【精品】高中数学 必修3_算法案例_知识点讲解+巩固练习(含答案)_提高

合集下载

苏教版高中数学必修3第1章 算法初步 全章复习讲义设计(含答案解析)

苏教版高中数学必修3第1章 算法初步 全章复习讲义设计(含答案解析)

【知识梳理】知识点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。

(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。

2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。

(1)顺序结构:由若干个按从上到下的顺序依次进行的处理步骤(语句或框)组成。

这是任何一个算法都离不开的基本结构。

(2)条件结构:算法流程中通过对一些条件的判断,根据条件是否成立而取不同的分支流向的结构。

它是依据指定条件选择执行不同指令的控制结构。

(3)循环结构:根据指定条件,决定是否重复执行一条或多条指令的控制结构称为循环结构。

知识点三:基本算法语句程序设计语言由一些有特定含义的程序语句构成,与算法程序框图的三种基本结构相对应,任何程序设计语言都包含输入输出语句、赋值语句、条件语句和循环语句。

以下均为BASIC语言。

1.输入语句这个语句的一般格式是:INPUT “提示内容”;变量其中,“提示内容”一般是提示用户输入什么样的信息。

每次运行程序时,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。

INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…注:①“提示内容”与变量之间必须用分号“;”隔开。

(完整word版)高中数学必修三算法初步复习(附含答案解析),推荐文档

(完整word版)高中数学必修三算法初步复习(附含答案解析),推荐文档

算法初步章节复习一.知识梳理1、算法的特征:①有限性:②确定性:③可行性:2、程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。

3、基本语句:输入语句:INPUT “提示内容”;变量,兼有赋值功能输出语句:PRINT “提示内容”;表达式,兼有计算功能赋值语句:变量=表达式,兼有计算功能条件语句:IF 条件THEN IF 条件THEN语句体语句体ELSE END IF语句体END IF循环语句:(1)当型(WHILE型)循环:(2)直到型(UNTIL型)循环:WHILE 条件DO循环体循环体WEND LOOP UNTIL 条件4.常用符号运算符号:加____,减____,乘____,除____,乘方______,整数取商数____,求余数_______.逻辑符号:且AND,或OR,大于>,等于=,小于<,大于等于>=,小于等于<=,不等于<>.常用函数:绝对值ABS(),平方根SQR()5.算法案例(1) 辗转相除法和更相减损术: 辗转相除法和更相减损术都是求两个正整数的最大公约数的方法(2) 秦九韶算法:是求多项式值的优秀算法.(3)进位制:将十进制的数转化为k进制数的方法是除k取余法.一、习题精练1.将两个数A =9,B =15交换使得A =15,B =9下列语句正确的一组是( ) A.B.C.D.2、如图所示程序,若输入8时,则下图程序执行后输出的结果是 ( )A 、0.5B 、0.6C 、0.7D 、0.83. 上图程序运行后输出的结果为 ( ) A. 50 B. 5 C. 25 D. 04、上图程序运行后的输出结果为 ( ) A.17 B.19 C.21 D.235、如右图所示,对甲乙两程序和输出结果判断正确的是 ( ) A .程序不同结果不同 B.程序不同,结果相同 C .程序相同结果不同 D .程序同,结果6.下列各数中最小的数是 ( )A .(9)85B .(6)210C .(4)1000D .(2)111111 7.二进制数111011001001 (2)对应的十进制数是 ( )A .3901B .3902C .3785D .39048、下面的问题中必须用条件结构才能实现的个数是 ( ) (1)已知三角形三边长,求三角形的面积; (2)求方程ax+b=0(a,b 为常数)的根; (3)求三个实数a,b,c 中的最大者; (4)求1+2+3+…+100的值。

高中数学必修3全册知识点

高中数学必修3全册知识点

第1讲算法初步一.算法的概念1.算法的概念1、算法定义:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有穷性:一个算法在执行有限个步骤之后,必须结束.(2)确定性:算法的每一个步骤和次序应该是确定的.(3)可行性:原则上算法能够精确地元算,而且人们用笔和纸做有限次即可完成.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)输出:一个算法有0个或多个输入,以刻画运算对象的初始条件.所谓0个输入是指算法本身已经给出了初始条件.(6)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果,没有输出的算法是毫无意义的.3.算法的描述:自然语言、程序框图、程序语言。

