电场与磁场的对比
电场和磁场的关系

电场和磁场的关系电场和磁场的关系打个比方来说电场和磁场就好像一个硬币两个面即有电场必有磁场有磁场必有电场。
运动电荷产生磁场这一点已毫无疑问。
再跟据相对性原里即使是静止的电荷只要另选一个相对运动的座标系为参考系该电荷也是运动的就也会产生磁场以上得出无论电荷是否运动都会产生磁场。
即——有电场一定有磁场。
那么有磁场一定有电场吗由安培假说以广泛证明磁场是由运动电荷产生的也就是挑明了磁场离不开电场即——有磁场必然有电场。
综上所述有电场必然有磁场有磁场必然有电场二者相互依存不可分割。
这就是为什么用电器都会产生电磁辐射的原因。
电磁波是什么从科学的角度来说电磁波是能量的一种凡是能够释出能量的物体都会释出电磁波。
电磁辐射是传递能量的一种方式辐射种类可分为三种游离辐射有热效应的非游离辐射无热效应的非游离辐射基地台电磁波绝非游离辐射波正像人们一直生活在空气中而眼睛却看不见空气一样人们也看不见无处不在的电磁波。
电磁波就是这样一位人类素未谋面的“朋友”。
电磁波是电磁场的一种运动形态。
在高频电磁振荡的情况下部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。
在低频的电振荡中磁电之间的相互变化比较缓慢其能量几乎全部反回原电路而没有能量辐射出去。
然而在高频率的电振荡中磁电互变甚快能量不可能全部反回原振荡电路于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。
电磁波为横波。
电磁波的磁场、电场及其行进方向三者互相垂直。
电磁波的传播有沿地面传播的地面波还有从空中传播的空中波。
波长越长的地面波其衰减也越少。
电磁波的波长越长也越容易绕过障碍物继续传播。
中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播电离层在离地面50400公里之间。
振幅沿传播方向的垂直方向作周期性交变其强度与距离的平方成反比波本身带动能量任何位置之能量功率与振幅的平方成正比。
其速度等于光速每秒3×1010厘米。
电场线和磁场线的异同点

电场线和磁场线的异同点
电场线和磁场线是描述电场和磁场的可视化工具。
它们在某些方面有相似之处,但也存在一些重要的区别。
相似之处:
1. 可视化工具:电场线和磁场线都是用来可视化电场和磁场的工具,通过图形化的方式展示电场和磁场的分布情况。
2. 基于场的概念:电场线和磁场线都是基于场的概念而存在的。
电场线描述了电荷周围的电场分布情况,磁场线则描述了磁场的分布情况。
不同之处:
1. 物理性质:电场线描述的是电荷周围的电场分布情况,而磁场线则描述的是磁场的分布情况。
电场是由电荷产生的,而磁场是由电流或磁体产生的。
2. 方向性质:电场线是从正电荷出发,指向负电荷的方向。
它们始终指向电荷周围的电场的方向。
磁场线则是形成闭合回路的环线,从磁南极流向磁北极,形成一个环绕磁体的闭合路径。
3. 数量与强度:电场线的数量和强度与电荷的量和强度有关。
在电场线中,线的密度越大,表示电场强度越大。
磁场线的数量和强度与电流的强度和磁体的强度有关。
综上所述,电场线和磁场线都是用来可视化电场和磁场的工具,它们都基于场的概念。
然而,它们描述的物理性质、方向性质以及数量和强度都有所不同。
变化的磁场与变化的电场-精品文档

式中: B(t) (t)
S(t)
5
二. 楞次定律(P442,自己看)
§10.2 感应电动势
两种不同机制
• 相对于实验室参照系,若磁场不变,而导体回路运动 •
化—感生电动势
(切割磁场线)— 动生电动势 相对于实验室参照系,若导体回路静止,磁场随时间变
一. 动生电动势
L
l v
b ei
B 运动,切割 线, ab 向右以 v 选回路 L 的正方向:顺时
第10章 变化的磁场和变化的电场
电磁感应现象是电磁学中最伟大的发现之一
在很长的一段历史时期内,电、磁的研究彼此独立的 向前发展; 1820年,奥斯特(丹麦)首先发现了电流的磁效应,此 后,许多人从事它的逆效应的研究; 1822年,安培(法)发现磁铁附近载流导线会受到磁 力的作用,一个新的研究领域被发现了。
r
d r
a
d v B d r r B d r i a 1 2 e d e BR i i o 2 o负极,低电势 a正极,高电势
e
1 因为并联,所以圆盘电动势:ei BR2 圆心为负极 2 边缘为正极 10
解(二):用法拉第定律 角到 o, oa 转过 a
电可以产生磁效应,磁是否可以产生电?
1
1831年,法拉第(英)发现了电流变化时产生的电磁感应规 律;同年,楞次(俄)独立的完成类似的实验。 电磁感应定律的发现,揭示了电和磁的内在联系及转化的 规律,它的发现在科学和技术上都具有划时代的意义,不仅 完善了电磁学理论,而且为以后大规模开发电能开辟了道路, 引起一系列重大技术革命,推动社会向前发展。
m 2
dqi dt
1 1 q d q d ( )与 t 无 关 i i m m 1 m 2 m 1 R R
电场与磁场的对比知识分享

