二次函数动点问题解答方法技巧(含例解答案)

合集下载

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

二次函数动点问题解答方法技巧(含例解答案)(可编辑修改word版)

二次函数动点问题解答方法技巧(含例解答案)(可编辑修改word版)

所以 S 2S△ADN .
所以,四边形 MDNA 的面积 S (8 2t)(1 2t) 4t2 14t 8 . 因为运动至点 A 与点 D 重合为止,据题意可知 0 ≤ t 4 . 所以,所求关系式是 S 4t2 14t 8 , t 的取值范围是 0 ≤ t 4 .
单位的速度沿水平方向分别向右、向左运动;与此同时,
点 M ,点 N 同时以每秒 2 个单位的速度沿坚直方向分别 向下、向上运动,直到点 A 与点 D 重合为止.求出四边 形 MDNA 的面积 S 与运动时间 t 之间的关系式,并写出 自变量 t 的取值范围; (3)当 t 为何值时,四边形 MDNA 的面积 S 有最大值,
函数解题思路方法总结:
⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号,或由二次函
数中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的
二次函数的动态问题(动点)
1.如图,已知抛物线 C1 与坐标轴的交点依次是 A(4,0) , B(2,0) , E(0,8) .
(1)求抛物线 C1 关于原点对称的抛物线 C2 的解析式;
(2)设抛物线 C1 的顶点为 M ,抛物线 C2 与 x 轴分别交
于 C, D 两点(点 C 在点 D 的左侧),顶点为 N ,四边 形 MDNA 的面积为 S .若点 A ,点 D 同时以每秒 1 个
并求出此最大值;
(4)在运动过程中,四边形 MDNA 能否形成矩形?若 能,求出此时 t 的值;若不能,请说明理由.

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

二次函数的动点问题(等腰、直角三角形的存在性问题)解析

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; 2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆; 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标.需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号.或由二次函数中a,b,c 的符号判断图象的位置.要数形结合;⑷ 二次函数的图象关于对称轴对称.可利用这一性质.求和已知一点对称的点坐标.或已知与x 轴的一个交点坐标.可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式.二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例.揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形.考查问题也是特殊图形.所以要把握好一般与特殊的关系;分析过程中.特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点.近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍.解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①. 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1.0)和点B (-3.0).与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M .问在对称轴上是否存在点P.使△CMP为等腰三角形?若存在.请直接写出所有符合条件的点P的坐标;若不存在.请说明理由.(3) 如图②.若点E为第二象限抛物线上一动点.连接BE、CE.求四边形BOCE面积的最大值.并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时.以C为圆心CM为半径画弧.与对称轴交点即为所求点P.②M为顶点时.以M为圆心MC为半径画弧.与对称轴交点即为所求点P.③P为顶点时.线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧(含例解答案)-推荐下载

二次函数动点问题解答方法技巧(含例解答案)-推荐下载
二、 抛物线上动点
5、(湖北十堰市)如图①, 已知抛物线 y ax 2 bx 3 (a≠0)与 x 轴交于点 A(1,0)和
点 B (-3,0),与 y 轴交于点 C. (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 x 轴交于点 M ,问在对称轴上是否存在点 P,使△CMP 为等腰三
08 一个
09 两个
问题背景 特殊菱形两边上移动
考查难点 探究相似三角形




①菱形性质
②特殊角三角函数
③求直线、抛物线解析式
④相似三角形
⑤不等式
特殊直角梯形三边 抛物线中特殊直角梯形底
上移动
探究三角形面积函 探究等腰三角形 数关系式
①求直线解析式 ②四边形面积的表 示 ③动三角形面积函 数④矩形性质
ห้องสมุดไป่ตู้
①菱形是含 60°的特殊菱形; ①观察图形构造特 ①直角梯形是特殊的(一
△AOB 是底角为 30°的等腰三 征适当割补表示面 底角是 45°)
角形。

②一个动点速度是参数字母。 ②动点按到拐点时 ③线动中的特殊性(两个
③探究相似三角形时,按对应 间分段分类
角不同分类讨论;先画图,再 ③画出矩形必备条 PF 长度是定值,PF=OA)
注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点 P 坐标----①C 为 顶点时,以 C 为圆心 CM 为半径画弧,与对称轴交点即为所求点 P,②M 为顶点时,以 M 为圆心 MC 为半径画弧,与对称轴交点即为所求点 P,③P 为顶点时,线段 MC 的垂直 平分线与对称轴交点即为所求点 P。
并求出此最大值;
(4)在运动过程中,四边形 MDNA 能否形成矩形?若 能,求出此时 t 的值;若不能,请说明理由.

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数动点问题解答方法技巧(含例解标准答案)

其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、抛物线上动点
5、(湖北十堰市)如图①,已知抛物线 (a≠0)与 轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与 轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;
(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.
[解](1)点 ,点 ,点 关于原点的对称点分别为 , , .
设抛物线 的解析式是


解得
所以所求抛物线的解析式是 .
(2)由(1)可计算得点 .
过点 作 ,垂足为 .
⑶ 根据图象的位置判断二次函数ax²+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax²+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
当运动到时刻 时, , .
根据中心对称的性质 ,所以四边形 是平行四边形.
所以 .
所以,四边形 的面积 .
因为运动至点 与点 重合为止,据题意可知 .
所以,所求关系式是 , 的取值范围是 .
(3) ,( ).

