专题——圆锥曲线求参数范围教案
2021-2022年高三数学 第57课时 圆锥曲线的定点、定值、范围和最值问题教案

2021年高三数学第57课时圆锥曲线的定点、定值、范围和最值问题教案教学目标:会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.(一)主要知识及主要方法:在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.问题1.(广东)在平面直角坐标系中,抛物线上异于坐标原点的两不同动点、满足.(Ⅰ)求得重心的轨迹方程;(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.问题2.已知椭圆上的两个动点及定点,为椭圆的左焦点,且,,成等差数列.求证:线段的垂直平分线经过一个定点;设点关于原点的对称点是,求的最小值及相应的点坐标.问题3.(全国Ⅱ)已知抛物线的焦点为,、是抛物线上的两动点,且().过、两点分别作抛物线的切线,设其交点为.(Ⅰ)证明为定值;(Ⅱ)设的面积为,写出的表达式,并求的最小值.问题4.直线:和双曲线的左支交于、两点,直线过点和线段的中点,求在轴上的截距的取值范围.(四)课后作业:已知椭圆()的右焦点为,过作直线与椭圆相交于、两点,若有,求椭圆离心率的取值范围.过抛物线的顶点任意作两条互相垂直的弦、,求证:交抛物线的对称轴上一定点.如图,在双曲线的上支上有三点,,,它们与点的距离成等差数列.求的值;证明:线段的垂直平分线经过某一定点,并求此点坐标.(六)走向高考:(重庆)已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点.(Ⅰ)求双曲线的方程;(Ⅱ)若直线:与椭圆及双曲线都恒有两个不同的交点,且与的两个交点和满足(其中为原点),求的取值范围.(江西)是双曲线的右支上一点,分别是圆和上的点,则的最大值为(重庆)如图,中心在原点的椭圆的右焦点为,右准线的方程为:. 求椭圆的方程;在椭圆上任取三个不同点,使133221FP P FP P FP P ∠=∠=∠ 证明:为定值,并求此定值.(全国Ⅰ)已知椭圆的中心为坐标原点,焦点在轴上,斜率为且过椭圆右焦点的直线交椭圆于、两点,与共线。
高中数学圆锥曲线解读教案

高中数学圆锥曲线解读教案
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆锥曲线的方程及其图像的特点;
3. 能够通过方程求解圆锥曲线的各项参数。
教学步骤:
一、导入(5分钟)
1. 引入圆锥曲线的概念,介绍圆锥曲线在实际生活中的应用。
2. 提出学习目标,激发学生的学习兴趣。
二、讲解(15分钟)
1. 讲解圆、椭圆、双曲线、抛物线等四种圆锥曲线的定义和性质。
2. 介绍圆锥曲线的方程和各项参数的含义。
3. 分别展示各种圆锥曲线的标准方程及其图像特点。
三、练习(20分钟)
1. 给学生提供几个圆锥曲线的方程,让他们分别绘制出对应的图像。
2. 让学生通过方程求解圆锥曲线的焦点、准线、长轴、短轴等参数。
四、展示(10分钟)
1. 学生展示他们绘制的圆锥曲线图像,并解读图像的特点。
2. 请学生通过求解方程,解读各种参数的意义。
五、总结(5分钟)
1. 总结圆锥曲线的性质和方程求解方法。
2. 强调重点,提醒学生注意常见的错误和解题技巧。
教学反思:
通过这节课的教学,学生能够对圆锥曲线的基本概念和性质有所了解,提高了他们的数学能力和解题技巧。
在未来的教学中,可以适当增加实例分析,激发学生的思维和创造力。
圆锥曲线教案

圆锥曲线教案圆锥曲线教案一、教学目标:1. 理解什么是圆锥曲线,学会在笛卡尔坐标系中表示圆锥曲线。
2. 学会求解圆锥曲线的焦点、直径、离心率等相关性质。
3. 掌握对圆锥曲线进行方程变换、平移、旋转等操作的方法。
二、教学准备:1. 教师准备黑板、彩色粉笔等教学用具。
2. 学生准备笔记本、书籍等学习用具。
三、教学过程:1. 导入新知识:通过展示一张圆锥曲线的图片,询问学生对这个图形有什么了解,引导学生思考圆锥曲线的定义和性质。
2. 理论讲解:(1) 定义圆锥曲线:对圆锥在一个经过顶点的剖面研究所得到的曲线称为圆锥曲线。
(2) 表示方法:在笛卡尔坐标系中,圆锥曲线可由方程表示,例如椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
(3) 常见圆锥曲线:椭圆、双曲线、抛物线。
3. 实例演示:以椭圆为例,给出一个椭圆的标准方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,引导学生求解椭圆的焦点、直径、离心率等相关性质。
