高中数学算法与程序框图训练题
高中数学《算法---程序框图》典型例题练习(含答案)

高中数学《算法---程序框图》典型例题练习(含答案)算法与程序框图在高考中常以小题出现,难度不大,主要考察循环结构。
在处理这类问题时关键在于计算的准确。
一、基础知识:读框图时,要抓住“看头,审尾,记过程”这三点1、看头:观察框图中变量的个数,以及赋予的初始值2、审尾:强调细致的“审查”循环结束时,变量所取到的最后一个值,这也是易错点3、记过程:为了保证计算的准确,在读取框图的过程中,可详细记录循环体中每经过一个步骤,变量取值的变化情况,以便于在跳出循环时能快速准确得到输出变量的值二、典型例题:例1:执行下图所示的程序框图,若输入2x =,则输出y 的值为 .思路:通过框图的判断语句可知y 关于x 的函数为:2321,01,012,1x x y x x x x x −<⎧⎪=+≤<⎨⎪+≥⎩,所以当2x =时,322212y =+⋅=答案:12例2:阅读右边的程序框图,运行相应的程序,则输出的值为( )A .3B .4C .5D .6思路:循环的流程如下:① 1,2i a ==② 2,5i a ==③ 3,16i a ==④ 4,65i a ==i循环终止,所以4i =答案:B例3:某程序框图如图所示,若输出的57S =,则判断框内为( )A. 4?k >B. 5?k >C. 6?k >D. 7?k >思路:循环的流程如下:① 2,4k S ==② 3,11k S ==③ 4,26k S ==④ 5,57k S ==所以应该在此时终止,所以填入4?k >答案:A例4:执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A. 120B. 720C. 1440D. 5040思路:循环的流程如下:① 1p =② 2,2k p ==③ 3,6k p ==④ 4,24k p ==⑤ 5,120k p ==⑥ 6,720k p ==答案:B例5:右图是一个算法的流程图,则输出S 的值是______ 第4题思路:循环的流程如下: ① 1123S =+=② 22,327n S ==+=③ 33,7215n S ==+=④ 44,15231n S ==+=⑤ 55,31263n S ==+=循环结束,所以63S =答案:63S =例6:执行如图所示的程序框图,若输出i 的值为2,则输入x 的最大值是( )A .5B .6C .22D .33思路:因为输出的2i =,说明只经过了一次循环。
高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析1.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】A【解析】条件成立,第一次执行循环体,条件成立,第二次执行循环体条件成立,第三次执行循环体;条件不成立,退出循环,输出.【考点】程序框图的识别和应用.2.若某程序图如图所示,则该程序运行后输出的k的值是()A.4B.5C.6D.7【答案】B【解析】第一次执行循环体,.第二次执行循环体,,.第三次执行循环体,【考点】理解程序框图的逻辑结构.3.如下图所示程序框图,已知集合是程序框图中输出的值},集合是程序框图中输出的值},全集U=Z,Z为整数集,当时,等于( )A.B.{-3. -1,5,7}C.{-3, -1,7}D.{-3, -1,7,9}【答案】D.【解析】依次执行程序框图中的语句:,;,;,;,;,;,;,;∴,,∴.【考点】读程序框图.4.在如图所示的程序框图中,输入A=192,B=22,则输出的结果是( ).A.0B.2C.4D.6【答案】B.【解析】本题要注意的是C是A除以B所得的余数,按程序框图可知有如下过程:原来:,第一次:C=16,A=22,B=16;第二次:C=6,A=16,B=6;第三次:C=4,A=6,B=4;第四次:C=2,A=4,B=2;第五次:C=0,A=2,B=0,此时B=0,则输出A=2,故选B.【考点】读懂程序框图的流程,赋值语句(如A=B,是把B的值赋值给A).5.如果执行右边的程序框图,那么输出的()A.22B.46C.94D.190【答案】C【解析】.运行第1次,=1,=1,=2,=4,=2>5,否,循环;运行第2次,=3,=10,=3>5,否,循环;运行第3次,=4,=22,=4>5,否,循环;运行第4次,=5,=46,=5>5,否,循环;运行第5次,=6,=94,=6>5,是,输出S=94,故选C【考点】程序框图6.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。
高三数学算法和程序框图试题

高三数学算法和程序框图试题1.执行下图所示的程序框图,若输入A=2014,B=125,输出的A的值是____ .【答案】1【解析】:第一次循环:,,第二次循环:,,第三次循环:,,第四次循环:,,否,所以输出【考点】程序框图的循环结构2.某流程图如图所示,现输入如下四个函数,则可以输出的函数是()A.B.C.D.【答案】C【解析】根据程序框图知输出的函数为奇函数,并且此函数存在零点.经验证:不存在零点;不存在零点;为偶函数,且的定义域为全体实数,且,故此函数为奇函数,且令,得,函数存在零点,答案C 【考点】程序框图、函数的奇偶性、函数零点.3.(5分)(2011•陕西)如图框图,当x1=6,x2=9,p=8.5时,x3等于()A.7B.8C.10D.11【答案】B的值.【解析】从程序框图中得到求p的解析式;列出方程,求出x3解:∵∴=8解得x3故选B点评:本题考查通过程序框图能判断出框图的功能.4.