例1、写出1×2×3×4×5×6的一个算法.解:按照逐一相乘的程序进行第一步:计算1×2,得到2;第二步:将第一步的运算结果2与3相乘,得到6;第三步: 将第二步的运算结果6与4相乘,得到24;第四步: 将第三步的运算结果24与5相乘,得到120;第五步: 将第四的运算结果120与6相乘,得到720;第六步:输出结果.例2、写出按从小到大的顺序重新排列三个数值的算法.,,x y z 解:(1).输入三个数值;,,x y z (2).从三个数值中挑出最小者并换到中;x (3).从中挑出最小者并换到中;,y z y (4).输出排序的结果.二.程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

高中数学 必修3专题(完整知识点梳理及经典例题答案详解)

高中数学 必修3专题(完整知识点梳理及经典例题答案详解)

必修三专题第一节算法与程序框图[最新考纲展示]1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本结构:顺序结构、条件结构、循环结构.3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.考点一算法的定义算法是指按照一定规则解决某一类问题的明确和有限的步骤.考点二程序框图1.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.程序框图通常由程序框和流程线组成.3.基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.考点三三种基本逻辑结构算法的三种基本逻辑结构算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.顺序结构顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构,用程序框图表示为:条件结构的概念在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,处理这种过程的结构就是条件结构. 条件结构程序框图的两种形式及特征循环结构(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤为循环体.可以用如图①②所示的程序框图表示.名称 形式一 形式二结构 形式特征 两个步骤A ,B 根据条件选择一个执行根据条件是否成立选择是否执行步骤A(2)直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.(3)当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.考点四基本算法语句输入语句格式INPUT“提示内容”;变量功能可以一次为一个或多个变量赋值,实现了算法中的输入功能说明“提示内容”一般是提示用户输入什么样的信息,程序框图中的输入框转化为算法语句就是输入语句输出语句格式PRINT“提示内容”;表达式功能先计算表达式的值,然后输出结果,实现了算法中的输出功能.显然在计算机屏幕上,也就是输出信息,可以是常量、变量的值和系统信息说明程序框图中的输出框转化为算法语句就是输出语句赋值语句格式变量=表达式功能先计算表达式的值,然后把结果赋值给“=”左边的变量,此步完成后,“=”左边变量的值就改变了说明 赋值语句中的“=”叫做赋值号,它和数学中的等号不一样.条件语句的格式及框图格式一格式二条件 语句 IF 条件 THEN 语句体 END IF语句 功能首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END_IF 之后的语句首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2对应 条件 结构 框图循环语句 UNTIL 语句(1)UNTIL 语句的格式:(2)UNTIL 语句的执行过程:当计算机执行上述语句时,先执行一次DO和UNTIL之间的循环体,再对UNTIL后的条件进行判断,如果条件不符合,继续执行循环体;然后再检查上述条件,如果条件仍不符合,再次执行循环体,直到条件符合时为止.这时,计算机将不执行循环体,直接跳到UNTIL 语句后,接着执行UNTIL语句之后的语句.(3)UNTIL语句对应的程序框图:WHILE语句(1)WHILE语句的格式:(2)WHILE语句的执行过程:当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE和WEND之间的循环体,然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止,这时计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句.(3)WHILE语句对应的程序框图:解决程序框图问题时应注意(1)不要混淆处理框和输入框.(2)注意区分条件结构和循环结构.(3)注意区分当型循环和直到型循环.(4)循环结构中要正确控制循环次数.(5)要注意各个框的顺序.考向一算法的基本结构【例1】(2013年高考江西卷)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8 B.S<9C.S<10 D.S<11[解析] 由框图及输出i=4可知循环应为:i=2,S=5;i=3,S =8;i=4,S=9,输出i=4,所以应填入的条件是S<9,故选B. [答案] B反思总结1.解决程序框图问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1;(2)累加变量:用来计算数据之和,如S=S+i;(3)累乘变量:用来计算数据之积,如p=p×i.2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.变式训练1.若如下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是( )A.k=9? B.k≤8?C.k<8? D.k>8?解析:据程序框图可得当k=9时,S=11;k=8时,S=11+9=20.∴应填入“k>8?”答案:D考向二程序框图的应用【例2】(2014年广州模拟)阅读如图所示的程序框图,则输出的S =________.