4. 计算练习:给出多个圆锥曲线的方程,让学生进行计算练习,提高其运算能力。
5. 方程变换:介绍如何对圆锥曲线进行方程变换,包括水平方向和垂直方向的方程变换。
6. 平移与旋转:讲解如何对圆锥曲线进行平移和旋转,以及平移和旋转对方程的影响。
7. 总结归纳:对学过的内容进行总结归纳,梳理知识框架。
8. 解答疑问:解答学生对圆锥曲线相关问题的疑惑。
9. 课堂练习:布置一些课堂练习题,让学生巩固所学知识。
四、教学延伸:1. 引导学生进行实际应用:让学生寻找生活中的圆锥曲线,并分析其性质和特点。
2. 继续深入学习:对于学有余力的学生,可以探究更高级的圆锥曲线知识,如圆锥曲线的参数方程、极坐标方程等。
五、教学评价:1. 课堂练习的成绩。
2. 学生对于圆锥曲线相关问题的提问及解答情况。
3. 学生对于课堂知识的掌握和应用情况。
六、课后作业:1. 完成课堂练习题。
【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高二数学:剖析圆锥曲线中参数范围问题

解决圆锥曲线参数范围问题常见的解法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决。
如椭圆)0(12222>>=+b a by a x 中,],[a a x -∈,],[b b y -∈,10<<e 等。
(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的范围。
而建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理。
例题1 (安徽高考)如图所示,已知梯形ABCD 中,|AB |=2|CD |,E 在AC 上,且AE EC λ=,双曲线过C 、D 、E 三点,且以A 、B 为焦点。
当32≤λ≤43时,求双曲线离心率e 的取值范围。
解析:先求出C 点纵坐标,用a 、b 、c 表示,然后将E 点坐标用λ表示,并代入双曲线方程,而得到含有e 与λ的等式,由λ范围求出e 的范围。
答案:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD ⊥y 轴. 因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称。
依题意,记(,0)A c -,C (2c ,h ),E (x 0,y 0,)其中c =21|AB |为双曲线的半焦距,h 是梯形的高。
由AE EC λ=得0000(,)(,)2cx c y x h y λ+=--,0000002(),12()1c c c x x c x h y h y y λλλλλλ⎧-+⎪⎧=+=-⎪⎪∴∴+⎨⎨⎪⎪=-⎩=⎪+⎩, 设双曲线方程为12222=-by a x ,则离心率a c e =,由点C 、E 在双曲线上,将C 、E 坐标和e 代入方程式得42e -22bh =1 ① 42e (12+-λλ)2-(1+λλ)222b h =1② 由①式得22bh =42e -1③把③式代入②式,整理得42e (4-4λ)=1+2λ, 故λ=1-232+e ,由题设 32≤λ≤43得32≤1-232+e ≤43,解得 7≤e≤10。
圆锥曲线的参数方程教案

圆锥曲线的参数方程教案一、教学目标1. 知识与技能:(1)理解圆锥曲线的概念及其标准方程;(2)掌握圆锥曲线的参数方程的定义及表示方法;(3)能够运用参数方程解决与圆锥曲线相关的问题。
2. 过程与方法:(1)通过观察实物和图形,培养学生的空间想象能力;(2)利用数形结合思想,引导学生从参数方程中揭示圆锥曲线的几何性质;(3)通过小组讨论和探究活动,提高学生合作交流的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、坚持不懈的精神;(3)引导学生认识数学在实际生活中的应用价值。
二、教学内容1. 圆锥曲线的概念及其标准方程(1)介绍圆锥曲线的基本概念;(2)讲解椭圆、双曲线、抛物线的标准方程及特点。
2. 参数方程的定义及表示方法(1)引入参数方程的概念;(2)举例说明参数方程的表示方法;(3)讲解参数方程与普通方程的互化方法。
三、教学重点与难点1. 教学重点:(1)圆锥曲线的概念及其标准方程;(2)参数方程的定义及表示方法;(3)参数方程与普通方程的互化方法。
2. 教学难点:(1)圆锥曲线的几何性质的揭示;(2)参数方程在实际问题中的应用。
四、教学过程1. 导入新课:(1)通过实物和图形,引导学生回顾圆锥曲线的基本概念;(2)提问:如何用数学语言描述圆锥曲线的形状和位置?2. 讲解新课:(1)讲解圆锥曲线的标准方程及其特点;(2)引入参数方程的概念,举例说明参数方程的表示方法;(3)讲解参数方程与普通方程的互化方法。
