石墨烯发现者Andre Geim的综述文章
石墨烯发现的故事

石墨烯发现的故事
石墨烯,一种只有一个原子层厚的二维材料,近年来在全球范围内备受关注。
其独特的光滑表面、高强度、导电性和超薄特性使其在科学研究和应用领域具有广泛的前景。
石墨烯的发现故事充满了传奇色彩,今天我们就来回顾一下这一重要的科学历程。
石墨烯的发现可以追溯到2004年,当时安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功实验制得石墨烯。
他们采用胶带剥离法制备出这种只有一个原子层厚的材料,这一突破性成果使他们荣获2010年诺贝尔物理学奖。
石墨烯的发现为全球科学家打开了一个全新的研究领域,激发了人们对二维材料的研究热情。
石墨烯的特性使其在众多领域具有广泛应用。
首先,石墨烯具有极高的强度和韧性,是目前已知强度最高的材料。
这一特性使其在航空航天、汽车制造等高强度结构件领域具有巨大潜力。
其次,石墨烯具有良好的导电性,可以应用于高性能电子器件的制造。
此外,石墨烯还具有优异的热传导性能,有望解决现代电子设备散热问题。
石墨烯的发现对于我国科技发展具有重要意义。
我国政府高度重视石墨烯产业的发展,将其列为战略性新兴产业。
近年来,我国石墨烯研究取得了世界领先的成果,推动了石墨烯材料的产业化进程。
在新能源、智能制造、生物医疗等领域,石墨烯的应用正在逐步改变我们的生活。
总之,石墨烯的发现不仅为科学研究提供了新的方向,也为我国科技发展带来了前所未有的机遇。
石墨烯的结构及性质、用途

石墨烯的结构及性质、用途一、石墨烯的发现2004年,英国曼彻斯特大学的安德烈·K·海姆(Andre K. Geim)等制备出了石墨烯。
海姆石墨烯和他的同事偶然中发现了一种简单易行的新途径。
他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。
不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。
斯德哥尔摩2010年10月5日电瑞典皇家科学院5日宣布,将2010年诺贝尔物理学奖授予英国曼彻斯特大学科学家安德烈-海姆和康斯坦丁-诺沃肖洛夫,以表彰他们在石墨烯材料方面的卓越研究。
二、石墨烯结构石墨烯的问世引起了全世界的研究热潮。
它不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。
石墨烯在原子尺度上结构非常特殊,必须用相对论量子物理学(relativistic quantum physics)才能描绘。
石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨毡石墨烯中电子受到的干扰也非常小。
三、石墨烯的性质石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性石墨烯晶体质和相对论性的中微子非常相似。
为了进一步说明石墨烯中的载荷子的特殊性质,我们先对相对论量子力学或称量子电动力学做一些了解。
氧化石墨烯的结构及应用

氧化石墨烯的结构及应用2004年,英国曼彻斯特大学物理学家安德烈•海姆(Andre Geim)和康斯坦丁•诺沃肖洛夫(Konstantin Novoselov)成功地从石墨中分离出一层碳原子构成的石墨烯,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。
自此,石墨烯由于其突出的导热性、室温高速载流子迁移率、透光性和力学性能等,同时具有完美的量子隧道效应、半整数的量子霍尔效应、从不消失的电导率等一系列性质,受到了世界各界的广泛关注,也成为科研领域的新兴宠儿。
氧化石墨烯是石墨粉末经化学氧化后的产物,它是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。
氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用前景,因为成为研究的又一重点。
一、氧化石墨烯的分子结构石墨被强氧化剂氧化,氧原子进入到石墨层间,结合л电子,使层面内的二键断裂,并以C=O,C—OH, —COOH等官能团与密实的碳网面中的碳原子结合,形成共价键型石墨层间化合物。
氧化石墨烯的理想结构组成为C400H,也有文献报道其组成为C X+(OH)Y-(H20)2,其中C、H、O等各元素的含量随氧化程度不同而发生改变,一般范围为C7O4H2-C24O13H9,目前,普遍认为氧化石墨是一个准二维固体物质.氧化石墨烯由尺寸不定的未被氧化的芳香“岛”组成,而这些“岛”则被含有醇羟基、环氧基团和双键的六元脂环所分开,芳香环、双键和环氧基团使得碳原子点阵格式近乎处于同一平面,仅有连接到羟基基团的碳原子有较轻微的四面体构型畸变,导致了一些层面的卷翘。
官能团处于碳原子点阵格子的上下,形成了不同密度的氧原子分布。
干燥的氧化石墨在空气中稳定性较差,很容易吸潮而变成水合氧化石墨,层间距也会随其含水量的高低而有所不同。
