人教版高中数学必修5《数列》练习题(有答案)

合集下载

(完整版)数学必修五数列练习题(含答案)

(完整版)数学必修五数列练习题(含答案)


A. S5 S6 B. S5 S6 C. S5 S7 D. S6 S7
17.各项都是正数的等比数列
{
an}
中,
3a1 ,
1 2
a3 ,
2a2
成等差数列,
则 a2012 a2014
(
)
a2013 a2011
A. 1 B. 3 C. 6 D. 9
18.等差数列 { an} , { bn} 的前 n 项和分别为 Sn , Tn ,若 Sn
线
A. 18
B
. 24
C
. 60 D . 90


4.已知等比数列 { an} 的公比为正数,且 a3 · a9 =2 a52 , a2 =1,则 a1=( )


A. 1
B
2

C . 2 D .2
2
2


5.已知等差数列 { an} 的前 n 项和为 Sn ,且 a4 18 a5 ,则 S8 =(
(Ⅰ)求 a 2, a 3, a4 ;











线

… …
28.已知数列 { a n} 的前 n 项和 Sn 2 n ,数列 { bn} 满足 b1 1,bn 1 bn (2n 1) n 1 ,2 ,3 ,L .

( 1)求数列 { a n } 的通项 a n ;


( 2)求数列 { bn } 的通项 bn ;





数列
26.若三个数 5 2 6, m,5 2 6 成等差数列,则 m=________.

必修5数列测试题及答案

必修5数列测试题及答案

必修5数列测试题及答案一、选择题(每题4分,共20分)1. 已知数列{a_n}是等差数列,且a_1=1,a_4=7,那么a_7的值为()。

A. 13B. 14C. 15D. 162. 等比数列{b_n}中,b_1=2,公比q=3,则b_5的值为()。

A. 96B. 48C. 24D. 123. 数列{c_n}的前n项和为S_n,若S_3=9,S_5=20,则c_4+c_5的值为()。

A. 11B. 12C. 13D. 144. 已知数列{d_n}满足d_n+1=2d_n+1,且d_1=1,则d_3的值为()。

A. 5B. 7C. 9D. 115. 已知数列{e_n}满足e_n=n^2-n+1,求e_1+e_2+...+e_10的值。

A. 385B. 385C. 395D. 405二、填空题(每题4分,共20分)6. 若数列{f_n}是等差数列,且f_1=3,f_3=9,则f_5=______。

7. 设数列{g_n}是等比数列,g_1=4,g_2=8,则g_3=______。

8. 若数列{h_n}满足h_n+1=3h_n+2,且h_1=1,则h_3=______。

9. 已知数列{i_n}满足i_n=n^3-n,求i_1+i_2+...+i_5的值。

10. 设数列{j_n}满足j_n=2^n-1,求j_1+j_2+...+j_4的值。

三、解答题(每题10分,共20分)11. 已知数列{k_n}是等差数列,且公差d=3,k_1=2,求k_5的值。

12. 设数列{l_n}是等比数列,公比q=2,l_1=3,求l_4的值。

四、综合题(每题15分,共30分)13. 已知数列{m_n}满足m_n+1=4m_n-3,且m_1=2,求m_5的值。

14. 设数列{n_n}满足n_n=2n-1,求数列的前10项和。

答案:一、选择题1. A2. A3. B4. D5. A二、填空题6. 157. 168. 139. 12510. 31三、解答题11. 1712. 24四、综合题13. 5714. 100。

高中数学必修五”数列”练习题(含答案)

高中数学必修五”数列”练习题(含答案)

