高一数学必修5数列复习提纲

合集下载

必修5数列知识点总结

必修5数列知识点总结

必修5数列知识点总结1. 数列的概念数列是按一定规律排列的数字集合。

一般情况下,数列中的每个数字称为数列的项,通常用字母代表。

数列中第n个项称为第n项,一般用an表示。

2. 数列的分类2.1 等差数列等差数列是指数列中的相邻两项之差都相等的数列。

设数列为a1,a2,a3…an,公差为d,则有a2-a1=a3-a2=…=an-an-1=d。

等差数列的通项公式为:an=a1+(n-1)d。

2.2 等比数列等比数列是指数列中的相邻两项之比都相等的数列。

设数列为a1,a2,a3…an,公比为q,则有a2/a1=a3/a2=…=an/an-1=q。

等比数列的通项公式为:an=a1q^(n-1)。

2.3 斐波那契数列斐波那契数列是一种特殊的数列,规律为前两项的和等于后一项。

数列以0和1开始,后续每一项都是前两项的和。

例如:0, 1, 1, 2, 3, 5, 8, 13, …3. 数列的性质3.1 通项公式根据数列的规律,可以得出数列的通项公式,即表示数列任意一项与项数之间的关系式。

3.2 前n项和公式数列的前n项和是指数列中前n项之和。

对于等差数列,前n项和公式为:Sn = n/2(a1+an)。

对于等比数列,前n项和公式为:Sn = a1 (q^n - 1)/(q - 1)。

3.3 递推关系数列中的每一项可以通过前一项或前几项的运算得到,这种关系称为递推关系。

例如,斐波那契数列中的第n项可以通过前两项的和得到。

3.4 有限数列和无限数列有限数列指数列中项数有限,而无限数列指数列中项数无限。

4. 应用题的解题思路在解数列的应用题时,需要根据题目中的条件和要求,确定数列的类型以及通项公式。

然后根据题意使用相应的公式求解。

常见的数列应用题包括递推关系式的求解、前n项和的计算、求某一项、确定数列范围等。

5. 典型例题5.1 例题1已知等差数列的公差为2,前3项的和为9,求该数列的通项公式。

解答过程:设数列的首项为a,通项公式为an=a+(n-1)d。

数学必修五数列知识点提纲

数学必修五数列知识点提纲

数学必修五数列知识点提纲数学必修五数列知识点提纲数列的相关概念1.数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。

图像法;c.解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b 则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

高一数学必修5:数列(知识点梳理)

高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

高一数学必修5等比数列知识点自己总结

高一数学必修5等比数列知识点自己总结

高一数学必修5等比数列知识点自己总结等比数列是数学中常见的数列,其特点是每个数与前一个数的比例保持不变。

等比数列在高中数学中常用于解题和推导。

下面是关于高一数学必修5中等比数列的知识点总结。

一、等比数列的定义等比数列是一种数列,它的每一项与前一项之比都相等。

记作a1、a2、a3、...、an、...的等比数列,它的通项公式为an=a1*r^(n-1),其中a1是首项,r是公比,n是项数。

二、等比数列的性质1. 公比为0时,等比数列为常数列。

2. 公比大于1时,等比数列呈递增趋势。

3. 公比小于1但大于0时,等比数列呈递减趋势。

4. 公比小于-1但大于-1时,等比数列呈交替增减趋势。

5. 等比数列的首项与公比的正负关系决定了数列的增减趋势。

三、等比数列的通项公式等比数列的通项公式可以通过下述推导得出:设等比数列的首项是a1,公比是r,第n项是an,第n-1项是an-1。

an=a1*r^(n-1) (等比数列的通项公式)an-1=a1*r^(n-2) (等比数列的通项公式)将第一个式子除以第二个式子得:an/an-1=(a1*r^(n-1))/(a1*r^(n-2))=r即等比数列的两项之比恒等于公比r。