电场与磁场的对比电场与磁场的对比电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。
究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。
为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。
现选择性对比如下:概念对比:表注意1•用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关;2•磁感应强度三种定义的条件注:电场线、磁感线是描写场这一抽象物质的直观手段,且均可用实验模拟。
沿电场线方向电势逐渐(点)降低;电场线与等势面处处正交。
三、对比规律、公式I、电场力⑴、F qE (q 0时F与E同向),此式具有一般性,可计算点电荷在任何电场中的受到的电n场力。
在n个点电荷形成的静电场中E E i(矢量式)。
在真空中,点电荷场强i 1Q i U 4 kQE i k 2;在匀强电场中E (Q为电容器的电量,为介电常数)。
r i d S⑵、库仑定律F k Q^ (Q i与Q2同号相斥,异号相吸),可计算真空中两个点电荷间的静电rn 1力。
n个点电荷之一q所受库仑力大小F k3^ (矢量式)i i r i注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。
电和磁的相互转换

电和磁的相互转换电和磁是两种基本的物理现象,它们之间存在着密切的相互关系。
当电流通过导线时,会在周围产生磁场;而当磁场发生变化时,也会在导线中产生电流。
这种相互转换的现象被称为电和磁的相互转换。
本文将从电场和磁场的基本概念入手,探讨电和磁的相互转换原理及其应用。
一、电场和磁场的基本概念在介绍电和磁的相互转换之前,我们首先需要了解电场和磁场的基本概念。
电场是指带电物体周围的一种物理场,它与电荷的属性和位置有关。
在电场中,电荷会受到力的作用,从而发生运动或者变形。
电场可以用电场线描述,电场强度的大小与电荷的性质和距离有关。
磁场是指磁物质或者电流产生的一种物理场,它具有磁性物质之间相互作用的特征。
磁场可以用磁力线描述,磁力线的方向表示磁场的方向,磁力线的密度表示磁场的强弱。
二、电场与磁场的相互作用根据电和磁的相互转换原理,当电流通过导线时,会在周围产生磁场,这一现象被称为安培环路定理。
安培环路定理规定了电流与磁场的相互关系,即磁场的强度与电流的大小成正比。
另一方面,当磁场发生变化时,也会在导线中产生电流,这一现象被称为法拉第电磁感应定律。
法拉第电磁感应定律规定了电磁感应现象的规律,即磁场的变化与感应电动势的产生有关。
三、电和磁的相互转换原理根据安培环路定理和法拉第电磁感应定律,可以得出电和磁的相互转换原理。
1. 电流产生磁场当电流通过导线时,会产生磁场。
磁场的强度与电流的大小成正比,与导线的形状和材料有关。
磁场可以用磁力线表示,其方向由安培右手定则确定。
2. 磁场产生电流当磁场发生变化时,会在导线中产生感应电流。
磁场的变化可以是磁场强度的改变、磁场方向的改变或者磁场区域的改变。
感应电流的大小与磁场变化的速率成正比,与导线的形状和材料有关。
四、电和磁的相互转换应用电和磁的相互转换原理在生活中得到了广泛的应用,如电动机、发电机、变压器等。
1. 电动机电动机是将电能转换为机械能的装置。
在电动机中,电流通过线圈时产生磁场,磁场与永磁体之间相互作用,从而使线圈受力旋转,将电能转换为机械能。
谈谈电路中关于电流、电压与磁场、电场的关系