执行如图所描述的算法程序,记输出的一列的值依次为,其中且.(1)若输入,写出全部输出结果.(2)若输入,记,求与的关系().【答案】(1)输出结果共4个,依次是:.(2).【解析】(1)这是一个循环结构,依次写出每次循环的结果即可.(2)由框图中可得当时,.再由可得.将代入即可得与的关系.(1)这是一个循环结构,前4次输出的为:,第5次循环的结果为,与相等,故结束循环.所以输出的为:.(2)当时,..【考点】1、程序框图;2、递推数列.5.已知一个算法的程序框图如图所示,当输出的结果为0时,输入的值为()A.或B.或C.或D.或【答案】C【解析】当时,,即;当时,,即,所以输入的x的值为1或-2.【考点】程序框图.6.按照下图的程序图计算,若开始输入的值为3,则最后输出的结果是()A.6B.21C.5050D.231【答案】D【解析】由程序框图,输入,第次进入循环体,,第次进入循环体,,第次进入循环体,,成立,输出结果,故选.【考点】程序框图.7.给出30个数:1,2,4,7,……其规律是:第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.B.C.D.【答案】【解析】由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,即①中应填写;又由第1个数是1;第2个数比第1个数大1;第3个数比第2个数大2;第4个数比第3个数大3;…故②中应填写故选【考点】循环结构.8.阅读如下程序框图,如果输出,那么空白的判断框中应填入的条件是A.B.C.D.【答案】B【解析】由程序框图知前3次运算结果:因此终止条件为,故选B.【考点】本题主要考查算法的基本思想、算法的结构和功能,考查抽象思维能力和逻辑推理能力.9.图中,,,为某次考试三个评阅人对同一道题的独立评分,为该题的最终得分,当,,时,等于()A.11B.10C.8D.7【答案】C【解析】先读懂右图的逻辑顺序,然后进行计算判断,其中判断条件是否成立是解答本题的关键.,,不成立,即为“否”,所以再输入;由绝对值的意义(一个点到另一个点的距离)和不等式知,点到点的距离小于点到的距离,所以当时,成立,即为“是”,此时,所以,即,解得,不合题意;当时,不成立,即为“否”,此时,所以,即,解得,符合题意,故选C.10.如图所示的程序框图,输出的S的值为()A.B.2C.-1D.-【答案】A【解析】k=1时,S=2,k=2时,S=,k=3时,S=-1,k=4,S=2,……所以S是以3为周期的循环.故当k=2 012时,S=.11.程序框图(即算法流程图)如下图所示,其输出结果是.【答案】127【解析】运行该程序框图如下故填127【考点】程序框图12.右图是计算值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.【答案】A【解析】判断框内应该填循环终止条件,∵要加到,一共加4次∴k>5.【考点】程序框图.13.执行如图所示的程序框图,输出的S=________.【答案】【解析】执行第一次循环时S=,i=1;第二次循环S=,i=2,此时退出循环.故输出S=.14.定义某种运算S=a⊗b,运算原理如图所示,则式子: +的值是.【答案】4【解析】2tan ="2,ln" e=1,∵2>1,∴⊗ln e==3;lg 100=2,=3,∵2<3,∴lg 100⊗==1.∴+=4.15.程序框图如图所示,该程序运行后输出的的值是()A.B.C.D.【解析】由程序框图知:…,可知S出现周期为4,当时,结束循环输出S,,即输出的,故选D.【考点】程序框图.16.执行如图所示的程序框图,若输入,则输出的值为 .【答案】.【解析】满足条件,执行第一次循环,,;满足条件,执行第二次循环,,;满足条件,执行第三次循环,,;不满足条件,跳出循环体,输出的值为.【考点】算法与程序框图17.一个算法的程序框图如图,则其输出结果是()A.0B.C.D.【解析】由题意可知:.【考点】1.程序框图;2.三角函数的周期性.18.阅读下边的程序框图,如果输出的函数值在区间内,则输入的实数的取值范围是.【答案】【解析】本题程序框图所反映的数学问题就是当函数的值域为时,求定义域.,,.【考点】程序框图与函数的定义域.19.阅读如图所示的程序框图,运行相应的程序.若输入某个正整数n后,输出的S∈(31,72),则n的值为( )A.5B.6C.7D.8【答案】A【解析】由程序框图可知:运行第一次:运行第二次:运行第三次:运行第四次:运行第五次:运行第六次:因为,所以运行第五次后应结束,则判断框中的条件应为,所以答案应选B.【考点】循环结构.20.执行如图所示的框图,若输出结果为3,则可输入的实数值的个数为()A.1B.2C.3D.4【答案】C【解析】若输入的时,则,当输出结果是,即,解得;若输入的时,则,当输出结果为,即,解得.则可输入的实数值的个数为3.故选C.【考点】1.程序框图的应用;2.指数与对数的运算.21.某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为A.K>1B.K>2C.K>3D.K>4【答案】C【解析】第一次循环,否,;第二次循环,否,;第三次循环,否,;第四次循环,是,输出,运行结束,故判断框内应为K>3,选C.【考点】算法与程序框图22.已知函数f(x)=ax3+x2在x=-1处取得极大值,记g(x)=。
高中数学高考总复习-----算法与程序框图巩固练习题(含答案解析)

(B)12
i=3
13
(D)15
S=S+i
i=i+1
否
i>5
是
2
输出S
结束
9.如果执行右面的程序框图,那么输出的 S ( )
