金属自由电子气模型

合集下载

第十六讲金属中自由电子气模型

第十六讲金属中自由电子气模型

- - -( 7)
3(z L) = 3(z)
用 通 解 的 前 一 种 表 示 , 分 别 假 定 波 沿 x,y,z 负 方 向 传 播 , 可 得
波矢:
kx =
2n x L
ky
=
2n y L
kz
=
2n z L
( 8)






(n :ψ
x, (x
ny, ,y,z
n )
z
为正 = 1(
负整
x ) 2 (
此时费密-狄喇克统计分布为 (见图 p112 图 6.3)
1
lim T 0
f ( E ,T ) 0
E (0) E (0)
其 中 μ (0)为 绝 对 零 度 时 的 化 学 势 。
- - (17)
电 子 气 基 态 :能 量 在 μ (0)以 下 的 状 态 全 被 电 子 占 满 ,能 量超 过 μ (0)
第十六讲 金属中自由电子气模型
第六章 金属电子论 问题:对金属中相互作用、运动着的大量电子,怎样进行理论处理?
如何从理论上说明电子对金属优良的电导、热导和比热的贡献? 如何从电子的运动状态解释电子热发射、光电效应和场电子发 射等重要现象? 本章用 量子的电子气体模型: 金属中的价电子组成电子气体(就象气体分
见 p112 图 6.3 f(E,T) ~ E 曲线
T > 0,

kBT
f
(,T
)
1 2
范围内,f (E,T )从 1下降到 0
由能态密度公式(13)
g(E) CE1/ 2
和公式(14)
C 4 ( 2m)3/ 2
h2

2.金属自由电子气的Drude模型

2.金属自由电子气的Drude模型
* 离子实的作用仅维持固体结合,维持电中性
• 金属中的价电子就象无相互作用的理想气体, 但模型与理想气体又有所不同:
* 电子气体的浓度比理想气体大三个量级 * 有两种粒子:电子,离子
不是很圆滑,所以再加些限制(基本假定),完 成Drude模型的构造
10.107.0.68/~jgche/ 金属电子气的Drude模型
1、已知的金属性质
模型建立的依据
10.107.0.68/~jgche/
金属电子气的Drude模型
4
为什么研究固体从金属开始?
• 金属最基本物质状态之一,元素周期表中有2/3 是金属元素,应用很广泛,当时对金属的了解 比其他固体多
* 比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 * 区分非金属,实际上也是从理解金属开始
12
思考——假如你是Drude
• 根据已有线索,如何仿照理想气体建立模型?
* 与理想气体(电中性)还是有些不同!除了碰撞的 瞬间,可以不考虑其他。但现有两种带电粒子
• 不是电中性的,有库仑相互作用?那么
* 电子-电子如何相互作用? * 电子-离子实如何相互作用?
• 还有——电传导(也包括热传导)是个输运过 程,非平衡过程,所以
上讲回顾
• 固体的微观定义
* 固体中的原子在其平衡位置附近作微小振动
• 贯穿课程的主线
* 周期性波在周期性结构中的运动
10.107.0.68/~jgche/
金属电子气的Drude模型
1
本讲内容:建模推演比较修正
• 如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象