3. 课堂练习:(1)让学生独立完成教材中的相关练习题;(2)引导学生运用参数方程解决实际问题。
五、课后作业1. 复习圆锥曲线的标准方程及其特点;2. 熟练掌握参数方程的表示方法;3. 练习互化参数方程与普通方程;4. 探索圆锥曲线参数方程在实际问题中的应用。
六、教学策略与方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出圆锥曲线的参数方程需求;2. 利用数形结合思想,通过图形软件或实物展示,直观地展示圆锥曲线的几何性质;3. 组织小组讨论和探究活动,让学生合作交流,共同解决问题;4. 注重个体差异,针对不同学生提供个性化的指导和建议。
4.4.9圆锥曲线的参数方程教案范文

4.4.9圆锥曲线的参数方程教案范文第一篇:4.4.9圆锥曲线的参数方程教案范文第三课时圆锥曲线的参数方程一、教学目标:知识与技能:了解圆锥曲线的参数方程及参数的意义过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
二、重难点:教学重点:圆锥曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.三、教学方法:启发、诱导发现教学.四、教学过程:(一)、复习引入:1.写出圆方程的标准式和对应的参数方程。
⎧x=rcosθ(1)圆x2+y2=r2参数方程⎨(θ为参数)y=rsinθ⎩⎧x=x0+rcosθ(2)圆(x-x0)+(yy0)=r参数方程为:(θ为参数)⎨⎩y=y0+rsinθ2222.写出椭圆、双曲线和抛物线的标准方程。
3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗?(二)、讲解新课:⎧x=acosθx2y21.椭圆的参数方程推导:椭圆2+2=1参数方程⎨(θ为参ab⎩y=bsinθ数),参数θ的几何意义是以a为半径所作圆上一点和椭圆中心的连线与X轴正半轴的夹角。
6543A21M-8-6-4-2-1OL12N46810-2-3-4-5-6-7⎧x=asecθx2y22.双曲线的参数方程的推导:双曲线2-2=1参数方程⎨(θab⎩y=btanθ为参数)25002000QP1500B1000500A-4000-3000-2000-***0M40005000-500-1000-1500-2000-2500-3000-3500 参数θ几何意义为以a为半径所作圆上一点和椭圆中心的连线与X轴正半轴的夹角。
⎧x=2Pt23.抛物线的参数方程:抛物线y=2Px参数方程⎨(t为参数),ty=2Pt⎩2为以抛物线上一点(X,Y)与其顶点连线斜率的倒数。
(1)、关于参数几点说明:A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。
圆锥曲线的参数方程教案
精锐教育学科教师辅导讲义 讲义编号 :学员编号: 年 级:高三 课 时 数:3学员姓名: 辅导科目:数学 学科教师:课 题圆锥曲线的参数方程 授课日期及时段教学目的 1:了解圆锥曲线的参数方程及参数的意义2:能选取适当的参数,求简单曲线的参数方程教学内容知识点检测;1.(北京卷理5)极坐标方程(ρ-1)(θπ-)=(ρ≥0)表示的图形是( )(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线2.(湖南卷理3文4)极坐标方程cos ρθ=和参数方程123x t y t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是( ) A 、圆、直线 B 、直线、圆C 、圆、圆D 、直线、直线3.(湖南卷文4)极坐标cos p θ=和参数方程12x t y t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A. 直线、直线B. 直线、圆C. 圆、圆D. 圆、直线4.(广东卷理15)在极坐标系(ρ,θ)(0 ≤ θ<2π)中,曲线ρ=2sin θ 与cos 1p θ=- 的交点的极坐标为______。
5.(广东卷文15)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为__________________. 6.(陕西卷理15C )已知圆C 的参数方程为cos 1sin x y αα⎧=⎨=+⎩(a 为参数)以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标系为______________7.(江苏卷21③)在极坐标系中,圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,求实数a 的值二:知识点整理圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线高中数学讲解教案