A.2450
B.2500
C.2550
D.2652
开始
k 1
S 0
k ≤50? ?是
S S 2k
k k 1
否
输出 S
结束
10.执行右面的程序框图,如果输入的 N 是 6,那么输出的是( )
15.【2015 春 宜春期末】x 的取值范围为0,10 ,给出如图所示程序框图,输入一个数 x.
4
(1)请写出程序框图所表示的函数表达式; (2)求输出的 y(y<6)的概率;
(3)求输出的 y( 6 y 8)的概率.
【参考答案】
1.【答案】B; 【解析】赋值语句的左边只能是一个变量。 2.【答案】C
()
A.720
B.360
C.240
D.120
7.如果执行下面的程序框图,那么输出的 S ( )
开始
k 1
S 0
k 50?
是
S S 2k
否
输出S
k k 1
结束
A . 2450 开始
B.2500
C.2550
D.2652
8.在如下图 ( A ) 11 (C)
S=0 所示的算法流程图中,输出 S 的值为( )
所以输出的 y 满足 6 y 8的概率为 p 9 5 2 10 5
7
2
2
2
满足条件 i>5,退出循环,输出 S 的值为 0.故选 C.
4.【答案】C 【解析】第一次循环:k=1+1=2,S=2×0+2=2; 第二次循环:k=2+1=3,S=2×2+3=7 第三次循环:k=3+1=4,S=2×7+4=18 第四次循环:k=4+1=5,S=2×18+5=41 第五次循环:k=5+1=6,S=2×41+6=88,满足条件则输出 S 的值,而此时 k=6,故判断框
(完整版)高考算法程序框图真题练习及答案详解

高中算法程序框图一 •选择题(共18小题)1 •如图给出了一个算法程序框图,该算法程序框图的功能是( )A .求输出a , b , c 三数的最大数 C .将a , b , c 按从小到大排列3. (2012?三明模拟)如图给出一个算法的程序框图,该程序框图的功能是(A .找出a 、b 、c 三个数中最大的数 C .找出a 、b 、c 三个数中第二大的数 4. 程序框图表示的算法的运行结果是(B .找出a 、b 、c 三个数中最小的数 D .把c 的值赋给a)A .求a , b , c 三数的最大数 C .将a , b , c 按从小到大排列2. 如图给出一个算法的程序框图,该程序框图的功能是(B .求 a , D .将 a , )b ,c 三数的最小数 b , c 按从大到小排列CMB .求输出a , b , c 三数的最小数 D .将a , b , c 按从大到小排列)5•程序框图中所表示的算法是(A . 3B . 7C . 157. (2013?合肥二模)如图所示,程序框图(算法流程图)的输出结果是(B . 6B .求x 的相反数C •求x 的平方根 6. (2014?泉州一模)运行图中所示程序框图所表达的算法,输出的结果是(D .求x 的算术平方根)D .31)A .求x 的绝对值 •帕J&阅读如图所示的程序框图,运行相应的程序,输出的结果为(9•阅读如图所示的程序框图,运行相应的程序,输出的结果是(A . 1B . 2C . 310 . (2014?福建)阅读如图所示的程序框图,运行相应的程序,输出的「我] 启~I/•is/IA . 18B . 20C . 2111. (2014?北京)当m=7, n=3时,执行如图所示的程序框图,输出的S 的值为(D . 40)B . 26S 的值等于(口 w fl 十142 C . 21012.(2013?辽宁)执行如图所示的程序框图,若输入 n=10,则输出的S=()GE®/输A/i /72 5513.(2012?天津)阅读程序框图,运行相应的程序,当输入 x 的值为-25时,输出x 的值为()B . 10C. 3&D . _[H 五55A .14. (2012?福建)阅读如图所示的程序框图,运行相应的程序,输出15 . (2012?广东)执行如图所示的程序框图,若输入 n 的值为6,则输出s 的值为( )A . 105B . 16C . 15D .116 . (2012?辽宁)执行如图所示的程序框图,则输出的 S 的值是( )3^:B . - 10s 值等于( )A.4B .::C .::D . - 12 317. (2011?北京)执行如图所示的程序框图,若输入A . 2B . 318.(2011?北京)执行如图所示的程序框图,输出的 s 值为(20 .有如图程序框图,则该程序框图表示的算法功能是 _一A 的值为2,则输入的P 值为( )A . — 3.填空题(共9小题)21 •如图所示的程序框图,其算法功能是_____________________24 •某算法的程序框图如图所示,则程序输出y的值是________________26. (2014?惠州模拟)如图所示,程序框图(算法流程图)的输出结果为27 •阅读如图所示的程序框图,运行相应的程序,则输出的三•解答题(共1小题)s值等于________________参考答案与试题解析一•选择题(共18小题)1 •如图给出了一个算法程序框图,该算法程序框图的功能是()A .求a, b, c三数的最大数B •求a, b,c三数的最小数C.将a, b, c按从小到大排列 D .将a, b, c按从大到小排列考点:设计程序框图解决实际问题.专题:操作型.分析:逐步分析框图中的各框语句的功能,第一个条件结构是比较a, b的大小,并将a, b中的较小值保存在变量a中,第二个条件结构是比较a, c的大小,并将a, c中的较小值保存在变量a中,故变量a的值最终为a, b, c中的最小值.由此不难推断程序的功能.