第二章 数列【基础练习】1.下列说法中,正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项是1+1k D .数列0,2,4,6,8,…可表示为a n =2n (n ∈N *)2.已知n ∈N +,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数;②a n =1+(-1)n 2;③a n =1+cos n π2;④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④3.如下图,下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1 B .a n =3nC .a n =3n -2nD .a n =3n -1+2n -34.数列{a n }中,a 1=12,a 2=14,a n +a n +2+a n ·a n +2=1(n ∈N *),则a 5+a 6等于( )A .34B .56C .712D .14155.函数f (x )满足f (1)=1,f (n +1)=f (n )+3(n ∈N *),则f (n )是( ) A .递增数列 B .递减数列 C .常数列D .不能确定6.已知数列{a n }满足a 1=12,a n -1-a n =(a n a n -1)n (n ≥2),则该数列的通项公式a n =________.7.写出数列的一个通项公式,使它的前4项分别是下列各数: (1)12,34,58,716; (2)1+122,1-342,1+562,1-782;(3)7,77,777,7 777; (4)0,2,0, 2.8.已知数列{a n }满足a 1=4,a n +1-a n =3,试写出这个数列的前6项并猜想该数列的一个通项公式.【能力提升】9.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n-12n -1n 2+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +) D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 10.(2019年河南驻马店期末)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 的值为( )A .6B .7C .8D .911.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A .163B .133C .0D .512.(2019年江苏常州模拟)在一个数列中,如果对任意n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.13.已知数列{a n }的通项公式是a n =1n 2+5n +4.(1)你能判断该数列是递增的,还是递减的吗? (2)该数列中有负数项吗?第二章 数列【基础练习】1.下列说法中,正确的是( ) A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项是1+1k D .数列0,2,4,6,8,…可表示为a n =2n (n ∈N *) 【答案】C【解析】A 错,{1,3,5,7}是集合;B 错,是两个不同的数列,顺序不同;C 正确,a k =k +1k =1+1k;D 错,a n =2(n -1)(n ∈N *).2.已知n ∈N +,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数;②a n =1+(-1)n 2;③a n =1+cos n π2;④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④【答案】A【解析】检验知①②③都是所给数列的通项公式.3.如下图,下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1 B .a n =3nC .a n =3n -2nD .a n =3n -1+2n -3【答案】A【解析】这四个图形中,着色三角形的个数依次为1,3,9,27,都是3的指数幂,猜想数列的通项公式为a n =3n -1.4.数列{a n }中,a 1=12,a 2=14,a n +a n +2+a n ·a n +2=1(n ∈N *),则a 5+a 6等于( )A .34B .56C .712D .1415【答案】A【解析】把n =1代入a n +a n +2+a n ·a n +2=1可得a 1+a 3+a 1·a 3=1,即12+a 3+12a 3=1,解得a 3=13;同理把n =2代入可得14+a 4+14a 4=1,解得a 4=35;同理把n =3代入可得13+a 5+13a 5=1,解得a 5=12;同理把n =4代入可得35+a 6+35a 6=1,解得a 6=14,故a 5+a 6=12+14=34.故选A . 5.函数f (x )满足f (1)=1,f (n +1)=f (n )+3(n ∈N *),则f (n )是( ) A .递增数列 B .递减数列 C .常数列 D .不能确定 【答案】A【解析】∵f (n +1)-f (n )=3(n ∈N *),∴f (2)>f (1),f (3)>f (2),f (4)>f (3),…,f (n +1)>f (n ),…,∴f (n )是递增数列.6.已知数列{a n }满足a 1=12,a n -1-a n =(a n a n -1)n (n ≥2),则该数列的通项公式a n =________.【答案】2n 2+n +2【解析】∵数列{a n }满足a 1=12,a n -1-a n =(a n a n -1)n ,∴1a n -1a n -1=n .∴1a n =⎝⎛⎭⎫1a n -1a n -1+⎝⎛⎭⎫1a n -1-1a n -2+…+⎝⎛⎭⎫1a 2-1a 1+1a 1=n +(n -1)+…+2+2=n (n +1)2+1=n 2+n +22.∴a n =2n 2+n +2.7.写出数列的一个通项公式,使它的前4项分别是下列各数: (1)12,34,58,716; (2)1+122,1-342,1+562,1-782;(3)7,77,777,7 777; (4)0,2,0, 2.【解析】(1)∵12,34,58,716,观察每一项的分子是连续的奇数,分母是2n , ∴a n =2n -12n ,n ∈N *.(2)∵1+122,1-342,1+562,1-782,观察每一项的组成是1加或减一个分数的形式, 分数的分子是连续的奇数,分母是连续偶数的平方,∴a n =1+(-1)n +1·2n -1(2n )2,n ∈N *.(3)∵7,77,777,7 777,∴该数列可化为79×(10-1),79×(100-1),79×(1 000-1),79×(10 000-1).∴a n =79(10n -1),n ∈N *.(4)∵0,2,0,2,∴该数列可化为(1-1)·22,(1+1)·22,(1-1)·22,(1+1)·22.∴a n =[1+(-1)n ]·22,n ∈N *.8.已知数列{a n }满足a 1=4,a n +1-a n =3,试写出这个数列的前6项并猜想该数列的一个通项公式.【解析】由已知,得a 1=4,a n +1=a n +3, ∴a 2=a 1+3=4+3=7, a 3=a 2+3=7+3=10, a 4=a 3+3=10+3=13, a 5=a 4+3=13+3=16, a 6=a 5+3=16+3=19.由以上各项猜测数列的通项公式是a n =3n +1.【能力提升】9.数列{a n }:1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n+12n -1n 2+n(n ∈N +) B .a n =(-1)n-12n -1n 2+3n(n ∈N +)C .a n =(-1)n +12n -1n 2+2n(n ∈N +) D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 【答案】D【解析】观察数列各项,可写成31×3,-52×4,73×5,-94×6.故选D .10.(2019年河南驻马店期末)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 的值为( )A .6B .7C .8D .9【答案】C【解析】∵S n =n 2-9n ,∴n ≥2时,a n =S n -S n -1=2n -10.a 1=S 1=-8适合上式,∴a n=2n -10(n ∈N *).∴5<2k -10<8,得7.5<k <9.又k ∈N *,∴k =8.11.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A .163B .133C .0D .5 【答案】C【解析】由题意得,a n =-3n 2+15n -18,则对称轴方程n =-152×(-3)=52,又n 取整数,所以当n =2或3时,a n 取最大值为a 3=a 2=-3×22+15×2-18=0.故选C .12.(2019年江苏常州模拟)在一个数列中,如果对任意n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.【答案】28【解析】依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.13.已知数列{a n }的通项公式是a n =1n 2+5n +4.(1)你能判断该数列是递增的,还是递减的吗? (2)该数列中有负数项吗?【解析】(1)对任意n ∈N *,∵a n +1-a n =1(n +1)2+5(n +1)+4-1n 2+5n +4=-2(n +3)[(n +1)2+5(n +1)+4](n 2+5n +4)<0,∴数列{a n }为递减数列. (2)令a n <0,即1n 2+5n +4<0,∴n2+5n+4<0,解得-4<n<-1,而n∈N*,故数列{a n}没有负数项.。

最新数学必修五数列练习题(含答案)

最新数学必修五数列练习题(含答案)
且数列 是“和等比数列”,则 .
25.如果数列 的前 项和 ,那么这个数列是数列
26.若三个数 成等差数列,则m=________.
27.已知等比数列 中, 为前 项和且 , ,
(1)求数列 的通项公式。
(2)设 ,求 的前 项和 的值。
28.已知数列 的前 项和 ,数列 满足 .
(1)求数列 的通项 ;
A. B. C. D.பைடு நூலகம்
9.公比为 的等比数列 的各项都是正数,且 ,则 =( )
(A) (B) (C) (D)
10.数列 为等差数列, 为等比数列, ,则 ( )
A. B. C. D.
11.已知等比数列 中, , ,则公比 ( )
(A) (B)
(C) (D)
12.观察下列数的特点,1,1,2,3,5,8,x,21,34,55,…中,其中x是( )
A. B. C. D.2
5.已知等差数列 的前n项和为 ,且 =( )
A.18 B.36 C.54 D.72
6.等比数列 中, ,则 ( )
A.4 B.8 C.16 D.32
7.数列 中, ,则此数列前30项的绝对值的和为 ( )
A.720 B.765 C.600 D.630
8.已知等比数列前 项和为 ,若 , ,则 ( )
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。
1、DIY手工艺市场状况分析
营销环境信息收集索引
体现市民生活质量状况的指标---恩格尔系数,上海也从1995年的53.4%下降到了2003年的37.2%,虽然与恩格尔系数多在20%以下的发达国家相比仍有差距,但按照联合国粮农组织的划分,表明上海消费已开始进入富裕状态(联合国粮农组织曾依据恩格尔系数,将恩格尔系数在40%-50%定为小康水平的消费,20%-40%定为富裕状态的消费)。