四、等比数列的和等比数列的前n项和可以通过以下公式计算得出:Sn=a1*(1-r^n)/(1-r) (等比数列的前n项和公式)其中Sn是前n项的和。

特殊情况下,当公比r=1时,等比数列的前n项和可以简化为Sn=n*a1。

五、等比中项等比数列中,若数列中的某个数是它前后两个数的几何平均数,则称该数为等比数列的等比中项。

设该数为x,前一项是a,后一项是b,根据等比数列的性质可得:a/x=x/b即x^2=ab,解得x=√(ab)。

六、等比数列的应用1. 判断一组数是否构成等比数列,可通过两项之比是否恒等于公比来判断。

2. 求等比数列的前n项和,可使用等比数列的前n项和公式Sn=a1*(1-r^n)/(1-r)。

高中数学必修5__第二章《数列》复习知识点总结与练习(一)

高中数学必修5__第二章《数列》复习知识点总结与练习(一)

高中数学必修5__第二章《数列》复习知识点总结及练习(一)一.数列的概念及简单表示法知识能否忆起1.数列的定义、分类及通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数.②数列的项:数列中的每一个数.(2)数列的分类:(3)数列的通项公式:如果数列{a n}的第n项及序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且任一项a n及它的前一项a n-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.1.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅及构成它的“数”有关,而且还及这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列及数集的区别.2.数列的函数特征数列是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应的函数解析式,即f (n )=a n (n ∈N *).3.考点(一)由数列的前几项求数列的通项公式[例1] (2012·天津南开中学月考)下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =-1n+12C .a n =2-⎪⎪⎪⎪⎪⎪⎪⎪sin n π2 D .a n =-1n -1+32[自主解答] 由a n =2-⎪⎪⎪⎪⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,….[答案] C 由题悟法1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项及n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n或(-1)n +1来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想以题试法写出下面数列的一个通项公式. (1)3,5,7,9,…;(2)12,34,78,1516,3132,…;(3)3,33,333,3 333,…;(4)-1,32,-13,34,-15,36,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n-1).(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+-1nn,也可写为a n=⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(二)由a n 及S n 的关系求通项a n已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步:(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1及n ≥2两段来写.[例2] 已知数列{a n }的前n 项和S n ,根据下列条件分别求它们的通项a n .(1)S n =2n 2+3n ;(2)S n =3n+1.[自主解答] (1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5,当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,故a n =4n +1.(2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1.当n =1时,2×31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧4, n =1,2×3n -1, n ≥2.以题试法(2012·聊城模拟)已知数列{a n }的前n 项和为S n ,且S n =nn +1,则1a 5=( )A.56B.65 C.130D .30 解析:选D 当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1n n +1,则a 5=15×6=130.(三)数列的性质[例3] 已知数列{a n }的通项公式为a n =n 2-21n +20. (1)n 为何值时,a n 有最小值?并求出最小值; (2)n 为何值时,该数列的前n 项和最小? [自主解答] (1)因为a n =n2-21n +20=⎝ ⎛⎭⎪⎪⎫n -2122-3614,可知对称轴方程为n =212=10.5.又因n ∈N *,故n =10或n =11时,a n 有最小值,其最小值为112-21×11+20=-90.(2)设数列的前n 项和最小,则有a n ≤0,由n 2-21n +20≤0,解得1≤n ≤20,故数列{a n }从第21项开始为正数,所以该数列的前19或20项和最小. 由题悟法1.数列中项的最值的求法根据数列及函数之间的对应关系,构造相应的函数a n =f (n ),利用求解函数最值的方法求解,但要注意自变量的取值.2.前n 项和最值的求法(1)先求出数列的前n 项和S n ,根据S n 的表达式求解最值; (2)根据数列的通项公式,若a m ≥0,且a m +1<0,则S m 最大;若a m ≤0,且a m +1>0,则S m 最小,这样便可直接利用各项的符号确定最值. 以题试法3.(2012·江西七校联考)数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大值是( )A .310B .19 C.119 D.1060解析:选C a n =1n +90n ,由基本不等式得,1n +90n≤1290,由于n ∈N *,易知当n =9或10时,a n =119最大.二.等差数列及其前n 项和 知识能否忆起一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项及它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n n -12d =a 1+a n n2.三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q .2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd .3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d .4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.1.及前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n2+⎝⎛⎭⎪⎪⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元及解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.考点等差数列的判断及证明[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n+3(n ≥2,且n ∈N *).(1)求a 2,a 3的值;(2)设b n =a n +32n(n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n+3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *, ∵b n +1-b n =a n +1+32n +1-a n +32n=12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列;(2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n a 1+a n2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6.