解答:解:逐步分析框图中的各框语句的功能,第一个条件结构是比较a, b的大小,并将a, b中的较小值保存在变量a中,第二个条件结构是比较a, c的大小,并将a, c中的较小值保存在变量a中,故变量a的值最终为a, b, c中的最小值. 由此程序的功能为求a, b, c三个数的最小数.故答案选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视•要判断程序的功能就要对程序的流程图(伪代码)逐步进行分析,分析出各变量值的变化情况,特别是输出变量值的变化情况,就不难得到正确的答案.2 •如图给出一个算法的程序框图,该程序框图的功能是()c®CiteA •求输出a , b , c 三数的最大数 C •将a , b , c 按从小到大排列B •求输出a , b , c 三数的最小数 D •将a , b , c 按从大到小排列考点:程序框图. 专题:算法和程序框图.分析:根据框图的流程判断,第一个环节的功能是输出的a 是a ,b 之间的最大数,第二个环节功能是输出 a , c之间的最大数,由此可得答案.解答:解:由程序框图知:第一个环节是比较a ,b ,输出的a 是a , b 之间的最大数;第二个环节是比较 a, c ,输出的a 是a , c 之间的最大数. •••算法的功能是输出a , b , c 三数的最大数. 故选:A .点评:本题考查了排序程序框图,根据框图的流程判断算法的功能是关键.3. (2012?三明模拟)如图给出一个算法的程序框图,该程序框图的功能是( )考点: 程序框图• 专题: 阅读型•分析: 再输入了三个实数 a 、b 、c 后,首先对其中的两个数 a 、b 的大小加以判断,二者取小的数,然后再比较取 得的数与c 的大小,再取小的数输出•解答: 解:输入框中输入了三个实数a 、b 、c ,然后首先判断a 与b 的大小,若a >b 成立,则用b 替换a ,若a 哉不进仃替换,这样再用两者之间的小的数和c 比较,右a >c ,用c 替换a ,输出a ,否则,直接输出小的数a 所以程序框图的功能是找出a 、b 、c 三个数中最小的数•故选B •点评: 本题考查了程序框图中的条件结构,条件结构有两个路径,满足条件执行一个路径,不满足条件,执行另A .找出a 、b 、c 三个数中最大的数 C .找出a 、b 、c 三个数中第二大的数B .找出a 、b 、c 三个数中最小的数 D .把c 的值赋给a一个路径,解答本题时,一定要注意 =”的意义,是用后者替换前者.考点:程序框图. 专题:计算题.分析:由判断框可知:只要 s€0,则程序就执行 是”,否则就跳出循环程序,执行否”并输出i .据此可得出答案.解答:解:由判断框可知:只要 s €0,则程序就执行 是”否则就跳出循环程序,执行否”并输出i .当s=1+2+3+4+5=15 V 20,应继续执行 是”贝U s=15+6=21 >20,此时i=6+仁7,要跳出循环,输出 7. 故选C .点评:理解循环结构的工作原理并会计算s 与i 是解决问题的关键.5•程序框图中所表示的算法是( )考点:选择结构. 专题:图表型.分析:写出经过选择结构得到的结果,得到求的 y 的值的形式,即可判断出框图的功能.解答:解:逐步分析框图中的各框语句的功能,fig该程序框图表示算法的功能是求函数 y= '沁的值,即 y=|x|, 故选A .点评:本题考查解决程序框图中的选择结构时,常采用写出前几次选择的结果,找规律.6. (2014?泉州一模)运行图中所示程序框图所表达的算法,输出的结果是( )B .求x 的相反数C •求x 的平方根D •求x 的算术平方根4 •程序框图表示的算法的运行结果是(A .求x 的绝对值考点:循环结构. 专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算 并输出满足条件 S >20的第一个i 值,模拟程序的运行过程,用表格将程序运行过程中变量 况进行分析,不难给出答案.解答:解:程序在运行过程中各变量的值如下表示:s i 是否继续循环 循环前 1 1/第一圈 1 2 是第二圈23是C . 15D . 31考点:程序框图. 专题:算法和程序框图.分析:由算法的程序框图,计算各次循环的结果,满足条件,结束程序. 解答:解:根据算法的程序框图知,第一次循环得 a=2X1+1=3, 第二次循环得 a=2X 3+1=7,第三次循环得a=2X7+1=15,结束循环, 故选C ,点评:本题考查了应用程序框图进行简单的计算问题,是基础题.7. (2013?合肥二模)如图所示,程序框图(算法流程图)的输出结果是(i 值,k 的值的变化情A . 6第三圈 6 4 是故最后输出的i 值为:5,图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与 择恰当的数学模型 ③解模.&阅读如图所示的程序框图,运行相应的程序,输出的结果为( )A . 676考点: 循环结构.专题:图表型.分析: 根据已知中的流程图,我们模拟程序的运行结果,看变量 不满足时执行循环,满足时退出循环,即可得到输出结果.a 的值是否满足判断框的条件,当判断框的条件解答:解:a=1,满足条件a v 15,执行循环, a=2,满足条件a v 15,执行循环, a=5,满足条件a v 15,执行循环, a=26,不满足条件a v 15,退出循环, 执行输出语句,输出 a=26.故选B .点评:本题主要考查的知识点是程序框图,模拟循环的执行过程是解答此类问题常用的办法,属于基础题.9.