必修五-数列经典练习题带答案

必修五-数列经典练习题带答案

word 格式-可编辑-感谢下载支持必修五-数列一、选择题(题型注释)1.数列1,3,6,10,…的一个通项公式是( )A .12+-n nB .(1)2n n +C .(1)2n n - D .321-+n2.已知数列1是它的( ) A .第22项 B .第23项 C .第24项 D .第28项 3.数列1,2,4,8,16,32,的一个通项公式是( )A .21n a n =-B .12n n a -= C .2n n a = D .12n n a +=4.数列1,3,7,15,…的通项公式n a 等于( )A 、n 2B 、n 2+1C 、n 2-1D 、12-n 5.数列23,45-,87,169-,…的一个通项公式为( ) A .n n nn a 212)1(+⋅-= B .n n n n a 212)1(+⋅-=C .n nn n a 212)1(1+⋅-=+ D .n n n n a 212)1(1+⋅-=+6.数列5791,,,, (81524)--的一个通项公式是( ) A .1221(1)()n n n a n N n n ++-=-∈+B .1221(1)()3n n n a n N n n -+-=-∈+C .1221(1)()2n n n a n N n n ++-=-∈+D .1221(1)()2n nn a n N n n-++=-∈+7.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .14 8.数列 ,10,6,3,1的一个通项公式是( ) A .)1(2--=n n a n B .12-=n a n C .2)1(+=n n a n D .2)1(-=n n a n9.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .27 10.已知数列{}n a 的前n 项和为332412++=n n S n ,求这个数列的通项公式. 11.数列1,3,5,7,9,--……的一个通项公式为( )A .(1)(12)nn a n =-- B .21n a n =- C .(1)(21)n n a n =-- D .(1)(21)nn a n =-+12.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =( ) A .12-n B .121-n C .1)32(-n D .1)23(-n13.已知数列{}n a 的前n 项和()21n S n n =+,则5a 的值为( ) A .80 B .40 C .20 D .10 14.已知数列{}n a 满足110,2n n a a a n +==+那么2009a 的值是( )A .22009B .20082007⨯C .20092010⨯D .20082009⨯15.设已知数列{}n a 对任意的N n m ∈,,满足n m n m a a a +=+,且12=a ,那么10a 等于( ) A.3 B.5 C.7 D.9 16.在等差数列{}n a 中,已知a 1-a 4-a 8-a 12+a 15=2,那么S 15=( ) A .-30 B .15 C .-60 D .-15 17.在数列{}n a 中,11=a ,21=-+n n a a ,则51a 的值为 ( ) A .99 B .101 C .102 D .4918.已知等差数列{n a }中,882=+a a ,则该数列前9项和9s 等于( ) A .18 B .27 C .36 D .4519.已知数列}{n a 是等差数列,且48111032=+++a a a a ,则76a a +等于( )A .12B .18C .24D .3020.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .1821.等差数列{}n a 中,14736939,27,a a a a a a ++=++=则数列{}n a 前9项的和9S 等于( ) A .66 B .99 C .144 D .297word 格式-可编辑-感谢下载支持22.设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a = ( ) A .6- B .4- C .2- D .2 23.在等差数列{}n a 中,若1201210864=++++a a a a a ,则7513a a -的值为( ) A .8 B .12 C .16 D .7224.设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ) A .6- B .4- C .2- D .225.各项均为正数的等差数列{}n a 中,4936a a =,则前12项和12S 的最小值为( ) A .78 B .48 C .60 D .72 26.已知等差数列}{n a 的前n 项和为n S ,且854,18S a a 则-==( )A .18B .36C .54D .72 27.设等差数列{}n a 的前n 项和为n S ,若111a =-, 466a a +=-,则当n S 取最小值时,n = ( )A .6B .7C .8D .9 28.等差数列{}n a 的前n 项和为Sn,若230,100,n n S S ==则3n S =( )A .130B .170C .210D .26029.已知数列{}n a 满足12a =,110n n a a +-+=()n N *∈ ,则此数列的通项n a 等于( )A .21n +B .1n +C .1n -D .3n -30.已知等差数列{}n a 中,7916a a +=,其前n 项和为n S ,则15S =( ) A 、240 B 、120 C 、80 D 、不确定 311的等差中项为( )A .1 BC .2 D.32.设S n 为等差数列{}n a 的前项和,已知1596a a a -+=,则9S 的值为( ) A .54 B .45 C .27 D .1833.等差数列{}n a 中,a 1>0,d≠0,S 3=S 11,则S n 中的最大值是 ( ) A .S 7 B .S 7或S 8 C .S 14 D .S 834.等差数列{}n a 的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100 D .不能确定35.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 A .15 B .30 C .31 D .64 36.在等差数列{}n a 中,若11101a a <-,且{}n a 的前n 项和n S 有最小值,则使得0n S >的最小值n 为 n( )A .11B .19C .20D .2137.已知等差数列{}n a 的前n 项和满足65S S <且876S S S >=,则下列结论错误..的是( ) A .6S 和7S 均为n S 的最大值 B .07=aC .公差0d <D .59S S > 38.在等差数列中,,则的前5项和=( )A .7B .15C .20D .2539.已知数列}{n a 是等差数列,其前n 项和为n S ,若首项01>a 且0156<<-a a ,有下列四个命题:0:1<d P ;0:1012<+a a P ;:3P 数列}{n a 的前5项和最大;:4P 使0>n S 的最大n 值为10;其中正确的命题个数为( )A .1个B .2个C .3个D .4个40.已知等差数列{}n a 的前n 项和满足65S S <且876S S S >=,则下列结论错误..的是( ) A .6S 和7S 均为n S 的最大值 B .07=a ; C .公差; D .59S S >;41.设等差数列{}n a 的前n 项和为n S .若14611,6a a a =-+=-,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .942.在等差数列{}n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A .9 B .10 C .11 D .1243.已知等差数列{n a },62a =,则此数列的前11项的和11S =( ) A .44 B .33 C .22 D .1144.在等差数列{na }中,27,39963741=++=++a a a a a a ,则数列{na }的前9项和=9SA .66B .99C .144D .29745.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A .15B .16C .49D .64 46.若数列{}n a 中,n a =43-3n ,则n S 最大值n =( )n S n S 0d <word 格式-可编辑-感谢下载支持A .13B .14C .15D .14或1547.已知等差数列{}n a 的公差是2,若a 1,a 3,a 4成等比数列,则a 2等于( ) A .-4 B .-6 C .-8 D .-10 48.已知等比数列{}n a 中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+( )A.1+ B.1-.3+ D.3-49.已知数列}{n a 是等比数列,且811=a ,14-=a ,则数列}{n a 的公比q 为( ) A .2 B .21- C .-2 D .2150.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5 C .-5 D .-751.等比数列{}n a 中,若69,S =前3项和38S =,则数列{}n a 的公比为( ) A .2 B .12C .1或12D .1或252.在等比数列{}n a 中,481,3S S ==,则17181920a a a a +++=的值是( ) A .14 B .16 C .18 D .2053.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( )A .1B .2C .4D .854.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .21n +-1B .2n -1C .21n —D .2n +155.已知等比数列前n 项和为n S ,若42=S ,164=S ,则=6S ( ) A .52 B .64 C .64- D .52-56.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=A .5B .9C .3log 45D .10 57.已知数列{}n a 的前n 项和为n S ,11a =,133n n S a +=-,则n a =( )A .143n -⎛⎫ ⎪⎝⎭B .134n -⎛⎫⎪⎝⎭C .13n -D .113n -⎛⎫⎪⎝⎭58.已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144aa =,则10S 的值是 ( )(A )511 (B )1023 (C )1533 (D )3069第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题(题型注释)59.已知等差数列{}n a 满足121010a a a +++=,则11a =,则n S 最大值为 .60.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________. 61.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13=________. 62.设等差数列的前项和为,若936S =,则______. 63.若等差数列{}n a 满足212n a a n -+=,则其前n 项和n S = .64.在数列中,已知,,且数列是等比数列,则65.在等比数列{}n a 中,若369a a =,24527a a a =,则2a = .66.在公比大于1的等比数列{}n a 中,3772a a =,2827a a +=,则10a = . 67.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 12= .68.数列{}n a 是等比数列,若22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+= .69.在等比数列{}n a 中,11a =,公比2q =,若{}n a 的前n 项和127n S =,则n 的值为________.{}n a 62a =0q >2122211log log log a a a +++=71.已知等比数列{a n }的前n 项和,则{a n }的通项公式是 .72.已知数列{n a }的前n 项和 21n s n n =++,则89101112a a a a a ++++=________.73.在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += . 74.把数列121n ⎧⎫⎨⎬-⎩⎭的所有数按照从大到小的原则写成如下数表:113 15 17 19 111 113 115 117 119 129第k 行有12k -个数,第t 行的第s 个数(从左数起)记为(),A t s ,则()8,17___A =}{n a n n S =++852a a a {}n a 24a =315a ={}n a n +n a =word 格式-可编辑-感谢下载支持75.在等比数列}{n a 中,1041=<<a a ,则能使不等式0)1()1()1(2211≤-+⋅⋅⋅+-+-nn a a a a a a 成立的最大正整数n 是 .76.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈N*)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8,则25,51a 为 。