(1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6.∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列. 等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.[自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n a 1+a n2=n 2+2n2=n (n +1). 因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2.从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0,解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧ a 1+5d =10,5a 1+10d =5.解方程组得⎩⎪⎨⎪⎧ a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44.(2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d 9=1,由此解得d =6,即公差为6.答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9a 1+a 92=9a 4+a 62=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广及变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧ 22-3k ≥0,22-3k +1≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7. 答案:(1)35 (2)B三.等比数列及其前n 项和 [知识能否忆起]1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项及它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 及b 的等比中项.即:G 是a 及b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 11-q n 1-q=a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r .特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m,S2m-S m,S3m-S2m,…仍是等比数列(此时q≠-1);a n=a m q n-m.1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由a n+1=qa n,q≠0并不能立即断言{a n}为等比数列,还要验证a1≠0.2.等比数列的前n项和S n(1)等比数列的前n项和S n是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1及q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误考点等比数列的判定及证明典题导入[例1] 已知数列{a n}的前n项和为S n,且a n+S n=n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{a n}的通项公式.[自主解答] (1)证明:∵a n+S n=n,①∴a n+1+S n+1=n+1.②②-①得a n+1-a n+a n+1=1,∴2a n+1=a n+1,∴2(a n+1-1)=a n-1,∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,c 1=-12. 又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列. (2)由(1)可知c n =⎝ ⎛⎭⎪⎪⎫-12·⎝ ⎛⎭⎪⎪⎫12n -1=-⎝ ⎛⎭⎪⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎪⎫12n .在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列.证明:∵由(2)知a n =1-⎝ ⎛⎭⎪⎪⎫12n , ∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎪⎫12n -⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n -1 =⎝ ⎛⎭⎪⎪⎫12n -1-⎝ ⎛⎭⎪⎪⎫12n =⎝ ⎛⎭⎪⎪⎫12n . 又b 1=a 1=12也符合上式,∴b n =⎝ ⎛⎭⎪⎪⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }( )A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 解析:选A 由log a a n +1-log a a n =2,得log a a n +1a n=2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列. 等比数列的基本运算典题导入[例2] {a n }为等比数列,求下列各值:(1)a 6-a 4=24,a 3a 5=64,求a n ;(2)已知a 2·a 8=36,a 3+a 7=15,求公比q.解:(1)设数列{a n }的公比为q ,由题意得⎩⎪⎨⎪⎧ a 6-a 4=a 1q 3q 2-1=24, ①a 3a 5=a 1q 32=64. ②由②得a 1q 3=±8,将a 1q 3=-8代入①中,得q 2=-2(舍去).将a 1q 3=8代入①中,得q 2=4,q =±2.当q =2时,a 1=1,∴a n =a 1q n -1=2n -1.当q =-2时,a 1=-1,∴a n =a 1qn -1=-(-2)n -1. ∴a n =2n -1或a n =-(-2)n -1. (2)∵a 2·a 8=36=a 3·a 7,而a 3+a 7=15,∴⎩⎪⎨⎪⎧ a 3=3,a 7=12或⎩⎪⎨⎪⎧ a 3=12,a 7=3. ∴q 4=a 7a 3=4或14. ∴q =±2或q =±22.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0).因为a 2,a 4,a 8成等比数列,所以(2+3d )2=(2+d )·(2+7d ),解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n ,则S n =32+34+…+32n =91-9n 1-9=98(9n -1). 等比数列的性质典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B .32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( )A .1∶2B .2∶3C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3. log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3, 故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6),将S 6=12S 3代入得S 9S 3=34. [答案] (1)B (2)C由题悟法等比数列及等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以及等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n) B .16(1-2-n) C.323(1-4-n ) D.323(1-2-n )解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7. 法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.(2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝ ⎛⎭⎪⎪⎫122n -5.故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎪⎪⎫1-14n 1-14=323(1-4-n).练习题1.