阅读如图所示的程序框图,运行相应的程序,输出的结果是( )第四圈24 5 否 点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是: :①分析流程运算的数据比较多,也可使用表格对数据进行分析管理) ?②建立数学模型,根据第一步分析的结果,选 B . 26故选B .A . 1B . 2C . 3D . 4考点:程序框图. 专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算 重新为2时变量n 的值,并输出,模拟程序的运行过程,即可得到答案.解答: 解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 2 1/ 第一圈-1 2是 第二圈 丄3是 第三圈 2 4否则输出的结果为4故选D点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.10. (2014?福建)阅读如图所示的程序框图,运行相应的程序,输出的叠—考点:循环结构.S 的值等于( )A . 18B . 20C . 21D . 40总三刃十L专题:计算题;算法和程序框图.分析:算法的功能是求 S=21+22+・・+2n +1+2+・・+ n 的值,计算满足条件的 S 值,可得答案.解答:解:由程序框图知:算法的功能是求S=21+22+ ..+2n +1+2+ -+n 的值,12123S =2 +2 +1+2=2+4+1+2=9 V 15, S=2 +2 +2 +1+2+3=2+4+8+1+2+3=20 昌5.•••输出 S=20. 故选:B .点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.11. (2014?北京)当m=7, n=3时,执行如图所示的程序框图,输出的 S 的值为( )考点:循环结构.专题:计算题;算法和程序框图.分析:算法的功能是求 S=7>6X ・・・kx 的值,根据条件确定跳出循环的 k 值,计算输出S 的值.解答: 解:由程序框图知:算法的功能是求S=7>6 >•••>的值,当 m=7 , n=3 时,m - n +1=7 - 3+仁5 , •跳出循环的k 值为4, •输出 S=70X5=210 . 故选:C .点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12 . (2013?辽宁)执行如图所示的程序框图,若输入 n=10,则输出的S=( )(幵晞J丄/输心/1i=2------ 1 -------青r-l/ S H .'ISS7工i=i+2B . 42C . 210D . 840Iwn * 少 IA . 7B .」11C . _557255考点:循环结构.专题:计算题;图表型.分析:框图首先给累加变量S和循环变量i分别赋值0和2,在输入n的值为10后,对i的值域n的值大小加以判断,满足i韦, 执行二$十一,i=i+2,不满足则跳出循环,输出S.-1解答:解:输入n的值为10,框图首先给累加变量S和循环变量i分别赋值0和2,判断2<10 成立,执行S二。
高中数学-算法与程序框图、基本算法语句分层练习

高中数学-算法与程序框图、基本算法语句分层练习一、选择题(每小题5分,共25分)1.执行如图所示的程序框图.若输出y=-,则输入角θ=( )A. B.- C. D.-【解析】选D.当θ=时,y=sin=;当θ=-时,y=sin=-;当θ=时,y=tan=;当θ=-时,y=tan=-.2.(·山东高考)执行如图的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为( )A.x>3B.x>4C.x≤4D.x≤5【解析】选B.输入x为4,要想输出y为2,则程序经过y=log24=2,故判断框填x>4.3.根据下列程序语句,当输入x为60时,输出y的值为 ( )A.25B.30C.31D.61【解析】选C.该语句可转化为分段函数求函数值的问题,y=当x=60时,y=25+0.6×(60-50)=31.4.(·天津高考)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为 ( )A.0B.1C.2D.3【解析】选C.阅读程序框图可得,程序执行过程如下:首先初始化数值为N=19,第一次循环:N=N-1=18,不满足N≤3;第二次循环:N==6,不满足N≤3;第三次循环:N==2,满足N≤3;此时跳出循环体,输出N=2.【变式备选】(2016·天津高考)阅读如图所示的程序框图,运行相应的程序,则输出S的值为( )A.2B.4C.6D.8【解析】选B. 第一次:S=8,n=2,第二次:S=2,n=3,第三次:S=4,n=4,满足n>3,输出S=4.5.执行如图所示的程序框图,则输出的λ是( )A.-4B.-2C.0D.-2或0【解析】选B.依题意,若λa+b与b垂直,则有(λa+b)·b=4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa+b与b平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图,输出的λ是-2.二、填空题(每小题5分,共15分)6.运行如图所示的程序,若输出y的值为1,则可输入x的个数为________.【解析】模拟程序运行,可得程序的功能是求y=的值,故x≤0时,1=2x,解得x=0,x>0时,1=-x3+3x,x>0时函数f(x)=x3-3x+1的图象与x轴有2个交点,即有2个零点, 综上可得可输入x的个数为3.答案:37.(·宁德模拟)如图是一个程序框图,则输出的k的值是________.