高中数学必修5数列习题与答案

高中数学必修5数列习题与答案

第二章 数列一、选择题1.设S n 是等差数列{a n }的前n 项和,若63S S =13,则126S S =( ).A .310B .13C .18D .192.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9<b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定3.在等差数列{a n }中,若a 1 003+a 1 004+a 1 005+a 1 006=18,则该数列的前2 008项的和为( ).A .18 072B .3 012C .9 036D .120484.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列, ∠B =30°,△ABC 的面积为23,那么b =( ). A .231+ B .1+3C .232+ D .2+35.过圆x 2+y 2=10x 内一点(5,3)有k 条弦的长度组成等差数列,且最小弦长为数列的首项a 1,最大弦长为数列的末项a k ,若公差d ∈⎥⎦⎤⎢⎣⎡2131 ,,则k 的取值不可能是( ). A .4B .5C .6D .76.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ). A .15B .30C .31D .647.在等差数列{a n }中,3(a 2+a 6)+2(a 5+a 10+a 15)=24,则此数列前13项之和为( ).A .26B .13C .52D .1568.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ).A .160B .180C .200D .2209.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n等于( ).A .2n +1-2B .3nC .2nD .3n -110.已知{a n }是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+…+a n a n +1=( ). A .16(1-4-n ) B .16(1-2-n ) C .332(1-4-n )D .332(1-2-n ) 二、填空题11.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为 .12.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q =_____.13.已知数列{a n }中,a n = 1221-n n 则a 9= (用数字作答),设数列{a n }的前n 项和为S n ,则S 9= (用数字作答).14.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为 . 15.在等比数列{a n }中,若a 1+a 2+a 3=8,a 4+a 5+a 6=-4,则a 13+a 14+a 15= ,该数列的前15项的和S 15= .16.等比数列{a n }的公比q >0,已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4= .三、解答题17.设数列{a n }是公差不为零的等差数列,S n 是数列{a n }的前n 项和,且21S =9S 2,S 4=4S 2,求数列{a n }的通项公式.(n 为正奇数) (n 为正偶数)18.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110且a 1,a 2,a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.19.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列.已知数列a 1,a 3,1k a ,2k a ,…,n a k ,…也成等比数列,求数列{k n }的通项k n .20.在数列{a n }中,S n +1=4a n +2,a 1=1. (1)设b n =a n +1-2a n ,求证数列{b n }是等比数列; (2)设c n =n na 2,求证数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和的公式.参考答案一、选择题 1.A解析:由等差数列的求和公式可得63S S =d a da 1563311++=31,可得a 1=2d 且d ≠0所以126S S =d a da 661215611++=d d 9027=103. 2.B解析:解法1:设等比数列{a n }的公比为q ,等差数列{b n }的公差为d ,由a 6=b 7,即a 1q 5=b 7. ∵ b 4+b 10=2b 7,∴ (a 3+a 9)-(b 4+b 10)=(a 1q 2+a 1q 8)-2b 7 =(a 1q 2+a 1q 8)-2a 1q 5 =a 1q 2(q 6-2q 3+1) =a 1q 2(q 3-1)2≥0. ∴ a 3+a 9≥b 4+b 10. 解法2:∵ a 3·a 9=a 26,b 4+b 10=2b 7,∴ a 3+a 9-(b 4+b 10)=a 3+a 9-2b 7.又a 3+a 9-293a a ⋅=(3a -9a )2≥0, ∴ a 3+a 9≥293 a a ·.∵ a 3+a 9-2b 7≥293a a ⋅-2b 7=2a 6-2a 6=0, ∴ a 3+a 9≥b 4+b 10. 3.C解析:∵ a 1+a 2 008=a 1 003+a 1 006=a 1 004+a 1 005, 而a 1 003+a 1 004+a 1 005+a 1 006=18,a 1+a 2 008=9, ∴ S 2 008=21(a 1+a 2 008)×2 008=9 036,故选C . 4.B解析:∵ a ,b ,c 成等差数列,∴ 2b =a +c , 又S △ABC =21ac sin 30°=23,∴ ac =6, ∴ 4b 2=a 2+c 2+12,a 2+c 2=4b 2-12, 又b 2=a 2+c 2-2ac cos 30°=4b 2-12-63, ∴ 3b 2=12+63,b 2=4+23=(1+3)2. ∴ b =3+1.5.A解析:题中所给圆是以(5,0)为圆心,5为半径的圆,则可求过(5,3)的最小弦长为8,最大弦长为10,∴ a k -a 1=2,即(k -1)d =2,k =d2+1∈[5,7], ∴ k ≠4. 6.A解析:∵ a 7+a 9=a 4+a 12=16,a 4=1,∴ a 12=15. 