随含水量的增加,层间距从0。
6nm增加到1.1nm,从而导致X射线(100)衍射峰的位置的变化。
石墨烯的研究历史

石墨烯的研究历史石墨烯是一种由碳原子组成的二维材料,具有出色的物理和化学性质,因此引起了广泛的关注和研究。
本文将介绍石墨烯的研究历史。
石墨烯的发现石墨烯最早是由安德烈·赫姆(A.K. Geim)和康斯坦丁·诺沃肖洛夫(K.S. Novoselov)在2004年发现的。
他们使用的方法是利用普通的黏着带,将一些石墨片剥离成非常薄的层,最终得到了一片厚度仅为一个原子的石墨烯。
这项发现因为其高度的新颖性和创新性而获得了2010年的诺贝尔物理学奖。
石墨烯的早期研究石墨烯的发现以后,引起了极大的科学兴趣。
科学家们开始探究这种新型材料的特殊性质和实际应用。
最初,人们主要研究了其电子性质和力学性质。
在2005年,科学家就发现了石墨烯的电导率比银还高,并且在极低的温度下(约为4.2K),其电子运动方式也非常特殊。
此外,人们还发现,尽管石墨烯只有单层,但其刚度比钢还高,同时又具有弹性,展现出了无与伦比的物理特性。
石墨烯的应用研究在石墨烯的研究过程中,科学家们还开始考虑其实际应用。
石墨烯的高导电性能和更广泛的带隙,使其成为新一代电子器件(例如晶体管)的一个有很大潜力的替代品。
石墨烯的力学性质也使其成为用于航空和航天应用的强度材料。
此外,石墨烯的化学稳定性和高比表面积使其成为高效的电池、传感器和催化剂的备选材料。
石墨烯的世界研究热潮自石墨烯发现以来,世界各地的研究人员都投入了大量精力,对石墨烯进行了广泛的研究。
可以说,石墨烯研究的确是一个世界性的热潮。
科学家们不仅在探求石墨烯的性质和应用方面取得了许多重要的成果,还提出了许多新的想法和建议,为后来的石墨烯研究带来了深远的影响。
石墨烯的未来前景石墨烯的研究历史虽然还很短,但是石墨烯已经成为了一个重要的而又有很大前景的研究领域。
未来,科学家们将继续在石墨烯的性质和应用方面进行深入的研究,希望能够更好地利用石墨烯的出色特性,为我们的物质生活和科学研究带来更多的可能性。
石墨烯之父—Andre-Geim

石墨烯之父—Andre Geim他是2010年诺贝尔物理奖获得者,他有非常高的科学才华,在他的眼中,科研是一个满足自己好奇心的游戏。
并且在十几年的时间中,玩耍出了很多惊世骇俗的科学成果,让所有的科研学者羡慕不己。
他就是石墨烯之父-安德烈•海姆(Andre Geim)。
个人经历安德烈•海姆(AndreGeim),英国曼彻斯特大学科学家。
父母为德国人,1958年10月出生于俄罗斯西南部城市索契,拥有荷兰国籍。
1987年在俄罗斯科学院固体物理学研究院获得博士学位,毕业后在俄罗斯科学院微电子技术研究院工作三年,之后在英国诺丁汉大学、巴斯大学和丹麦哥本哈根大学继续他的研究工作。
1994年,他在荷兰奈梅亨大学担任副教授,并与康斯坦丁•诺沃肖洛夫首度合作。
他同时也是代尔夫特理工大学的名誉教授。
他于2001年加入曼彻斯特大学任物理教授。
在他的职业生涯中,海姆发表了超过150篇文章,其中很多都发表在自然和科学杂志上。
石墨烯发现历程现代人类对于物质结构已经有了一个相对明确的认知。
如果从原子尺度观察物质结构,原子们就是像搭乐高积木一样构建出我们这个千变万化的物质世界。
而在人们所认知的结构中,石墨是一个另类。
石墨的晶体结构是层状的,靠微弱的范德华力把相邻的两层贴合在一起。
层与层之间充斥着大量的电子,因此,石墨是良好的导电体。
而单个石墨层,则是碳原子与碳原子相互连结形成正六边形,并延伸成一张无限大的原子网。
这张网上的原子连结的是如此结实,以致于这张网比钻石还硬。
有过削铅笔经验的小伙伴们都很清楚,铅笔中的石墨芯是很软的,而且很容易就掰断了。
用铅笔书写,其实就是一个将芯上脱落的石墨颗粒留在纸面上过程。
这是因为石墨相邻分子层粘合的力很弱。
石墨层很容易发生相互移动或剥离。
于是,海姆果断地把一块石墨递给一个研究生:“去,把它磨到非常薄!”。
于是这个研究生天天磨石墨,几个月后,已经磨到很薄,实在磨不下去了。
拿来测量,还有几千个原子层厚,此路不通,海姆只好再寻他途。
石墨烯之父—Andre Geim

·石墨烯 ·分子筛 ·碳纳米管 ·黑磷 ·类石墨烯 ·纳米材料江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、石墨烯之父—Andre Geim他是2010年诺贝尔物理奖获得者,他有非常高的科学才华,在他的眼中,科研是一个满足自己好奇心的游戏。
并且在十几年的时间中,玩耍出了很多惊世骇俗的科学成果,让所有的科研学者羡慕不己。
他就是石墨烯之父-安德烈•海姆(Andre Geim )。
个人经历安德烈•海姆(AndreGeim ),英国曼彻斯特大学科学家。
父母为德国人,1958年10月出生于俄罗斯西南部城市索契,拥有荷兰国籍。
1987年在俄罗斯科学院固体物理学研究院获得博士学位,毕业后在俄罗斯科学院微电子技术研究院工作三年,之后在英国诺丁汉大学、巴斯大学和丹麦哥本哈根大学继续他的研究工作。