(教材习题改编)数列1,23,35,47,59…的一个通项公式是( )A .a n =n 2n +1B .a n =n2n -1C .a n =n2n -3 D .a n =n2n +3 答案:B2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64 解析:选A a 8=S 8-S 7=64-49=15. 3.已知数列{a n }的通项公式为a n =nn +1,则这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列解析:选A a n +1-a n =n +1n +2-n n +1=n +12-n n +2n +1n +2=1n +1n +2>0.4.(教材习题改编)已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2·3n -1n 为偶数,2n -5n 为奇数,则a 4·a 3=________.解析:a 4·a 3=2×33·(2×3-5)=54. 答案:545.已知数列{a n }的通项公式为a n =pn +q n ,且a 2=32,a 4=32,则a 8=________.解析:由已知得⎩⎪⎨⎪⎧2p +q 2=32,4p +q 4=32,解得⎩⎪⎨⎪⎧p =14,q =2.则a n =14n +2n ,故a 8=94.答案:941.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4解析:选 B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧ 2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎪⎪⎫2a 4-π3=( )A.32B.12C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝ ⎛⎭⎪⎪⎫2a 4-π3=sin ⎝⎛⎭⎪⎪⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .176 解析:选B S 11=11a 1+a 112=11a 4+a 82=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________.解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n . 答案:1 14n 2+14n1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10a 1+a 102=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--210-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.解析:∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+3-2n ]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1T n 是等差数列;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1T n 是首项为2,公差为1的等差数列.(2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =nn +1.故a nT n=n .∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n n +12.12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值. 解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12a 11+a 222=0,故a 11+a 22=2a 1+31d =0.又∵a 1=31,∴d =-2,∴S n =na 1+n n -12d =31n -n (n -1)=32n -n 2.(2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256. 法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值, 应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( )A .4B .8C .16D .32 解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝ ⎛⎭⎪⎪⎫32nB .4·⎝ ⎛⎭⎪⎪⎫23nC .4·⎝ ⎛⎭⎪⎪⎫32n -1D .4·⎝ ⎛⎭⎪⎪⎫23n -1解析:选C (a +1)2=(a -1)(a +4)⇒a =5,a 1=4,q =32,故a n =4·⎝ ⎛⎭⎪⎪⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =121-2n1-2=2n -1-12. 答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-21.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( )A .-12 B .1C .-12或1 D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3.当q ≠1时,S 3=a 11-q 31-q=a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152B.154C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 11-241-2a 1×2=152.3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn=( )A.32B.32或23C.23D .以上都不对 解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b=4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 11-q 51-q =1--253=11.答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________.解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n,∴1a n =⎝ ⎛⎭⎪⎪⎫12n ,1a 2n =⎝ ⎛⎭⎪⎪⎫14n,即数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n 是首项为14,公比为14的等比数列,∴1a 21+1a 22+…+1a 2n =14⎝ ⎛⎭⎪⎪⎫1-14n1-14=13⎝⎛⎭⎪⎪⎫1-14n . 答案:2 13⎝⎛⎭⎪⎪⎫1-14n10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列.(1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,又当n ≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2.∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=21-4n1-4=24n-13.∴a 1+a 3+…+a 2n +1=1+24n-13=22n +1+13.11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列.(1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1. 当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 11-3n1-3=12a 1·3n-12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5,得⎩⎪⎨⎪⎧5a 1+5×5-12d =105,a 1+9d =2a 1+4d ,解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *,若a n =7n ≤72m,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列,故S m =b 11-q m 1-q=7×1-49m1-49=7×72m-148=72m+1-7.48。