7.A解析:∵ a 2+a 6=2a 4,a 5+a 10+a 15=3a 10, ∴ 6a 4+6a 10=24,即a 4+a 10=4, ∴ S 13=2+13131)(a a =2+13104)(a a =26. 8.B解析:∵ ⎩⎨⎧78=++24=-++209118321a a a a a a∴ (a 1+a 20)+(a 2+a 19)+(a 3+a 18)=54, 即3(a 1+a 20)=54, ∴ a 1+a 20=18, ∴ S 20=2+20201)(a a =180. 9.C解析: 因数列{a n }为等比数列,则a n =2q n -1.因数列{a n +1}也是等比数列, 则(a n +1+1)2=(a n +1)(a n +2+1)⇒21+n a +2a n +1=a n a n +2+a n +a n +2⇒a n +a n +2=2a n +1⇒a n (1+q 2-2q )=0⇒(q -1)2=0⇒q =1.由a 1=2得a n =2,所以S n =2n . 10.C解析:依题意a 2=a 1q =2,a 5=a 1q 4=41,两式相除可求得q =21,a 1=4,又因为数列{a n }是等比数列,所以{a n ·a n +1}是以a 1a 2为首项,q 2为公比的等比数列,根据等比数列前n 项和公式可得222111qq a a n-)-(=332(1-4-n ).二、填空题 11.-2.解析:当q =1时,S n +1+S n +2=(2n +3)a 1≠2na 1=2S n ,∴ q ≠1. 由题意2S n =S n +1+S n +2⇒S n +2-S n =S n -S n +1, 即-a n +1=a n +2+a n +1,a n +2=-2a n +1,故q =-2. 12.1.解析:方法一 ∵ S n -S n -1=a n ,又S n 为等差数列,∴ a n 为定值. ∴ {a n }为常数列,q =1-n n a a =1.方法二:a n 为等比数列,设a n =a 1q n -1,且S n 为等差数列,∴ 2S 2=S 1+S 3,2a 1q +2a 1=2a 1+a 1+a 1q +a 1q 2,q 2-q =0,q =0(舍)q =1. 所以答案为1. 13.256,377. 解析:a 9=28=256,S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=(1+22+24+26+28)+(3+7+11+15) =341+36 =377. 14.74.解析:由{a n }是等比数列,S 10=a 1+a 2+…+a 10,S 20-S 10=a 11+a 12+…+a 20=q 10S 10,S 30-S 20=a 21+a 22+…+a 30=q 20S 10,即S 10,S 20-S 10,S 30-S 20也成等比数列,得(S 20-S 10)2=S 10(S 30-S 20),得(56-32)2=32(S 30-56),∴ S 30=3232-562)(+56=74.15.21,211.解析:将a 1+a 2+a 3=8, ① a 4+a 5+a 6=-4.②两式相除得q 3=-21,∴ a 13+a 14+a 15=(a 1+a 2+a 3) q 12=8·421-⎪⎭⎫ ⎝⎛=21,S 15=21+121--185⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=211. 16.152.解析:由a n +2+a n +1=6a n 得q n +1+q n =6q n -1,即q 2+q -6=0,q >0,解得q =2,又a 2=1,所以a 1=21,S 4=2121214-)-(=152.三、解答题17.解析:设等差数列{a n }的公差为d ,由前n 项和的概念及已知条件得a 21=9(2a 1+d ),① 4a 1+6d =4(2a 1+d ).②由②得d =2a 1,代入①有21a =36a 1,解得a 1=0或a 1=36. 将a 1=0舍去. 因此a 1=36,d =72,故数列{a n }的通项公式a n =36+(n -1)·72=72n -36=36(2n -1).18.解析:(1)证明:因a 1,a 2,a 4成等比数列,故22a =a 1a 4,而{a n }是等差数列,有a 2=a 1+d ,a 4=a 1+3d ,于是(a 1+d )2=a 1(a 1+3d ), 即21a +2a 1d +d 2=21a +3a 1d .d ≠0,化简得a 1=d .(2)由条件S 10=110和S 10=10a 1+d 2910⨯,得到10a 1+45d =110, 由(1),a 1=d ,代入上式得55d =110,故d =2,a n =a 1+(n -1)d =2n . 因此,数列{a n }的通项公式为a n =2n (n =1,2,3,…).19.解析;由题意得22a =a 1a 4,即(a 1+d )2=a 1(a 1+3d ),d (d -a 1)=0, 又d ≠0,∴ a 1=d .又a 1,a 3,1k a ,2k a ,…,n a k ,…,成等比数列, ∴ 该数列的公比为q =13a a =dd3=3, ∴ n a k =a 1·3n +1.又n a k =a 1+(k n -1)d =k n a 1, ∴ k n =3n +1为数列{k n }的通项公式. 20.解析:(1)由a 1=1,及S n +1=4a n +2,有a 1+a 2=4a 1+2,a 2=3a 1+2=5,∴ b 1=a 2-2a 1=3. 由S n +1=4a n +2 ①,则当n ≥2时,有S n =4a n -1+2. ② ②-①得a n +1=4a n -4a n -1,∴ a n +1-2a n =2(a n -2a n -1).又∵ b n =a n +1-2a n ,∴ b n =2b n -1.∴ {b n }是首项b 1=3,公比为2的等比数列. ∴ b n =3×2 n -1.(2)∵ c n =n na 2,∴ c n +1-c n =112++n n a -n n a 2=1122++-n n n a a =12+n nb =11223+-⨯n n =43,c 1=21a =21,∴ {c n }是以21为首项,43为公差的等差数列.(3)由(2)可知数列⎭⎬⎫⎩⎨⎧n n a 2是首项为21,公差为43的等差数列. ∴nn a 2=21+(n -1)43=43n -41,a n =(3n -1)·2n -2是数列{a n }的通项公式. 设S n =(3-1)·2-1+(3×2-1)·20+…+(3n -1)·2n -2.S n =2S n -S n=-(3-1)·2-1-3(20+21+…+2n -2)+(3n -1)·2n -1=-1-3×12121---n +(3n -1)·2n -1=-1+3+(3n -4)·2n -1 =2+(3n -4)·2n -1.∴ 数列{a n }的前n 项和公式为S n =2+(3n -4)·2n -1.。