圆锥曲线高中数学讲解教案
一、教学目标:
1. 了解圆锥曲线的定义和基本性质;
2. 掌握圆锥曲线的标准方程和性质;
3. 能够根据给定的条件求解圆锥曲线的方程;
4. 能够利用圆锥曲线解决实际问题。
二、教学重点:
1. 圆锥曲线的定义;
2. 圆锥曲线的标准方程;
3. 圆锥曲线的性质。
三、教学难点:
1. 圆锥曲线的方程求解;
2. 圆锥曲线的性质证明。
四、教学过程:
1. 圆锥曲线的定义和基本概念(15分钟)
- 圆锥曲线的定义;
- 圆锥曲线的类别;
- 圆锥曲线的几何性质。
2. 圆锥曲线的标准方程和性质(20分钟)
- 圆的标准方程和性质;
- 椭圆的标准方程和性质;
- 双曲线的标准方程和性质;
- 抛物线的标准方程和性质。
3. 圆锥曲线的方程求解(30分钟)
- 根据给定的条件求解圆锥曲线的方程;
- 利用圆锥曲线求解实际问题。
4. 圆锥曲线的性质证明(15分钟)
- 圆锥曲线的对称性证明;
- 圆锥曲线的焦点、准线和直径关系证明。
五、教学总结:
通过本节课的学习,我们对圆锥曲线的定义、标准方程和性质有了更深入的了解,掌握了圆锥曲线的求解方法和应用能力。
希望同学们能够认真复习,做好练习,提高对圆锥曲线的理解和应用能力。
下节课将继续深入学习圆锥曲线的相关内容,敬请期待。
圆锥曲线范围问题含详解
圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。
【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。
教案:圆锥曲线的参数方程及其应用
教案:圆锥曲线的参数方程及其应用。
一、圆锥曲线的定义及分类圆锥曲线是由固定点(焦点)和固定直线(准线)所构成的几何图形。
根据焦点和准线的位置关系,圆锥曲线分为椭圆、双曲线和抛物线三种类型。
(一)椭圆椭圆是焦点到准线距离之和等于定值的所有点的集合,又称为倍长轴圆。
(二)双曲线双曲线是焦点到准线距离之差等于定值的所有点的集合,又称为哈密顿曲线。
(三)抛物线抛物线是焦点到准线距离等于点到准线距离的平方的两倍的所有点的集合。
二、圆锥曲线的参数方程圆锥曲线的参数方程是指用参数表示出曲线上一点与焦点和准线间的关系。
比较常见的有极坐标参数法和直角坐标参数法。
下面我们主要介绍直角坐标参数法。
(一)椭圆的参数方程以$x$轴和$y$轴为直角坐标系。
设椭圆的长轴方程为$x=2a\cos\theta$,短轴方程为$y=b\sin\theta$(其中$a,b$分别为椭圆长轴和短轴的长度)。
则椭圆的参数方程为:$$\begin{cases}x=2a\cos\theta \\y=b\sin\theta\end{cases}$$其中$\theta$为参数,描述曲线上的一个点与原点间的位置关系。
(二)双曲线的参数方程以$x$轴和$y$轴为直角坐标系。
设双曲线的$x$轴方程为$x=2a\sec\theta$,$y$轴方程为$y=2b\tan\theta$(其中$a,b$分别为双曲线距离准线最远点到准线距离的一半和准线到双曲线的距离)。
则双曲线的参数方程为:$$\begin{cases}x=2a\sec\theta \\y=2b\tan\theta\end{cases}$$其中$\theta$为参数,描述曲线上的一个点与原点间的位置关系。
(三)抛物线的参数方程以$x$轴和$y$轴为直角坐标系。
设抛物线的方程为$y=kx^2$(其中$k$为常数)。
则抛物线的参数方程为:$$\begin{cases}x=t \\y=kt^2\end{cases}$$其中$t$为参数,描述曲线上的一个点与原点间的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
基础必备 一、如何建立不等关系?(求参数范围的关键是建立不等关系):1、利用圆锥曲线的定义。
如离心率的范围。
1.by a x 1b ya x )y ,x (222220222200????可列式为内在椭圆点(外)的充要条件。
如、利用点在圆锥曲线内.b y b ,a x a 1bya x )y ,x (P 300222200????????为上,可列式在椭圆标的范围。
如点、利用圆锥曲线上点坐 而求出参变量范围。
含参变量的不等式,从分布来构造次方程的判别式及根的条件。