人教版高一数学必修5--第二章数列总结

人教版高一数学必修5--第二章数列总结

人教版高一数学必修5--第二章数列总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系: a n =⎩⎨⎧S 1n =1S n -S n -1n ≥2.(2)等差数列a n =a 1+(n -1)d =a m +(n -m )d .S n =12n (a 1+a n ),S n =na 1+12n (n -1)d . A =a +b2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m .S n =⎩⎨⎧na 1 q =1a 1-a n q 1-q =a 11-qn 1-qq ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *), 在等差数列{a n }中有:a m +a n =a p +a q ; 在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式.(1)1,1,57,715,931,…;2.定义法等差数列{a n}是递增数列,前n项和为S n,且a1,a3,a9成等比数列,S5=a25.求数列{a n}的通项公式.3.前n项和法(1)已知数列{a n}的前n项和S n=n2+3n+1,求通项a n;(2)已知数列{a n}的前n项和S n=2n+2,求通项a n.4.累加法已知{a n}中,a1=1,且a n+1-a n=3n(n∈N*),求通项a n.5.累乘法已知数列{a n},a1=13,前n项和S n与a n的关系是S n=n(2n-1)a n,求通项a n.6.辅助数列法已知数列{a n}满足a1=1,a n+1=3a n+2(n∈N*).求数列{a n}的通项公式.7.倒数法已知数列{a n}中,a1=1,a n+1=a na n+1(n∈N*).求通项a n.专题二数列的前n项和的求法1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解.求和:S n=112+214+318+…+(n+12n).2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n+k=1k·(1n-1n+k);(2)若{a n}为等差数列,公差为d,则1a n·a n+1=1d(1a n-1a n+1);(3)1n+1+n=n+1-n等.3.错位相减法若数列{a n}为等差数列,数列{b n}是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以等比数列{b n}的公比q,然后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n}中,a1=3,点(a n,a n+1)在直线y=x+2上.(1)求数列{a n}的通项公式;(2)若b n=a n·3n,求数列{b n}的前n项和T n.4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.附注:常用结论1)1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.(2)等差数列与等比数列对比小结:等差数列等比数列定义1.1.公式2.2.性质1.,称为与的等差中项2.若(、、、),则3.,,成等差数列4.1.,称为与的等比中项2.若(、、、),则3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。

高中数学必修5数列复习提纲.doc

《数列》复习1.数列的通项求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。

(2)公式法:等差数列与等比数列。

(3)利用n S 与n a 的关系求n a :11,(1),(2)n nn S n a S S n -=⎧=⎨-≥⎩(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法 2.等差数列{}n a 中:(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-; (3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211221213,,m m m m m m ma a a a a a a a a +++++++++++++仍成等差数列.(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d dS n a n =+-, 2121n n S a n -=-,()(21)n n nn A af n f n B b =⇒=-.(7)若m n p q +=+,则m n p q a a a a +=+;若2p qm +=,则2p q m a a a += ,()0p q p q a q a p p q a +==≠⇒=,,()()p q p q S q S p p q S p q +==≠⇒=-+;m n m n S S S mnd +=++.(8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2a bA +=叫做,a b 的等差中项。