二次函数动点问题解答方法技巧(含详细答案)外国语

外国语学校专用函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数ax2+bx+c=0 中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标 .⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点 ----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、抛物线上动点5、(湖北十堰市)如图①,已知抛物线y ax2bx 3 (a≠0)与 x 轴交于点A(1, 0)和点 B ( - 3, 0),与 y 轴交于点 C.(1)求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P,使△ CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点 E 为第二象限抛物线上一动点,连接BE、 CE,求四边形BOCE 面积的最大值,并求此时 E 点的坐标.注意:第( 2 )问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标 ---- ① C 为顶点时,以 C 为圆心 CM 为半径画弧,与对称轴交点即为所求点P ,② M 为顶点时,以M 为圆心 MC 为半径画弧,与对称轴交点即为所求点P,③ P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

二次函数压轴题---动点问题解答方法技巧总结 (含例解答案)


07 动点个数 问题背景 两个 特殊菱形两边上移动 一个
08 两个
09
特殊直角梯形三边 上移动
抛物线中特殊直角梯形底 边上移动
考查难点
探究相似三角形
探究三角形面积函 数关系式
探究等腰三角形
考 点
①菱形性质 ②特殊角三角函数 ③求直线、抛物线解析式 ④相似三角形 ⑤不等式
①求直线解析式 ②四边形面积的表 示 ③动三角形面积函 数④矩形性质
2
(2)由(1)可计算得点 M (3 , 1),N (31) ,. 过点 N 作 NH AD ,垂足为 H . 当运动到时刻 t 时, AD 2OD 8 2t , NH 1 2t . 根据中心对称的性质 OA OD ,OM ON ,所以四边形 MDNA 是平行四边形. 所以 S 2S△ ADN . 所以,四边形 MDNA 的面积 S (8 2t )(1 2t ) 4t 14t 8 .
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好 一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形 的性质、图形的特殊位置。 ) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直 角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、
抛物线上动点
5、 (湖北十堰市)如图①, 已知抛物线 y ax 2 bx 3 (a≠0)与 x 轴交于点 A(1,0)和 点 B (-3,0),与 y 轴交于点 C. (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 x 轴交于点 M ,问在对称轴上是否存在点 P,使△CMP 为等腰三 角形?若存在,请直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由. (3) 如图②,若点 E 为第二象限抛物线上一动点,连接 BE、CE,求四边形 BOCE 面积的 最大值,并求此时 E 点的坐标数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号, 或由二次函数 中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的 点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式 ax²+bx+c﹙a≠0﹚本身就 是所含字母 x 的二次函数;下面以 a>0 时为例,揭示二次函数、二次三项式 和一元二次方程之间的内在联系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.2. (06福建龙岩卷)如图,已知抛物线234y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线334y x t=-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<.(1)确定b c ,的值:__________b c ==,;(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):(______)(______)(______)B Q P ,,,,,;(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.[解] (1)94b =3c = (2)(40)B , (40)Q t , (443)P t t -,(3)存在t 的值,有以下三种情况 ①当PQ PB =时PH OB ⊥ ,则GH HB = 4444t t t ∴--= 13t ∴=②当PB QB =时 得445t t -= 49t ∴=③当PQ QB =时,如图解法一:过Q 作QD BP ⊥,又PQ QB =则522BP BD t == 又BDQ BOC △∽△C OBD BQBO BC ∴= 544245tt -∴= 3257t ∴=解法二:作Rt OBC △斜边中线OE则522BC OE BE BE ===,, 此时OEB PQB △∽△BE OBBQ PB∴= 542445t t ∴=-3257t ∴=解法三:在Rt PHQ △中有222QH PH PQ += 222(84)(3)(44)t t t ∴-+=-257320t t ∴-=32057t t ∴==,(舍去) 又01t <<∴当13t =或49或3257时,PQB △为等腰三角形.解法四: 数学往往有两个思考方向:代数和几何,有时可以独立思考,有时需要综合运用。

代数讨论:计算出△PQB 三边长度,均用t 表示,再讨论分析Rt △PHQ 中用勾股定理计算PQ 长度,而PB 、BQ 长度都可以直接直接用t 表示,进行分组讨论即可计算。