电子行业金属自由电子气模型

电子行业金属自由电子气模型

电子行业金属自由电子气模型引言自由电子气模型是描述金属中电子行为的重要理论模型之一。

在电子行业中,金属材料具有良好的导电性和热导性,这一特性正是由于金属中存在着大量的自由电子。

本文将详细介绍电子行业金属中自由电子气模型的基本原理。

自由电子气模型的基本原理自由电子气模型的基本原理是假设金属中的自由电子在晶体中自由运动,并且彼此之间无相互作用。

这个假设是基于金属中的电子大量和密度较大,使得它们之间的相互作用可以忽略不计。

而晶体的周期性结构对电子运动所产生的影响可以用晶格周期势能来描述。

在自由电子气模型中,每个电子都可以被看作是一个自由粒子,其能量由动能和势能共同决定。

由于假设电子之间无相互作用,并且忽略自旋和磁场的影响,可以将自由电子气模型简化为一维、二维或三维的能带结构。

能带结构能带结构描述了金属中电子的能量分布情况。

根据自由电子气模型,电子能量随动量的变化形成能带。

在一维情况下,能带是连续的,电子在能带中可以具有任意动量。

而在二维和三维情况下,能带则呈现出带状结构,电子在能带中只能具有特定的动量。

根据泡利不相容原理, 每个能级只能容纳两个电子(自旋相反)。

因此,在一维情况下,每个能级只能容纳一个电子,而在二维和三维情况下,每个能级可以容纳多个电子。

能带结构可以分为导带和价带。

导带是指位于较高能量的带,其中的电子具有较高的能量,可以随意运动。

价带是指位于较低能量的带,其中的电子具有较低的能量,并且在金属中形成近满带,起到稳定晶体结构的作用。

费米能级费米能级是能带结构中的一个重要参数,它代表了电子在金属中填充的最高能级。

根据赛曼效应,当温度趋近于绝对零度时,费米能级上方的能级将几乎全部被填充,而费米能级以下的能级将几乎为空。

费米能级决定了电子在金属中的运动性质,对导电性和热导性有很大影响。

在金属中,费米能级附近的能级比较稠密,形成了电子态密度的峰值,使得金属能够有效地传导电流和热量。

自由电子气模型的应用自由电子气模型是研究金属导电性和热导性的基础理论之一。

固体物理第一章课件

固体物理第一章课件

1
3
E = V ∫0 g ( E ) EdE = V ∫0
F
E
E
F
E 2m3 2m3 E 2m 3 2 2 F 2 EdE = V E dE = V E ∫ 0 π2ℏ 3 π2 ℏ 3 π2 ℏ 3 5 F
3
5
E=3E N 5 F
能态密度的更一般形式
g ( E )= dN dE
E k =const.
NZ NZ NZ
自由电子模型的物理思想
◆ 自由电子近似 离子静止,忽略电子和离子实之间的相互作用,电子运动范围 仅受限于晶体表面势垒,被限制在晶体内部 ◆ 独立电子近似 忽略电子和电子之间的相互作用 ◆ 驰豫时间近似
Zn Zm ℏ2 e2 H= −∑ ∇n 2 + ∑′ 1 2 n, m 4πε0 R − R n =1 2M n n m Zn e2 ℏ 2 2 e2 1 1 1 −∑ ∇i + ∑′ −∑∑ 2 i =1 2m i , j 4πε r − r i =1 n=1 4πε r − R i 0 i 0 i j n
kF = 3π2 ne
ℏ 2 kF 2 2m
1/3
108cm -1 2~10eV
费米能量:
EF=
费米动量: 费米速度: 费米温度:
pF = ℏk F
υF = ℏkF /m T F = EF / k B
108cm/s 104 ~105 K 参见表 1.1
单位体积内的平均能量
T=0时,单位体积内的平均能量为:
Drude 模型:应用经典力学,服从经典统计,麦克斯韦- 玻耳兹曼分布 Sommerfeld 模型:应用量子理论,服从量子统计,费米-狄拉克分布
f ( E )= e

高二物理竞赛课件:金属中的自由电子模型

高二物理竞赛课件:金属中的自由电子模型

dE
dE
hE
E 2kx2 2m
dkx 2
2m dE E
三维情况:
自由电子波函数
(r) A exp(ik r) Aei(kxxky ykzz)
能量
E
2
(k
2 x
k
2 y
kz2 )
2k 2
2m
2m
一个点子占有的“体积” =( 2 )3
密度
( L )3= V
2 8 3
L
能量在E--E+dE范围内的量子态数为:
式中,A1,A2,A3是归一化常数。
电子的波矢分量满足:
kx
nx
L
,ky
ny
L
, kz
nz
L
nx,ny,nz可取任意的正整数。最终结果为:
(x, y, z) Asin(kx x) sin(ky y) sin(kz z)
E
22
2mL2
(nx2
n
2 y
nz2 )
晶体中自由电子的本 征态波函数和能量均有 一组量子数来确定。能 量的取值可以是分立的, 形成能级。当晶体的线 度L很大时,能级成为 准连续的。
其中A是归一化常数。
周期性边界条件----行波解
晶体内部的周期性势场不能忽略,假想所研究的晶体是许许多多首尾相连的 完全相同的晶体中的一个,每块晶体对应出的运动状态相同。只强调晶体的有 限性对内部例子运动状态的影响。
在周期性边界条件下,不限定波函数在边界上的值,而是要求波函数的性 质延续到下一块晶体。
在 k 空间中电子占据区域最后形成一个球,称为费米球。费 米球的半径称为费米波矢,用来 kF 表示。
k空间从原点到半径为kF的球面之间的量子态数正好等于电子数 目,则此球称为费米球。