1994年,他在荷兰奈梅亨大学担任副教授,并与康斯坦丁•诺沃肖洛夫首度合作。
他同时也是代尔夫特理工大学的名誉教授。
他于2001年加入曼彻斯特大学任物理教授。
在他的职业生涯中,海姆发表了超过150篇文章,其中很多都发表在自然和科学杂志上。
石墨烯发现历程现代人类对于物质结构已经有了一个相对明确的认知。
如果从原子尺度观察物质结构,原子们就是像搭乐高积木一样构建出我们这个千变万化的物质世界。
而在人们所认知的结构中,石墨是一个另类。
石墨的晶体结构是层状的,靠微弱的范德华力把相邻的两层贴合在一起。
层与层之间充斥着大量的电子,因此,石墨是良好的导电体。
而单个石墨层,则是碳原子与碳原子相互连结形成正六边形,并延伸成一张无限大的原子网。
这张网上的原子连结的是如此结实,以致于这张网比钻石还硬。
有过削铅笔经验的小伙伴们都很清楚,铅笔中的石墨芯是很软的,而且很容易就掰断了。
用铅笔书写,其实就是一个将芯上脱落的石墨颗粒留在纸面上过程。
这是因为石墨相邻分子层粘合的力很弱。
石墨烯论文总结范文

摘要:石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。
本文对石墨烯的制备方法、特性、应用领域进行了综述,旨在为石墨烯材料的研究提供参考。
一、引言石墨烯是一种由单层碳原子构成的二维晶体,具有优异的力学、电学、热学和光学性能。
自2004年石墨烯被发现以来,其研究取得了显著的进展。
本文对石墨烯的制备方法、特性、应用领域进行综述,以期为石墨烯材料的研究提供参考。
二、石墨烯的制备方法1. 机械剥离法:机械剥离法是制备石墨烯的一种简单、高效的方法。
通过将石墨片在金刚石针尖下进行机械剥离,可以得到单层石墨烯。
2. 化学气相沉积法:化学气相沉积法是一种制备高质量石墨烯的方法。
该方法在高温下将碳源气体在金属催化剂上分解,形成石墨烯。
3. 水热法:水热法是一种制备石墨烯的新技术。
通过将石墨烯前驱体在高温高压下进行反应,可以得到高质量的石墨烯。
4. 微机械剥离法:微机械剥离法是一种基于微机械加工技术制备石墨烯的方法。
通过在石墨烯上施加应力,使其发生剥离,从而获得单层石墨烯。
三、石墨烯的特性1. 优异的力学性能:石墨烯具有极高的强度和韧性,是已知材料中最强的二维材料。
2. 良好的电学性能:石墨烯具有优异的电导率,是已知材料中最高的二维材料。
3. 热学性能:石墨烯具有优异的热导率,可以有效传递热量。
4. 光学性能:石墨烯具有优异的光吸收和光催化性能。
四、石墨烯的应用领域1. 电子器件:石墨烯具有优异的电学性能,可以应用于制备高性能电子器件,如场效应晶体管、晶体管等。
2. 能源存储与转换:石墨烯具有良好的电化学性能,可以应用于锂离子电池、超级电容器等能源存储与转换领域。
3. 光学器件:石墨烯具有优异的光学性能,可以应用于制备高性能光学器件,如光子晶体、光学传感器等。
4. 生物医学领域:石墨烯具有良好的生物相容性,可以应用于生物医学领域,如药物载体、生物传感器等。
五、结论石墨烯作为一种新型二维材料,具有独特的物理化学性质,在众多领域展现出巨大的应用潜力。
关于石墨烯的参考文献

关于石墨烯的参考文献石墨烯是由未来材料学大师安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)于2004年发现的一种新型碳材料。
这种材料的发现颠覆了传统碳材料的应用前景和开拓领域。
以下是对石墨烯的参考文献的内容生动、全面、有指导意义的分析和总结。
1. 《石墨烯基纳米复合材料在生物医学领域的应用研究综述》本文详细分析了石墨烯基纳米复合材料在生物医学领域的应用。
石墨烯因其出色的导电性、导热性和高强度,被广泛地应用于生物医学领域。
将石墨烯与纳米材料复合可以改善石墨烯的可溶性和生物相容性,扩展了其应用范围。
这篇文章通过实例和案例详细阐述了石墨烯基纳米复合材料在生物医学领域中的特点和应用。
2. 《石墨烯光电器件的研究进展与展望》本文介绍了石墨烯光电器件在研究方面的进展和展望。
石墨烯具有极高的光电转换效率和广泛的吸收光谱范围,这使得它在制作光电器件方面具有天生优势。
在这篇文章中,作者以石墨烯光电器件的制备和性能控制为切入点,通过回顾石墨烯光电器件的研究进展,提出了一些可能的研究方向和未来发展趋势。
3. 《石墨烯复合材料填充剂的制备及其应用研究》本文主要研究石墨烯复合材料填充剂的制备及其应用研究。
石墨烯的出色性能和纳米级别的粒度,使其成为一种理想的高效填充剂。
在石墨烯掺杂的材料中,它能够显著提高材料的强度、硬度和热导率等性能。
这篇文章通过实验研究探索了石墨烯复合材料填充剂的制备方法和应用场景,并提出了具体的操作规范和注意事项。
4. 《石墨烯电池的制备与应用研究》本文重点研究了石墨烯电池的制备和应用。
石墨烯因其出色的导电性和机械性能,成为电池制备领域不可或缺的材料。
在石墨烯电池的制备和应用方面,本文详细介绍了纳米和复合石墨烯电极的制备方法、应用场景和性能等方面的特点。
基于实验结果,文章提出了石墨烯电池应用的展望和未来可能的研究方向。
