过化学沉积法(CVD)能得到尺寸较大(可达几个平方厘米)且高质的石墨烯。

PDMS[16]、PMMA[17]、SiO2及玻璃[18]等。

Keun Su Kim等人报道了一种以直流热等离子制备连续纳米片状石墨的新方法:采用中空电极型直流热等离子体吹管(石墨作阴极在外,铜作阳极在内),以氩气为等离子体发生气,甲烷气体在阴极区进气,最后得到平均厚度在10 ILrn以下的片状石墨[32]。

3.4外延生长法厘米级石墨烯的转移过程所谓外延生长法另一种晶体的方法。

即在一个晶体结构上采用晶格匹配生长出这种方法的优点是可以获得大面积、高质量的石墨烯。

外延法一般分为SIC外延法和金属外延法两类。

(1)在20世纪90年代。

相关文档
最新文档