人教版高中数学必修5《数列》练习题(有答案)

人教版高中数学必修5《数列》练习题(有答案)

必修5 数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,那么前 项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.等差数列{}n a 的前10项和为100,前100项和为10,那么前110项和为 .解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a aa a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。

1. 等差数列{}n a 中,12497116a a a a ,则,===+等于( )A .15B .30C .31D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-== .543. 等差数列{}n a 的前n 项和为n S ,假设=+++=118521221a a a a S ,则 . 4. 等差数列{}n a 的前n 项和记为n S ,50302010==a a ,. ①求通项n a ;②假设n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇? ②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 假设存在,求M 的最小值,假设不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+ ∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++n 三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:假设三个数c b a ,,成等比数列,那么称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件.4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n n n5. 等比数列的根本性质,),,,(*∈N q p n m 其中①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn ,③{}n a 为等比数列,那么下标成等差数列的对应项成等比数列. ④假设项数为()*2n n N ∈,那么S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.数列{}n a 是等比数列,且===m m m S S S 323010,则, .3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②假设n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,假设015=a ,那么有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,假设119=b ,那么有等式成立. 解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,那么有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,假设n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在此题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4 B .3C .2D .12.等比数列{a n }中,a 9 =-2,那么此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21, 那么公比q 的值为 ( )A .1B .-21 C .1或-1 D .-1或214.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( )A .4B .23 C .916 D .25.假设两数的等差中项为6,等比中项为5,那么以这两数为两根的一元二次方程为 ( )A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,方案今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ( )A .1.1 4 aB .1.1 5 aC .1.1 6 aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,那么a 99+a 100等于 ( ) A .89abB .(ab )9C .910abD .(ab )108.各项为正的等比数列的前5项之和为3,前15项之和为39,那么该数列的前10项之和为( )A .32B .313C .12D .159.某厂2001年12月份产值方案为当年1月份产值的n 倍,那么该厂2001年度产值的月平均增长率为 ( ) A .11n B .11n C .112-n D .111-n10.等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于 ( )A .102 B .202 C .162 D .15211.等比数列的前n 项和S n =k ·3n +1,那么k 的值为 ( )A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,那么t 的范围是 ( )A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC 13.在等比数列{a n }中,a 1=23,a 4=12,那么q =_____ ____,a n =____ ____.14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,那么该数列的公比q =___ ___.15.在等比数列{a n }中,a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10= .16.数列{n a }中,31=a 且n a a n n (21=+是正整数),那么数列的通项公式=n a .二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.数列满足a 1=1,a n +1=2a n +1 (n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析: 由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析: 由a 1+a 2+…+a n =2n -1 ① n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2 又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列 ∴a 12+a 22+…+a n 2=)14(3141)41(21-=--nn a 19.在等比数列{a n }中,S n =48,S 2n =60,求S 3n .解析一: ∵S 2n ≠2S n ,∴q ≠1 根据条件121(1)481(1)601n na q qa q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②解析二:∵{a n}为等比数列∴(S2n-S n)2=S n(S3n-S2n)20.求和:S n=1+3x+5x2+7x3+…+(2n-1)x n-1 (x≠0).解析:当x=1时,S n=1+3+5+…+(2n-1)=n2当x≠1时,∵S n=1+3x+5x2+7x3+…+(2n-1)x n-1,①等式两边同乘以x得:xS n=x+3x2+5x3+7x4+…+(2n-1)x n.②21.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,且前n项和S n=126,求n及公比q.解析:∵a1a n=a2a n-1=128,又a1+a n=66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.∴n=6.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 那么a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。