(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。

3.等比数列{}n a 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。

人教版高中数学必修五《数列》基础知识要点总结

3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
③根据递推公式求通项公式:
(1)迭代法:对于形如 型的递推公式,采取逐次降低“下标”数值的反复迭代方式,最终使 与初始值 (或 )建立联系的方法就是迭代法.
(2)累加法:形如 的递推公式可用 求出通项;
第二章 《数列》基础知识小结
一、数列的概念与表示方法
1、数列的概念
按照一定顺序排列的一列数叫做数列。
2、数列的通项公式
如果数列的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
3、通项公式的作用
①求数列中任意一项;
②检验某数是否是该数列中的一项.
4、数列的分类
①根据数列项数的多少分——有穷数列、无穷数列
特别地,等比数列 中,若 ( , , ),则 。
7、性质3
等差数列 的公差为 ,若 、 、 ,则 , , ,…, ,…构成一个公差 为等差数列(其中 与 为常数)。
在等比数列 公比为 中,若 , ,则 , , ,…, ,…构成一个公比为 的等比数列。
8、性质4
若数列 与 分别是公差为 和 的等差数列,则数列 ( , 是常数)是公差为 的等差数列。
若 和 分别是公比为 和 的等比数列,则数列 , 仍是等比数列,它们的公比分别为 , 。
9、等差(比)数列的单调性
①若 ,则 为递增数列;
②若 ,则 为递减数列;
③若 ,则 为常数列。
①当 时, 为常数列;
②当 时, 为摆动数列;
③当 , 时, 为递增数列;
④当 , 时, 为递减数列;
⑤当 , 时, 为递减数列;
(3)累乘法:形如 的递推公式可用 求出通项;

高中数学必修5 数列知识点

必修5.2.1 数列及其相关概念二.重要题型1.“知三求二”原则例1.(1)在等差数列{}n a 中, 已知153,,562n n a a S ==-=-,求,n d ; (2)在等差数列{}n a 中,已知2,5,35n d n S ===,求1,n a a ; (3)在等比数列{}n a 中,已知11,32,63,n n a a S ===,求,n q ;2、列二元方程组求1,a d 或者1,a q ;例2.(1)在等比数列{}n a 中,若1346510,,4a a a a +=+=求45,a S (2)(2013北京)在等比数列{}n a 中,若243520,40,a a a a +=+=求,n q S(3)在等差数列{}n a 中,451,10,a S ==求n S 的最大值及对应n 的值。

练习1. 在等差数列{}n a 中,3913,45,a S =-=-问n S 是否存在最大值或最小值。

若存在,求出其最值及对应n 的值。

2.在等比数列当{}n a 中,212a a -=且22a 是13a 和3a 的等差中项,求该数列的前n 项和。

总结:1.必须已知条件是可以列两个关于1,a d 或1,a q 的方程.2.公式选择:求1,a d 时11(1)(1)2n n a a n dn n S na d =+--=+⎧⎪⎨⎪⎩,求1,a q 时11(1)1n n n n a aq a q S q -=-=-⎧⎪⎨⎪⎩3.等差数列{}n a 中,求最值时使用2n S An Bn =+的二次函数的最值决定。

必修5.2.2 求数列通项公式的常见方法一.公式法:已知n a 是等差或等比数列例1.(1)已知数列1,1,3,5,7,----⋅⋅⋅依次下去,求数列的通项公式,请问-89是该数列的项吗?(2)已知等比数列{}n a 中,已知312n n S -=,求n a .二.已知n S 求n a例2.已知数列{}n a 中,已知5n n S =求1,n a a ;练习21.已知数列{}n a 中,0n a >,且2(1)4n n a S +=,求n a2.已知数列{}n a 中,且n n a S n +=,(1)设1n n c a =-,求证:{}n c 是等比数列; (2)求n a三.或常数d )例3、已知数列n 中,且112,21n n a a n +==+-,求n a练习3.1.已知数列{}n a 中,且111,21n n n a a a +==++,求n a2.已知数列{}n a 中,121,2a a ==且2122n n n a a a ++=-+, (1)设1n n n b a a +=-,求证{}n b 是等差数列. (2)求n a四.或常数q ) 例4.已知数列{}n a 中,且12131,,(2)2n n a a na n a +===+,求n a ; 练习4.已知等比数列{}n a 中,首相为1a ,公比为q ,求证:11n n a a q -=;五.递推公式法:1n n a Aa B +=+(,A B 为常数)此种形式的递推公式,一定可以化成:公比q A =的等比数列{}n a λ+(λ为常数),所以这种题目我们可以先设数列为:1n n a A a λλ++=+(或1()1n n B a A a A λλλ++=+⇒=- 例5.(2014全国)已知数列{}n a 中,且111,31n n a a a +==+,求n a练习5.已知数列{}n a 的前n 项和2142n n n S a -=--,(1)设1n a +与n a 的关系;(2)求n a必修5.2.3 求数列前n 项和的常见方法一.1.等差数列:12n n S =或1(1)2n n n S na d -=+;2.等比数列:1(1)1n n a q S q-=-或1(1)1n n a a qS q q -=≠-;1(1)n S na q == 3.2222(1)(21)1236n n n n +++++⋅⋅⋅+=4.223333(1)1234n n n ++++⋅⋅⋅+=例1.(2014重庆)已知{}n a 是首相是1,公差为2的等差数列,n S 是{}n a 的前n 项和,(1)求,n n a S ;(2)设{}n b 是首项是2,公比q 满足244(1)0q a q S -++=,求{}n b 的通项公式和前n 项和。