谈谈电路中关于电流、电压与磁场、电场的关系展开全文电子无处不在,电子的影子随处可见。
就在我们的周围,在它的周围存在着各种不可见得力场,这些力场的存在为我们进行深入探讨提供了正当的理由,这些场能够存储能量,并以各种方式影响周围的世界。
下面就来具体谈谈。
1、电流与磁场的关系让电流流过导线的时候,就会在导线周围产生磁场,反过来,变化的磁场也可以产生电流。
导线绕成的线圈之所以被称为电感,就是因为这个原因。
当你给电感施加电流时,能量被作为磁场存储在电感中。
这与橡皮筋拉伸可以存储能量是一样的道理。
当断开电流时,电感会反抗,随着磁场的衰落(消失之前它处于变化之中),能量将被释放出来。
磁场的衰落将在导线中感应一个电流(能量守恒,既不会凭空产生,也不会凭空消失)。
当开关处于闭合状态时,将有电流流过,于是磁场被建立起来了。
根据前面所学的知识可以得出,是磁场"建立"的这个行为,在阻碍着电感中电流的变化。
反过来也一样,如果我们断开开关,则磁场消失时的磁场变化,将试图维持电流在电感中继续流动。
如果电流没有地方可去,那么电感上的电压降瞬间增高,然后在感应电流随着磁场下降而下降时快速消失。
总之,要记住的一个要点,即电流产生磁场,变化的磁场产生电流,变化的磁场可以是从外部施加的,例如一个运动的磁铁、变压器的输入端等,可以来自(电流自身产生的)磁场的消失。
电流和磁场是紧密相连的。
2、电场与电压的关系电场没有磁场那么为人熟知。
电流联系着磁场,同样,电压联系着电场。
这引出了一个很好记忆的经验法则:电流是有磁性的,电压是有电性的。
电场来自电荷,电荷有正负。
类似磁铁的同极相斥、异极相吸,同种的电荷互相排斥,异种的电荷互相吸引。
任何分子或原子都可以为中性,也可以带正电荷或负电荷。
电荷的累积就是所谓的电压。
可以这样来看待这一点:电荷就是产生电场的电压,电荷的移动就是电流,电流产生磁场。
正如电感是聚集磁场的一种方法,电容是聚集电场的一种方法,电容是由两个积电板中间被一种不导电的材料分隔而构成的。
带电粒子在“电场”和“磁场”中的差别

带电粒子在“电场”和“磁场”中的差别发表时间:2012-06-08T14:42:40.420Z 来源:《学习方法报·理化教研周刊》2012年第40期供稿作者:刘会丽[导读] 在磁场中,若带电粒子仅受洛伦兹力作用时,其洛伦兹力始终与速度方向垂直,所以其动能保持不变。
陕西省宝鸡市扶风县法门高中刘会丽带电粒子在电场和磁场中的运动是高考的重点、难点,也是学生的易混点。
准确理解并掌握电场和磁场对带电粒子作用的“差别”是解决问题的前提。
1. 受力特征的差别带电粒子在电场中一定受到电场力的作用,大小一定(F电=Eq)、方向一定(正电荷受力方向与电场方向一致,负电荷受力方向与电场方向相反),与带电粒子是否运动、速度大小、方向没有任何关系。
在匀强电场中的电场力是恒力。
带电粒子在磁场中,不一定受磁场力(洛伦兹力)作用。
只有带电粒子的速度方向与磁场方向不平行时,才受洛伦兹力,且洛伦兹力方向因粒子速度方向的不同而不同(满足左手定则),大小因速度大小不同而不同(F洛=Bqv);若带电粒子在匀强磁场中除受洛伦兹力外,还受其他外力,且做直线运动,则一定做匀速直线运动,其合外力为零。
2. 运动规律的差别带电粒子在匀强电场中,其初速度与电场力方向在同一直线时,带电粒子做匀变速直线运动,满足匀变速直线运动规律,即。
若初速度与电场力的方向不平行时,带电粒子做匀变速曲线运动;其中初速度与电场力方向垂直时,带电粒子做类平抛运动,其运动规律分别垂直于和平行于电场的两个方向给出,即带电粒子在匀强磁场中,若仅受洛伦兹力时,其洛伦兹力会使粒子做变速曲线运动,即匀速圆周运动或部分圆周运动。
其运动规律分别从周期、半径两方面给出如下表达式:在磁场中,粒子运动方向,所能偏转的角度不受限制,即,且相等时间内偏转角度总是相等的。
3. 轨迹的差别带电粒子在匀强电场中,初速度方向与电场力方向在同一直线上时,运动轨迹为直线;初速度方向与电场力方向垂直时,运动轨迹为抛物线。
磁场与电场的比较和关系