金属电子气的Drude模型

金属电子气的Drude模型

Drude模型在半导体物理中的应用
半导体载流子运动
Drude模型在半导体物理中用于描述半导体中载流子的运动行为。通过该模型, 可以研究半导体中电子和空穴的迁移率、扩散系数等性质,从而深入了解半导 体的光电、热电等效应。
半导体器件性能
Drude模型在半导体器件性能分析中也有重要应用,如晶体管、太阳能电池等。 通过该模型,可以研究器件中载流子的传输、注入、收集等过程,为优化器件 性能提供理论支持。ຫໍສະໝຸດ HANKS FOR WATCHING
感谢您的观看
04
Drude模型的局限性
Drude模型的近似性
Drude模型假设电子在金属中以无相 互作用的粒子形式运动,忽略了电子 间的相互作用。
在实际金属中,电子间存在相互作用, 这会导致电子的运动受到散射,使得 电子的运动不满足Drude模型的假设。
Drude模型在高场下的不适用性
Drude模型在高电场下不适用,因为 高电场下电子的运动速度接近光速, 需要考虑相对论效应。
02
当电子气受到外部扰动时,阻尼系数决定了电子气 的响应速度和振幅衰减。
03
阻尼系数的大小与金属的微观结构和温度有关,是 金属导电性能的重要参数。
电子气的弛豫时间
01 弛豫时间表示电子气达到热平衡状态所需的时间。 02 在Drude模型中,弛豫时间反映了电子气内部相
互作用的过程。
03 弛豫时间的长短决定了金属的电导和热导等物理 性质随时间的变化规律。
述这些效应。
发展Drude模型的量子版本
引入量子力学效应
在量子版本的Drude模型中,考 虑量子力学效应对金属电子气行 为的影响,如能级量子化、波函 数等。
考虑量子相干性
在低温下,金属电子气可能表现 出量子相干性,需要发展量子版 本的Drude模型来描述这种行为。

3.2 金属中的自由电子模型

3.2 金属中的自由电子模型

• 上式可用分离变量法求解,令
( x , y , z ) u1 ( x ) u 2 ( y ) u 3 ( z )
再令
E k 2m
2 2


2
2m
(k x k y k z )
2 2 2
d u1 ( x ) dx
2
2
2
k u1 ( x ) 0
2 x
u 1 ( x ) A 1 sin k x x
2 2 2
E
(n n n )
2 x 2 y 2 z
2 mL
结 论
• 上面的结果说明,晶体中自由电子 的本征态波函数和能量都由一组量 子数(nx,ny,nz)来确定。由于nx、ny 和nz都是取正整数,因此能量的许 可值是分立的,形成能级。当晶体 的线度L很大时,能级成为准连续 的。
E
2 2 2
(n n n )
2 x 2 y 2 z
2 mL
能级密度
金属自由电子的能级密度为
dz dE 4 V ( 2m h
2
)
3/2
E
§3.2 金属中的自由电子模型
一般情况下金属内部的自由电 子为什么不会逸出体外 ? 金属内部电子的能量比在金属 外部电子的能量要低一些,要 使金属内部的自由电子逸出体 外,必须对它作一定的功
三维无限深势阱 模型
0 V ( x, y, z ) 当 0 x, y, z L 当 x, y, z 0, 或 x, y, z L
d u2 ( y) dy
2
2
k y u2 ( y) 0
2
u 2 ( y ) A 2 sin k y y
d u3 (z) dz

金属自由电子模型

金属自由电子模型

0 EF
0
3 V 2m 3/2 3/2 3 0 ( 2 ) E dE EF 3eV 2 2 3 5
如果把电子比作费米子的理想气体分子,则在绝对零度,电子基态的平均能 量相当于 T~23077K,对应于平均速度为
3kBT | v | v 2 1106 m / s ~ 1/ 300 光速 me
E TF r C F r dr z
一,金属自由电子气体模型
1.1 经典电子论 特鲁德电子气模型: 特鲁德提出了第一个固体微观理论利用微观概念计算宏 观实验观测量 自由电子气+波尔兹曼统计 欧姆定律 电子平均自由程+分子运动论 电子的热导率 特鲁德(Paul Drude)模型的基本假设 1 1.自由电子近似: 传导电子由原子的价电子提供,离子实对电子的作用可以 忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似: 电子与电子之间的相互作用可以忽略不计。 外电场为零时, 忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气 体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能 带论中证明是错误的。 ) 特鲁德(Paul Drude)模型的基本假设 2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为 1 / , 称为弛豫时 间(即平均自由时间) 。每次碰撞时,电子失去它在电场作用下获得的能量,即 电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律 E j (或 j E ) ,其中 E 为外加电场强度、 为电阻率、 j 为 电流密度。
用托马斯一费米模型处理原子中的问题.为方便起见,下面均采用原子单位. 即。e= =μ=1 的单位制。 基于统计的考虑,Thomas 和 Fermi 于 1927 年曾几乎是同时地分别提出,将 多电子运动空间划分为边长为 l 的小容积(立方元胞) v l 3 。其中含有 N 个 电子 (不同的元胞中所含电子数不同) 。假定在温度近于 0K 时每一元胞中电子的 行为是独立的 Fermi 粒子, 并且各个元胞是无关的。则有三维有限势阱中自由里 子的能级公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档