高中数学必修5数列测试题含答案

高中数学必修5数列测试题含答案

数列单元测试题一、选择题1.等差数列前10项和为100,前100项和为10。

则前110项的和为 A .-90 B .90 C .-110 D .10 2已知数列{}n a 的前n 项和为1-=a s nn (a 是不为零的实数),那么{}n aA .一定是等差数列 B.一定是等比数列C.或是等差数列或是等比数列D.既不是等差数列,也不是等比数列. 3.若数列{}n a 中,n a =43-3n ,则n S 最大值n =A .13B .14C .15D .14或15 4.在a 和b 两数之间插入n 个数,使它们与a,b 组成等差数列,则该数列的公差为 A .b a n - B.1b a n -+ C.1a b n -+ D.2b an -+ 5.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是 A .130 B .170 C .210 D .2606.已知函数()ax f x x a =+,若数列{}n x 中,110,()(2)n n a f n x x x -=≠=≥那么1n x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是A .等差数列B 。

等比数列C 。

摆动数列D 。

常数列 7.等差数列{}n a 中,已知公差12d =,且139960,a a a++=L 则123100a a a a+++L 等于A.170B.150C.145D.120 8.等比数列{}n a 中,9696==a a ,,则3a 等于 A .3 B .23C .916 D .49.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、 A .3 B .2 C .-2 D .2±10.设由正数组成的等比数列,公比q =2,且3030212=a a a ……·,则30963a a a a ……··等于A .102B .202C .162D .152 二、填空题1.等差数列{}n a 中5S =25,45S =405。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5数列2.等差数列{}n a 中,()46810129111120,3a a a a a a a ++++=-则的值为A .14B .15C .16D .173.等差数列{}n a 中,12910S S a =>,,则前项的和最大.解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>,,又4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为.解:∵ ,,,,,1001102030102010S S S S S S S ---成等差数列,公差为D 其首项为10010=S ,6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,.①求出公差d 的范围;②指出1221S S S ,,, 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S +=+=36(27)0a d =+>②12671377666()013000S a a S a a a S =+>=<∴<>∴, 最大。