(完整)人教版高中数学必修五数列复习提纲及例题

《数列》复习1.数列的通项求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与项数n 在变化过程中的联系,初步归纳公式。

(2)公式法:等差数列与等比数列。

(3)利用n S 与n a 的关系求n a :11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法2.等差数列{}n a 中:(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-; (3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211221213,,m m m m m m ma a a a a a a a a +++++++++++++仍成等差数列.(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d dS n a n =+-, 2121n n S a n -=-,()(21)n n nn A a f n f n B b =⇒=-.(7)若m n p q +=+,则m n p q a a a a +=+;若2p qm +=,则2p q m a a a +=,()0p q p q a q a p p q a +==≠⇒=,,()()p q p q S q S p p q S p q +==≠⇒=-+;m n m n S S S mnd +=++.(8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2a bA +=叫做,a b 的等差中项。

(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。

3.等比数列{}n a 中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数列》复习
1.数列的通项
求数列通项公式的常用方法:
(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与
项数n 在变化过程中的联系,初步归纳公式。

(2)公式法:等差数列与等比数列。

(3)利用n S 与n a 的关系求n a :11,(1),(2)
n n n S n a S S n -=⎧=⎨-≥⎩
(4)构造新数列法;(5)逐项作差求和法(叠加法);(6)逐项作商求积法(累乘法)
2.等差数列{}n a 中:
(1)等差数列公差的取值与等差数列的单调性;(2)1(1)n a a n d =+-()m a n m d =+-;
(3){}n ka 也成等差数列;(4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5)1211221213,,m m m m m m m a a a a a a a a a +++++++++++++ 仍成等差数列.
(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22n d d S n a n =+-, 1
212--=n n n n T S b a (7)若m n p q +=+,则m n p q a a a a +=+;若2p q m +=,则2p q m a a a +=. (8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;
(9)等差中项:若,,a A b 成等差数列,则2
a b A +=叫做,a b 的等差中项。

(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。

3.等比数列{}n a 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。

(2)11n n a a q -=n m m a q -=;
(3){||}n a 、{}n ka 成等比数列;{}{}n n a b 、成等比数列{}n n a b ⇒成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(5)1211,,m k k k m a a a a a a ++-++++++ 成等比数列.
(6)111111 (1) (1)(1) (1) (1)1111n n n n na q na q S a a a a q a q q q q q q q q ==⎧⎧⎪⎪==--⎨⎨-+≠=≠⎪⎪----⎩⎩
. (7)p q m n p q m n b b b b +=+⇒⋅=⋅;2
2m p q m p q b b b =+⇒=⋅.
4.数列求和的常用方法:
(1)公式法:①等差数列求和公式;②等比数列求和公式

1
123(1)
2
n n n
++++=+
,22221
123(1)(21)
6
n n n n
++++=++

2
135(21)
n n
++++-=
,2
135(21)(1)
n n
+++++=+
.
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前n和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项
相消法求和.常用裂项形式有:①111
=-②1111
()
=-。

相关文档
最新文档