[点评]此题综合性较强,涉及函数、相似性等代数、几何知识,1、2小题不难,第3小题是比较常规的关于等腰三角形的分类讨论,需要注意的是在进行讨论并且得出结论后应当检验,在本题中若求出的t 值与题目中的01t <<矛盾,应舍去CO6. (本题满分14分)如图12,直线434+-=x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B .(1)求该二次函数的关系式;(2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒23个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C →A 的路线运动,当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ∆的面积为S .①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由;②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S= .解:(1)令0=x ,则4=y ;令0=y 则3=x .∴()30A ,.()04C , ∵二次函数的图象过点()04C ,, ∴可设二次函数的关系式为42++=bx ax y又∵该函数图象过点()30A ,.()10B -,∴093404a b a b =++⎧⎨=-+⎩,.解之,得34-=a ,38=b . ∴所求二次函数的关系式为438342++-=x x y (2)∵438342++-=x x y =()3161342+--x∴顶点M 的坐标为1613⎛⎫⎪⎝⎭, 过点M 作MF x ⊥轴于F∴AFM AOCM FOCM S S S =+△四边形梯形=()1013164213161321=⨯⎪⎭⎫ ⎝⎛+⨯+⨯-⨯ ∴四边形AOCM 的面积为10 (3)①不存在DE ∥OC∵若DE ∥OC ,则点D ,E 应分别在线段OA ,CA 上,此时12t <<,在Rt AOC △中,5AC =. 设点E 的坐标为()11x y ,∴54431-=t x ,∴512121-=t x ∵DE OC ∥,∴t t 2351212=- ∴38=t∵38=t >2,不满足12t <<.∴不存在DE OC ∥.②根据题意得D ,E 两点相遇的时间为1124423543=+++(秒) 现分情况讨论如下: ⅰ)当01t <≤时,2134322S t t t =⨯= ; ⅱ)当12t <≤时,设点E 的坐标为()22x y ,∴()544542--=t y ,∴516362t y -=∴t t t t S 5275125163623212+-=-⨯⨯=ⅲ)当2 <t <1124时,设点E 的坐标为()33x y ,,类似ⅱ可得516363ty -=设点D 的坐标为()44,y x∴532344-=t y , ∴51264-=t y∴AOE AOD S S S =-△△512632151636321-⨯⨯--⨯⨯=t t =572533+-t ③802430=S7.关于x 的二次函数22(4)22y x k x k =-+-+-以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式,并在下面的直角坐标系中画出函数的草图;(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作AB 垂直于x 轴于点B ,再过点A 作x 轴的平行线交抛物线于点D ,过点D 作DC 垂直于x 轴于点C ,得到矩形ABCD .设矩形ABCD 的周长为l ,点A 的横坐标为x ,试求l 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形ABCD 能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.参考资料:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,,对称轴是直线2bx a=-. 解:(1)据题意得:240k -=,2k ∴=±.当2k =时,2220k -=>. 当2k =-时,2260k -=-<.又抛物线与y 轴的交点在x 轴上方,2k ∴=.∴抛物线的解析式为:22y x =-+.函数的草图如图所示.(只要与坐标轴的三个交点的位置及图象大致形状正确即可)(2)解:令220x -+=,得x =不0x <<112A D x =,2112A B x =-+,211112()244l A B A D x x ∴=+=-++.当x >222A D x =,2222(2)2A B x x =--+=-. 222222()244l A D A B x x ∴=+=+-.l ∴关于x 的函数关系是:当0x <<2244l x x =-++;当x >2244l x x =+-.(3)解法一:当0x <<1111A B A D =,得2220x x +-=.解得1x =-,或1x =-.将1x =-代入2244l x x =-++,得8l =.当x >2222A B A D =,得2220x x --=.解得1x =,或1x =将1x =代入2244l x x =+-,得8l =.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法二:当0x <<1x =-.∴正方形的周长11488l A D x ===.当x >1x =∴正方形的周长22488l A D x ===.(第26题)综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.解法三: 点A 在y 轴右侧的抛物线上,0x ∴>,且点A 的坐标为2(2)x x -+,.令AB AD =,则222x x -+=.∴222x x -+=, ①或222x x -+=- ②由①解得1x =-,或1x =-由②解得1x =,或1x =. 又8l x =,∴当1x =-时8l =;当1x =时8l =.综上,矩形ABCD 能成为正方形,且当1x =时正方形的周长为8;当1x =时,正方形的周长为8.8.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.解:(1)解方程x 2-10x +16=0得x 1=2,x 2=8∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,且OB <OC ∴点B 的坐标为(2,0),点C 的坐标为(0,8) 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2 ∴由抛物线的对称性可得点A 的坐标为(-6,0) (2)∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上 ∴c =8,将A (-6,0)、B (2,0)代入表达式,得第26题图⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 解得⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8(3)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,∴AC =10 ∵EF ∥AC ∴△BEF ∽△BAC ∴EF AC =BE AB 即EF 10=8-m8∴EF =40-5m 4过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45∴FG EF =45 ∴FG =45·40-5m 4=8-m ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=12(8-m )(8-8+m )=12(8-m )m =-12m 2+4m 自变量m 的取值范围是0<m <8 (4)存在.理由:∵S =-12m 2+4m =-12(m -4)2+8 且-12<0,∴当m =4时,S 有最大值,S 最大值=8∵m =4,∴点E 的坐标为(-2,0) ∴△BCE 为等腰三角形.9.(14分)如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点.第26题图(批卷教师用图)(1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

相关文档
最新文档