1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于()A .15B .30C .31D .64794121215a a a a a +=+∴= A2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==.543. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+=111020193012305021019502n a d a a a a n a d d +==⎧⎧==∴∴=+⎨⎨+==⎩⎩,解方程组5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分钟多走1m,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇?故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由.12122(1)(1)()2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列.②1)1(311-+==+n n a n na a ,{}212121522n a a a a a ∴=-=∴-=即等差数列的公差为1(1)3(1)221n a a n d n n ∴=+-=+-⋅=+121n +++n 三、等比数列 知识要点1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,记为()0q q ≠,.2. 递推关系与通项公式mn m n n n n n q a a q a a qa a --+⋅=⋅==推广:通项公式:递推关系:111 3. 等比中项:若三个数c b a ,,成等比数列,则称b 为a 与c 的等比中项,且ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 4. 前n 项和公式)1(11)1()1(111≠⎪⎩⎪⎨⎧--=--==q q qa a qq a q na S n nn5. 等比数列的基本性质,),,,(*∈N q p n m 其中 ①q p n m a a a a q p n m ⋅=⋅+=+,则若,反之不成立! ②)(2*+--∈⋅==N n a a a a a qm n m n n mn mn , ③{}n a 为等比数列,则下标成等差数列的对应项成等比数列.④若项数为()*2n n N ∈,则S q S =偶奇.⑤nn m n m S S q S +=+⋅.⑥ ,,,时,n n n n n S S S S S q 2321---≠仍成等比数列. 6. 等比数列与等比数列的转化 ①{}n a 是等差数列⇔{})10(≠>c c cna ,是等比数列;②{}n a 是正项等比数列⇔{})10(log ≠>c c a n c ,是等差数列;③{}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列. 7. 等比数列的判定法 ①定义法:⇒=+(常数)q a a nn 1{}n a 为等比数列; ②中项法:⇒≠⋅=++)0(221n n n n a a a a {}n a 为等比数列;③通项公式法:⇒⋅=为常数)q k q k a nn ,({}n a 为等比数列; ④前n 项和法:⇒-=为常数)(q k q k S nn ,)1({}n a 为等比数列. 性质运用1.103107422222)(++++++=n n f 设()()()n N f n *∈,则等于1342222(81)(81)(81)(81)7777n n n n A B C D +++----....D2.已知数列{}n a 是等比数列,且===m m m S S S 323010,则,.3.⑴在等比数列{}n a 中,143613233+>==+n n a a a a a a ,,. ①求n a ,②若n n n T a a a T 求,lg lg lg 21+++= .⑵在等比数列{}n a 中,若015=a ,则有等式n n a a a a a a -+++=+++292121)29(*∈<N n n ,成立,类比上述性质,相应的在等比数列{}n b 中,若119=b ,则有等式成立.解:⑴①由等比数列的性质可知:16341616163233321a a a a a a a a a a ⋅=⋅=+=>==又,解得,②由等比数列的性质可知,{}n a lg 是等差数列,因为⑵由题设可知,如果0=m a 在等差数列中有n m n a a a a a a --+++=+++122121)12(*∈-<N n m n ,成立,我们知道,如果q p n m a a a a q p n m +=++=+,则若,而对于等比数列{}n b ,则有q p n m a a a a q p n m ⋅=⋅+=+,则若所以可以得出结论,若n m n m b b b b b b b --==1221211 ,则有)12(*∈-<N n m n ,成立,在本题中 n n b b b b b b -=372121 则有)37(*∈<N n n ,1.{a n }是等比数列,下面四个命题中真命题的个数为() ①{a n 2}也是等比数列;②{ca n }(c ≠0)也是等比数列;③{na 1}也是等比数列;④{ln a n }也是等比数列. A .4B .3C .2D .12.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 () A .216 B .-216 C .217D .-2173.等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值为()A .1B .-21 C .1或-1 D .-1或21 4.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于()A .4B .23 C .916 D .25.若两数的等差中项为6,等比中项为5,则以这两数为两根的一元二次方程为()A .x 2-6x +25=0B .x 2+12x +25=0C .x 2+6x -25=0D .x 2-12x +25=06.某工厂去年总产a ,计划今后5年内每一年比上一年增长10%,这5年的最后一年该厂的总产值是 ()A .1.1 4 aB .1.1 5aC .1.1 6aD .(1+1.1 5)a7.等比数列{a n }中,a 9+a 10=a (a ≠0),a 19+a 20=b ,则a 99+a 100等于 ()A .89abB .(ab )9C .910abD .(ab )10 8.已知各项为正的等比数列的前5项之和为3,前15项之和为39,则该数列的前10项之和为()A .32B .313C .12D .159.某厂2001年12月份产值计划为当年1月份产值的n 倍,则该厂2001年度产值的月平均增长率为 ()A .11n B .11n C .112-n D .111-n10.已知等比数列{}n a 中,公比2q =,且30123302a a a a ⋅⋅⋅⋅=,那么36930a a a a ⋅⋅⋅⋅等于()A .102B .202C .162D .15211.等比数列的前n 项和S n =k ·3n +1,则k 的值为 ()A .全体实数B .-1C .1D .312.某地每年消耗木材约20万3m ,每3m 价240元,为了减少木材消耗,决定按%t 征收木材税,这样每年的木材消耗量减少t 25万3m ,为了既减少木材消耗又保证税金收入每年不少于90万元,则t 的范围是 ()A .[1,3]B .[2,4]C .[3,5]D .[4,6]一、选择题: BDCAD BACDB BC 13.在等比数列{a n }中,已知a 1=23,a 4=12,则q =_________,a n =________. 14.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =______. 15.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,求a 10=. 16.数列{n a }中,31=a 且n a a n n (21=+是正整数),则数列的通项公式=n a . 二、填空题:13.2, 3·2n -2. 14.251+.15.512 .16.123-n . 17.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *).(1)求证数列{a n +1}是等比数列;(2)求{a n }的通项公式. (1)证明由a n +1=2a n +1得a n +1+1=2(a n +1)又a n +1≠0 ∴111+++n n a a =2即{a n +1}为等比数列.(2)解析:由(1)知a n +1=(a 1+1)q n-1即a n =(a 1+1)q n -1-1=2·2n -1-1=2n -118.在等比数列{a n }中,已知对n ∈N *,a 1+a 2+…+a n =2n -1,求a 12+a 22+…+a n 2.解析:由a 1+a 2+…+a n =2n -1①n ∈N *,知a 1=1且a 1+a 2+…+a n -1=2n -1-1 ②由①-②得a n =2n -1,n ≥2又a 1=1,∴a n =2n -1,n ∈N *212221)2()2(-+=n n nn a a =4 即{a n 2}为公比为4的等比数列∴a 12+a 22+…+a n 2=)14(3141)41(21-=--n na 19.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .解析一:∵S 2n ≠2S n ,∴q ≠1根据已知条件121(1)481(1)601n na q q a q q ⎧-=⎪-⎪⎨-=⎪⎪-⎩①②②÷①得:1+q n =45即q n =41③③代入①得q a -11=64 ④∴S 3n =q a -11 (1-q 3n )=64(1-341)=63 解析二:∵{a n }为等比数列∴(S 2n -S n )2=S n (S 3n -S 2n )∴S 3n =48)4860()(22222-=+-n n n n S S S S +60=63 20.求和:S n =1+3x +5x 2+7x 3+…+(2n -1)x n -1(x ≠0).解析:当x =1时,S n =1+3+5+…+(2n -1)=n 2当x ≠1时,∵S n =1+3x +5x 2+7x 3+…+(2n -1)x n -1,① 等式两边同乘以x 得:xS n =x +3x 2+5x 3+7x 4+…+(2n -1)x n .② ①-②得:(1-x )S n=1+2x (1+x +x 2+…+x n -2)-(2n -1)x n =1-(2n -1)x n +1)1(21---x x x n ,∴S n =21)1()1()12()12(-+++--+x x x n x n n n .21.在等比数列{a n }中,a 1+a n =66,a 2·a n -1=128,且前n 项和S n =126,求n 及公比q .解析:∵a 1a n =a 2a n -1=128,又a 1+a n =66,∴a1、a n是方程x2-66x+128=0的两根,解方程得x1=2,x2=64,∴a1=2,a n=64或a1=64,a n=2,显然q≠1.22.某城市1990年底人口为50万,人均住房面积为16 m2,如果该市每年人口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该市人均住房的面积数.(已知1.015≈1.05,精确到0.01 m2)解析:依题意,每年年底的人口数组成一个等比数列{a n}:a1=50,q=1+1%=1.01,n=11 则a11=50×1.0110=50×(1.015)2≈55.125(万),又每年年底的住房面积数组成一个等差数列{b n}:b1=16×50=800,d=30,n=11∴b11=800+10×30=1100(万米2)因此2000年底人均住房面积为:1100÷55.125≈19.95(m2)。

相关文档
最新文档