【解析】根据程序框图可知,k=1时,12-1×6+5≤0;k=2时,22-2×6+5≤0;k=3时,32-3×6+5≤0;k=4时,42-4×6+5≤0;k=5时,52-5×6+5≤0;k=6时,62-6×6+5>0,故输出的k的值是6.答案:6【一题多解】本题还可以采用如下解法:只需求出不满足k2-6k+5≤0的最小正整数k就行,显然是6.答案:68.阅读如图的程序框图,若输出的y=,则输入的x的值为________.【解析】由程序框图可知是计算分段函数y=的值,当x≤2时,由y=sin=,可得x=+2kπ或x=+2kπ,k∈Z,解得x=1+12k或x=5+12k,k∈Z,此时x的值为1.当x>2时,由y=2x=,解得x=-1(舍去).综上知,输入的x的值为1.答案:1三、解答题(每小题10分,共20分)9.如图所示,运行该程序框图相应的程序,试求输出的x的值.导学号12560765【解析】当x=1时,执行x=x+1后x=2;当x=2时,执行x=x+2后x=4,再执行x=x+1后x=5;当x=5时,执行x=x+1后x=6;当x=6时,执行x=x+2后x=8,再执行x=x+1后x=9;当x=9时,执行x=x+1后x=10;当x=10时,执行x=x+2后x=12,此时12>8,因此输出的x的值为12.10.设计程序框图,求××××…×的值.【解析】程序框图如图所示.1.(5分)执行如图所示的程序框图,若输入的n=5,则输出的结果为( )A.4B.5C.6D.7【解析】选B.由程序框图得,n=5,i=1;n=3×5+1=16,i=2;n==8,i=3;n==4,i=4;n==2,i=5;n=1,结束循环,输出i值,即i=5.2.(5分)运行程序,输入n=4,则输出y的值是 ( )A. B.C. D.【解析】选C.模拟程序的运行,可得程序框图的功能是计算并输出y=的值,由n=4,可得y=sin=sin cos +cos sin =.【变式备选】程序框图如图所示,其输出结果是,则判断框中所填的条件是( )A.n≥5?B.n≥6?C.n≥7?D.n≥8?【解析】选B.由题意可知,第一次运行后S=,n=2;第二次运行后S=,n=3;第三次运行后S=,n=4;第四次运行后S=,n=5;第五次运行后S=,n=6;此时停止运算,故判断框内应填n≥6?.3.(5分)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n= ( )A.4B.5C.2D.3【解析】选A.第一次循环,得S=2,S≥10?否;第二次循环,得n=2,a=,A=2,S=,S≥10?否;第三次循环,得n=3,a=,A=4,S=,S≥10?否;第四次循环,得n=4,a=,A=8,S=>10,是,所以输出的n=4.4.(12分)如图所示,程序框图输出的各数组成数列{a n}.(1)求{a n}的通项公式及前n项和S n.(2)已知{b n}是等差数列,且b1=a2,b3=a1+a2+a3,求数列{a n·b n}的前n项和T n.【解析】(1)由程序框图知a n=3a n-1,{a n}是a1=3,q=3的等比数列,所以a n=3n,S n==.(2)因为所以d=15,所以b n=15n-6,a n·b n=(15n-6)·3n,所以T n=9×31+24×32+39×33+…+(15n-6)×3n,3T n=9×32+24×33+39×34+…+(15n-21)×3n+(15n-6)×3n+1,两式相减得-2T n=9×3+15×32+15×33+…+15×3n-(15n-6)×3n+1=27+15×-(15n-6)×3n+1=27+15×-(15n-6)×3n+1=27+(3n+1-32)-(15n-6)×3n+1所以-4T n=54+15×3n+1-15×9-(30n-12)×3n+1=-81-(30n-27)×3n+1所以T n=.【变式备选】运行如图所示的程序,如果输入的n是2 016,那么输出的S的值是多少.【解析】模拟程序的运行过程知,该程序运行后输出的是算式S=1×2+2×22+3×23+…+2 016×22 016①, 所以2S=1×22+2×23+3×24+…+2 016×22 017②;②-①得,S=-2-22-23-…-22 016+2 016×22 017=-+2 016×22 017=2+2 015×22 017.所以输出的S是2+2 015×22 017.5.(13分)对任意函数f(x),x∈D,可按如图构造一个数列发生器产生数列{x n}.(1)若定义函数f(x)=,且输入x0=,请利用数列发生器写出数列{x n}的所有项.(2)若定义函数f(x)=2x+3,且输入x0=-1,请利用数列发生器求数列{x n}的通项公式.【解题指南】(1)函数f(x)=的定义域D=(-∞,-1)∪(-1,+∞),由此能推导出数列{x n}只有三项x1=,x2=,x3=-1.(2)f(x)=2x+3的定义域为R,若x0=-1,则x1=1,则x n+1+3=2(x n+3),从而得到数列{x n+3}是首项为4,公比为2的等比数列,由此能求出数列{x n}的通项公式.【解析】(1)函数f(x)=的定义域D=(-∞,-1)∪(-1,+∞),把x0=代入可得x1=,把x1=代入可得x2=,把x2=代入可得x3=-1,因为x3=-1∉D,所以数列{x n}只有三项,x1=,x2=,x3=-1.(2)f(x)=2x+3的定义域为R,若x0=-1,则x1=1,则x n+1=f(x n)=2x n+3,所以x n+1+3=2(x n+3),所以数列{x n+3}是首项为4,公比为2的等比数列,所以x n+3=4·2n-1=2n+1,所以x n=2n+1-3,即数列{x n}的通项公式x n=2n+1-3.。