总之,石墨烯是一种未来具有巨大潜力的材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
141
117
H. Weak and strong localization
142
118
I. Transport near the Dirac point
143
119
J. Boltzmann equation description of dc transport in
120
doped graphene
148
126
126
B. Electron-electron interactions
150
128
1. Screening in graphene stacks
152
128
C. Short-range interactions
152
130
1. Bilayer graphene: Exchange
153
I. INTRODUCTION
Carbon is the materia prima for life and the basis of all organic chemistry. Because of the flexibility of its bonding, carbon-based systems show an unlimited number of different structures with an equally large variety of physical properties. These physical properties are, in great part, the result of the dimensionality of these structures. Among systems with only carbon atoms, graphene—a two-dimensional ͑2D͒ allotrope of carbon—plays an important role since it is the basis for the understanding of the electronic properties in other allotropes. Graphene is made out of carbon atoms arranged on a honeycomb structure made out of hexagons ͑see Fig. 1͒, and can be thought of as composed of benzene rings stripped out from their hydrogen atoms ͑Pauling, 1972͒. Fullerenes ͑Andreoni, 2000͒ are molecules where carbon atoms are arranged spherically, and hence, from the physical point of view, are zerodimensional objects with discrete energy states. Fullerenes can be obtained from graphene with the introduction of pentagons ͑that create positive curvature defects͒, and hence, fullerenes can be thought as wrapped-up graphene. Carbon nanotubes ͑Saito et al., 1998; Charlier et al., 2007͒ are obtained by rolling graphene along a given direction and reconnecting the carbon bonds. Hence carbon nanotubes have only hexagons and can be thought of as one-dimensional ͑1D͒ objects. Graphite, a three dimensional ͑3D͒ allotrope of carbon, became widely known after the invention of the pencil in 1564 ͑Petroski, 1989͒, and its usefulness as an instrument for writing comes from the fact that graphite is made out of stacks of graphene layers that are weakly coupled by van der Waals forces. Hence, when one presses a pencil against