如可借助一元二、利用二次方程有解的45、转化为函数的值域或最值。
二、类型与解题策略1、单参数问题。
如求参数m的范围,只要列出含m这一个参数的不等式(组)求解。
2、双参数问题。
如求参数m的范围,需联系另一参数k,对策有 (1)将m表示成k的函数:m=f(k),利用k的范围,求f(k)值域; (2)列出m、k混合的关系式(等式),再列出m、k受限条件(不等式),从等式中解出)(mk??,代入不等式进而解出m的取值范围。
3、求与¡°比值¡±有关范围问题,常用: (1) 列齐次式的思想,如求离心率的范围可以列出含a 、c 的齐次不等式;求21xx的范围,有时可以用韦达定理求21221)(xxxx?,变形即有21xx。
(2) 利用向量共线求比值范围。
,AC AB ACAB??的范围,可设如求得到关于坐标的方程,变形后用韦达定理求解。
三,实战应用1、利用曲线的定义、标准方程和性质列不等关系例1、设椭圆1122???ymx的两个焦点是)0)(0,(),0,(21??ccFcF,且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
求实数m的取值范围。
解:(单参数问题,本题抓住椭圆方程对椭圆上的点P 坐标的限制)由题设有mcm??,0,设点P 的坐标为),,(00yx由FF 1⊥PF 2,得:10000?????cxycxy解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
基础必备 一、如何建立不等关系?(求参数范围的关键是建立不等关系):1、利用圆锥曲线的定义。
如离心率的范围。
1.by a x 1b ya x )y ,x (222220222200????可列式为内在椭圆点(外)的充要条件。
如、利用点在圆锥曲线内.b y b ,a x a 1bya x )y ,x (P 300222200????????为上,可列式在椭圆标的范围。
如点、利用圆锥曲线上点坐 而求出参变量范围。
含参变量的不等式,从分布来构造次方程的判别式及根的条件。
如可借助一元二、利用二次方程有解的45、转化为函数的值域或最值。
二、类型与解题策略1、单参数问题。
如求参数m的范围,只要列出含m这一个参数的不等式(组)求解。
2、双参数问题。
如求参数m的范围,需联系另一参数k,对策有 (1)将m表示成k的函数:m=f(k),利用k的范围,求f(k)值域; (2)列出m、k混合的关系式(等式),再列出m、k受限条件(不等式),从等式中解出)(mk??,代入不等式进而解出m的取值范围。
3、求与¡°比值¡±有关范围问题,常用: (1) 列齐次式的思想,如求离心率的范围可以列出含a 、c 的齐次不等式;求21xx的范围,有时可以用韦达定理求21221)(xxxx?,变形即有21xx。
(2) 利用向量共线求比值范围。
,AC AB ACAB??的范围,可设如求得到关于坐标的方程,变形后用韦达定理求解。
三,实战应用1、利用曲线的定义、标准方程和性质列不等关系例1、设椭圆1122???ymx的两个焦点是)0)(0,(),0,(21??ccFcF,且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
求实数m的取值范围。
解:(单参数问题,本题抓住椭圆方程对椭圆上的点P 坐标的限制)由题设有mcm??,0,设点P 的坐标为),,(00yx由FF 1⊥PF 2,得:10000?????cxycxy解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
基础必备 一、如何建立不等关系?(求参数范围的关键是建立不等关系):1、利用圆锥曲线的定义。
如离心率的范围。
1.by a x 1b ya x )y ,x (222220222200????可列式为内在椭圆点(外)的充要条件。
如、利用点在圆锥曲线内.b y b ,a x a 1bya x )y ,x (P 300222200????????为上,可列式在椭圆标的范围。
如点、利用圆锥曲线上点坐 而求出参变量范围。
含参变量的不等式,从分布来构造次方程的判别式及根的条件。
如可借助一元二、利用二次方程有解的45、转化为函数的值域或最值。
二、类型与解题策略1、单参数问题。
如求参数m的范围,只要列出含m这一个参数的不等式(组)求解。
2、双参数问题。
如求参数m的范围,需联系另一参数k,对策有 (1)将m表示成k的函数:m=f(k),利用k的范围,求f(k)值域; (2)列出m、k混合的关系式(等式),再列出m、k受限条件(不等式),从等式中解出)(mk??,代入不等式进而解出m的取值范围。