磁场与电场的比较和关系自人类对物质与能量的探索以来,磁场和电场一直被广泛研究。
磁场和电场是两种基本的力场,它们在物理世界中扮演着重要角色。
本文将探讨磁场和电场的比较与关系,帮助我们更好地理解它们之间的联系。
一、磁场与电场的定义和性质磁场是指能够对具有磁性物质施加力的区域。
它由磁铁或电流产生,并围绕源产生磁力线。
磁场的强度通过磁感应强度来描述,单位为特斯拉(T)。
电场是指某一空间区域内感受到电荷作用力的区域。
它由电荷或电流产生,并以电场线的形式表示。
电场的强度通过电场强度来衡量,单位为伏特每米(V/m)。
磁场和电场都是矢量场,具有方向和大小。
在磁场中,正电荷和负电荷都受到洛伦兹力的作用,而在电场中也是如此。
磁场和电场的力都是相对静止的电荷或电流产生的。
二、磁场与电场的相似点虽然磁场和电场是不同的力场,但它们也存在一些相似之处。
1. 形成原理相似:磁场的形成离不开磁体或电流,而电场的形成离不开电荷或电流。
无论是磁场还是电场,都需要物质或电荷的存在才能产生。
2. 力的性质相似:磁场和电场都能对电荷产生力的作用。
在磁场中,电荷受到洛伦兹力的作用;在电场中,电荷受到库仑力的作用。
无论是磁场还是电场,它们都是作用于电荷的力场。
3. 数学形式相似:磁场和电场的方程形式相似。
磁场的方程由麦克斯韦方程组中的法拉第电磁感应定律和安培环路定理给出;而电场的方程由库仑定律和高斯定律给出。
这些方程描述了磁场和电场的分布和性质。
三、磁场与电场的区别尽管磁场和电场有相似之处,但它们也存在一些明显的区别。
1. 作用对象不同:磁场主要作用于运动带电粒子,在磁场中,电荷会受到洛伦兹力的作用;而电场作用于任何带电粒子,无论是否运动。
无论电荷是否运动,都会受到电场的作用力。
2. 方向不同:磁场和电场的方向性质不同。
磁场的磁力线是形成闭合环的,形状类似于磁铁的磁力线;而电场的电场线是从正电荷指向负电荷的,或从正电荷呈放射状。
磁场和电场的方向性质决定了它们对电荷施加力的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场与磁场的对比
电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。
究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。
为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。
现选择性对比如下:
一、研究对象、思路和方法对比:表1
二、 概念对比:表2
注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关;
⒉磁感应强度三种定义的条件。
表3 降低;电场线与等势面处处正交。
三、 对比规律、公式 Ⅰ、电场力
⑴、F qE = (0q >时F 与E 同向),此式具有一般性,可计算点电荷在任何电场中的受到的电
场力。
在n 个点电荷形成的静电场中1n
i i E E ==
∑(矢量式)。
在真空中,点电荷场强2
i
i i Q E k r = ;在匀强电场中4U kQ
E d S πε=
=
(Q 为电容器的电量,ε为介电常数)。
⑵、库仑定律122Q Q
F k r
=(1Q 与2Q 同号相斥,异号相吸),可计算真空中两个点电荷间的静电力。
n 个点电荷之一q 所受库仑力大小1
2
1
n i
i i qQ F k
r -==
∑(矢量式) 注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。
Ⅱ、磁场力
⑴、洛伦兹力
sin L f q B υθ
=(
L
f 、υ、B 三者方向关系遵从左手定则,
L
f 垂直于υ和B 所决定
的平面),L
f 与电荷运动相联系。
当υ与B 同向或反向时,
L f =;当υ与B 垂直时
L f q B
υ=。
⑵、安培力
sin A F ILB θ=(
A
F 、I 、B 三者方向关系遵从左手定则,
A
F 垂直于I 与B 所决定的
平面)。
当I 与B 同向或反向时,
A F =;当I 与
B 垂直时
A F ILB
=。
注:E 为未引入q 时的场强;B 为未置入载流导体时的磁感强度。
A F 与
L
f 的关系:
A
F 是
L
f 的合力。
Ⅲ、做功对比
注:中学物理涉及安培力的定量分析、计算问题大多为力平衡类问题,关于安培力做功(含功率)的讨论与计算题目并不多,一般仅限于简单(恒力)情况,运用功的公式cos W Fs θ=即可解决之,故可不给出上面的公式。
至于安培力做功的特点教材从未述及,所见习题一般也不涉及此问题,若想阐明之,可以通电线圈在辐向分布磁场中转动为例论证之。
对于能量转换情况可举实例(如电动机、发电机等)阐明之。
Ⅳ、冲量对比:不论电场力、磁场力是否恒力,其冲量均可依据动量定理I p =∆合处理(已知初、末动量的话);对于恒定电场力、磁场力,还可应用冲量公式I Ft =直接确定其冲量。
此类题目也不多,教师可据学情适当补充之,特别是安培力的瞬时冲量问题。