a sheet of paper, one is actually producing graphene stacks and, somewhere among them, there could be individual graphene layers. Although graphene is the mother for all these different allotropes and has been presumably produced every time someone writes with a pencil, it was only isolated 440 years after its invention ͑Novoselov et al., 2004͒. The reason is that, first, no one actually expected graphene to exist in the free state and, second, even with the ben-
A. Single layer: Tight-binding approach 1. Cyclotron mass 2. Density of states
B. Dirac fermions 1. Chiral tunneling and Klein paradox 2. Confinement and Zitterbewegung
K. S. Novoselov and A. K. Geim Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom ͑Published 14 January 2009͒
155
109
©2009 The American Physical Society
110
Castro Neto et al.: The electronic properties of graphene
FIG. 1. ͑Color online͒ Graphene ͑top left͒ is a honeycomb lattice of carbon atoms. Graphite ͑top right͒ can be viewed as a stack of graphene layers. Carbon nanotubes are rolled-up cylinders of graphene ͑bottom left͒. Fullerenes ͑C60͒ are molecules consisting of wrapped graphene by the introduction of pentagons on the hexagonal lattice. From Castro Neto et al., 2006a.
138
112
F. Vector potential and gauge field disorder
139
113
1. Gauge field induced by curvature
140
114
2. Elastic strain
140
114
3. Random gauge fields
141
115
G. Coupling to magnetic impurities
0034-6861/2009/81͑1͒/109͑54͒
B. Topological lattice defects
136
C. Impurity states
137
110
D. Localized states near edges, cracks, and voids
137
112
E. Self-doping
C. Bilayer graphene: Tight-binding approach D. Epitaxial graphene E. Graphene stacks
1. Electronic structure of bulk graphite F. Surface states in graphene G. Surface states in graphene stacks H. The spectrum of graphene nanoribbons
1. Zigzag nanoribbons 2. Armchair nanoribbons I. Dirac fermions in a magnetic field J. The anomalous integer quantum Hall effect K. Tight-binding model in a magnetic field L. Landau levels in graphene stacks M. Diamagnetism N. Spin-orbit coupling III. Flexural Phonons, Elasticity, and Crumpling IV. Disorder in Graphene A. Ripples