高中数学必修三习题:第一章1.1-1.1.1算法的概念含答案

第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念A 级 基础巩固一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米解析:算法是做一件事情或解决一类问题的程序或步骤,故选B.答案:B2.以下对算法的描述正确的有( )①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.A .1个B .2个C .3个D .4个答案:D3.给出下面一个算法:第一步,给出三个数x ,y ,z .第二步,计算M =x +y +z .第三步,计算N =13M .第四步,得出每次计算结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数.答案:D4.一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3;否则,执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=( )A.16 B.25C.36 D.以上均不对解析:由以上计算可知:S=1+3+5+7+9=25.答案:B5.对于算法:第一步,输入n.第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.第四步,输出n.满足条件的n是( )A.质数B.奇数C.偶数D.约数解析:此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.答案:A二、填空题6.给出下列算法:第一步,输入x的值.第二步,当x>4时,计算y=x+2;否则执行下一步.第三步,计算y=4-x.第四步,输出y.当输入x=0时,输出y=________.解析:因为0<4,执行第三步,所以y=4-0=2.答案:27.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2.(2)输入直角三角形两直角边长a,b的值.(3)输出斜边长c 的值.其中正确的顺序是________________.解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.答案:(2)(1)(3)8.如下算法:第一步,输入x 的值;第二步,若x ≥0,则y =x ;第三步,否则,y =x 2;第四步,输出y 的值.若输出的y 值为9,则x =________.解析:根据题意可知,此为求分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的函数值的算法,当x ≥0时,x=9;当x <0时,x 2=9,所以x =-3.答案:9或-3三、解答题9.写出求1×2×3×4×5×6的算法.解:第一步,计算1×2得到2.第二步,将第一步的运算结果2乘3,得到6.第三步,将第二步的运算结果6乘4,得到24.第四步,将第三步的运算结果24乘5,得到120.第五步,将第四步的运算结果120乘6,得到720.10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y .解:算法步骤如下:第一步,输入购物金额x (x >0).第二步,判断“x >800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步. 第三步,判断“x >400”是否成立,若是,则y =0.8x ;否则,y =x .第四步,输出y ,结束算法.B 级 能力提升1.结合下面的算法:第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2;否则,执行第三步.第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( )A .-1,0,1B .-1,1,0C .1,-1,0D .0,-1,1解析:根据x 值与0的关系选择执行不同的步骤.答案:C2.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整: S 1 取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.S 2 若x 1=x 2,则输出斜率不存在;否则,________.S 3 输出计算结果k 或者无法求解信息.解析:根据直线斜率公式可得此步骤.答案:k =y 2-y 1x 2-x 13.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.解:第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.。
高一数学算法和程序框图试题答案及解析