3、求与¡°比值¡±有关范围问题,常用: (1) 列齐次式的思想,如求离心率的范围可以列出含a 、c 的齐次不等式;求21xx的范围,有时可以用韦达定理求21221)(xxxx?,变形即有21xx。
(2) 利用向量共线求比值范围。
,AC AB ACAB??的范围,可设如求得到关于坐标的方程,变形后用韦达定理求解。
三,实战应用1、利用曲线的定义、标准方程和性质列不等关系例1、设椭圆1122???ymx的两个焦点是)0)(0,(),0,(21??ccFcF,且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
求实数m的取值范围。
解:(单参数问题,本题抓住椭圆方程对椭圆上的点P 坐标的限制)由题设有mcm??,0,设点P 的坐标为),,(00yx由FF 1⊥PF 2,得:10000?????cxycxy解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
基础必备 一、如何建立不等关系?(求参数范围的关键是建立不等关系):1、利用圆锥曲线的定义。
如离心率的范围。
1.by a x 1b ya x )y ,x (222220222200????可列式为内在椭圆点(外)的充要条件。
如、利用点在圆锥曲线内.b y b ,a x a 1bya x )y ,x (P 300222200????????为上,可列式在椭圆标的范围。
如点、利用圆锥曲线上点坐 而求出参变量范围。
含参变量的不等式,从分布来构造次方程的判别式及根的条件。
如可借助一元二、利用二次方程有解的45、转化为函数的值域或最值。
二、类型与解题策略1、单参数问题。
如求参数m的范围,只要列出含m这一个参数的不等式(组)求解。
2、双参数问题。
如求参数m的范围,需联系另一参数k,对策有 (1)将m表示成k的函数:m=f(k),利用k的范围,求f(k)值域; (2)列出m、k混合的关系式(等式),再列出m、k受限条件(不等式),从等式中解出)(mk??,代入不等式进而解出m的取值范围。
3、求与¡°比值¡±有关范围问题,常用: (1) 列齐次式的思想,如求离心率的范围可以列出含a 、c 的齐次不等式;求21xx的范围,有时可以用韦达定理求21221)(xxxx?,变形即有21xx。
(2) 利用向量共线求比值范围。
,AC AB ACAB??的范围,可设如求得到关于坐标的方程,变形后用韦达定理求解。
三,实战应用1、利用曲线的定义、标准方程和性质列不等关系例1、设椭圆1122???ymx的两个焦点是)0)(0,(),0,(21??ccFcF,且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
求实数m的取值范围。
解:(单参数问题,本题抓住椭圆方程对椭圆上的点P 坐标的限制)由题设有mcm??,0,设点P 的坐标为),,(00yx由FF 1⊥PF 2,得:10000?????cxycxy解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少考生在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,本文通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对考生的备考有所帮助。
基础必备 一、如何建立不等关系?(求参数范围的关键是建立不等关系):1、利用圆锥曲线的定义。
如离心率的范围。
1.by a x 1b ya x )y ,x (222220222200????可列式为内在椭圆点(外)的充要条件。
如、利用点在圆锥曲线内.b y b ,a x a 1bya x )y ,x (P 300222200????????为上,可列式在椭圆标的范围。
如点、利用圆锥曲线上点坐 而求出参变量范围。
含参变量的不等式,从分布来构造次方程的判别式及根的条件。
如可借助一元二、利用二次方程有解的45、转化为函数的值域或最值。
二、类型与解题策略1、单参数问题。
如求参数m的范围,只要列出含m这一个参数的不等式(组)求解。
2、双参数问题。
如求参数m的范围,需联系另一参数k,对策有 (1)将m表示成k的函数:m=f(k),利用k的范围,求f(k)值域; (2)列出m、k混合的关系式(等式),再列出m、k受限条件(不等式),从等式中解出)(mk??,代入不等式进而解出m的取值范围。
3、求与¡°比值¡±有关范围问题,常用: (1) 列齐次式的思想,如求离心率的范围可以列出含a 、c 的齐次不等式;求21xx的范围,有时可以用韦达定理求21221)(xxxx?,变形即有21xx。