高一数学算法和程序框图试题答案及解析1.如图是求样本平均数的程序框图,图中空白框中应填入的内容为()A.B.C.S=S+n D.S=S+【答案】A【解析】由于,故第次循环为.【考点】程序框图的应用.2.下图为某算法的程序框图,则程序运行后输出的结果是()A.2B.1C.3D.4【答案】C【解析】这里外是一个循环结构,一共循环了次,而内部是一个选择结构,根据条件确定的值是还是,然后把的值加给,次循环结束后,输出的值,便是正确答案,结果选择C.只要读懂题意,然后把人设想成计算机,按步骤逐步操作,最后就能得到正确答案.【考点】算法中的程序框图和循环结构与选择结构的嵌套.3.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ).A.c>x?B.x>c?C.c>b?D.b>c?【答案】A.【解析】本题是寻找三个数中最大的数,在令a为x后,判断x与b的大小,因此第二个判断框里要判断的是x与c的大小,由于此时判断“是”时,c赋值为x,最后输出x,所以要填的是“c>x?”.【考点】程序框图的理解与应用,填写判断框处的语句是常考的一个考点.4.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。
【考点】直到型循环程序框图。
5.执行如图所示的程序框图,如果输入,那么输出的a值为()A.B.C.D.【答案】C【解析】根据程序框图的描述,是求使成立的最小a值,故选C.【考点】程序框图.6.执行下图的程序框图,若输入的x=2,则输出的y的值为【答案】23【解析】根据题意,本程序框图为求y的和循环体为“直到型”循环结构,输入x=2,第一次循环:y=2×2+1=5,x=5;第二次循环:y=2×5+1=11,x=11;第三次循环:y=2×11+1=23,∵|x-y|=12>8,∴结束循环,输出y=23.故答案为:23.【考点】本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.7.若某程序框图如图所示,则输出的p的值是 ()A.30B.28C.21D.55【答案】A【解析】根据框图的循环结构,依次;;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法与程序框图训练题1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则 (log 222)*⎝ ⎛⎭⎪⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log 222=3,⎝ ⎛⎭⎪⎫18-23=4,3<4,所以输出4-13=1,故选A.2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B. 4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y =-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132,i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y 的值为1,则输入的x 的值为( )INPUT xIF x>=1 THENy =x 2ELSEy =-x 2+1END IF PRINT y ENDA .0B .1C.0或1 D.-1,0或1解析:选C 当x≥1时,由x2=1得x=1或x=-1(舍去);当x<1时,由-x2+1=1得x=0.∴输入的x的值为0或1.8.执行如图所示的程序框图,若输入的n=4,则输出的s=( )A.10 B.16C.20 D.35解析:选C 执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s=10,i=3;第三次循环,得s=16,i=4;第四次循环,得s=20,i=5.不满足i≤n,退出循环,输出的s=20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是( )A.求首项为1,公差为2的等差数列的前2 018项和B.求首项为1,公差为2的等差数列的前2 019项和C.求首项为1,公差为4的等差数列的前1 009项和D.求首项为1,公差为4的等差数列的前1 010项和解析:选D 由程序框图得,输出的S=(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n-1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m的取值范围是( )A .(30,42]B .(30,42)C .(42,56]D .(42,56)解析:选A k =1,S =2,k =2;S =2+4=6,k =3;S =6+6=12,k =4;S =12+8=20,k =5;S =20+10=30,k =6;S =30+12=42,k =7,此时不满足S =42<m ,退出循环,所以30<m ≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100; n =22,m =78,S =66+783=92≠100; n =23,m =77,S =69+773=9423≠100; n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个,则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75,根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lgx -3,x >3,lg 3-x ,x <3及程序框图知,①处应填x <3?,②处应填y=lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即191+372=361. 答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2。