[解析] 由框图知,程序执行的功能为:S=(3×1-1)+(3×2-1)+(3×3-1)+(3×4-1)+(3×5-1)=3×(1+2+3+4+5)-5=40.[答案] 40反思总结1.识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件分支结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2.解决程序框图问题时的注意点(1)不要混淆处理框和输入框. (2)注意区分条件分支结构和循环结构. (3)注意区分当型循环和直到型循环. (4)循环结构中要正确控制循环次数. (5)要注意各个框的顺序考向三 基本算法语句【例3】 (2013年高考陕西卷)根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61[解析] 该语句为分段函数y =⎩⎨⎧0.5x , x ≤50,25+0.6(x -50),x >50,当x =60时, y =25+0.6×(60-50)=31,故选C.[答案] C 变式训练2.下面程序运行的结果为( )A.4 B.5 C.6 D.7解析:第一次执行后,S=100-10=90,n=10-1=9;第二次执行后,S=90-9=81,n=9-1=8;第三次执行后,S=81-8=73,n=8-1=7;第四次执行后,S=73-7=66,n=7-1=6.此时S=66≤70,结束循环,输出n=6.答案:C第二节随机抽样[最新考纲展示]1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.考点一简单随机抽样定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样分类抽签法(抓阄法)和随机数法特点①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体的个体数N③简单随机抽样中的每个个体被抽到的可能性均为nN④逐个抽取即每次仅抽取一个个体⑤简单随机抽样是不放回的抽样,即抽取的个体不再放回总体适用范围当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本考点二系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:[通关方略]1.辨析抽签法和随机数法相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体的个体数有限;(2)都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)在总体容量较小的情况下,抽签法比随机数法简单;(2)抽签法适用于总体中的个体数相对较少的情况,而随机数法更适用于总体中的个体数较多的情况,这样可以节约大量的人力和制作号签的成本.2.系统抽样的公平性在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以系统抽样是公平的.考点三分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.2.分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.三种抽样方法的异同点考向一简单随机抽样【例1】第二届夏季青年奥林匹克运动会将于2014年在南京举行,南京某大学为了支持运动会,从报名的60名大学生中选10人组成志愿小组,请用抽签法设计抽样方案.[解析] 第一步:将60名志愿者编号,编号为1,2,3, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.反思总结简单随机抽样须满足的条件与特点(1)抽取的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取;(5)抽签法适于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.变式训练1.(2013年高考江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.01解析:由题意知前5个个体的编号为08、02、14、07、01,故选D.答案:D考向二系统抽样【例2】(2014年宿州模拟)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.[解析] 由题中的抽取规则可知依次抽取的号码为:6、18、29、30、41、52、63、74、85、96.故第7组中抽取的号码为63.[答案] 63反思总结1.当总体容量较大,样本容量也较大时,可用系统抽样法.2.在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7 B.9 C.10 D.15解析:由系统抽样的特点知:抽取号码间隔为96032=30,抽取的号码依次为9,39,69,...,939.落入区间[451,750]的有459,489, (729)这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.答案:C考向三分层抽样【例3】(2013年高考湖南卷)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.13[解析]利用分层抽样抽取甲、乙、丙三个车间的产品数量比为120∶80∶60=6∶4∶3,从丙车间的产品中抽取了3件,则n×313=3,得n=13,则选D.[答案] D反思总结进行分层抽样时应注意以下几点(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同;(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样(4)抽样比=样本容量个体数量=各层样本容量各层个体数量.第三节 用样本估计总体[最新考纲展示]1.了解分布的意义与作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差. 3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.考点一 作频率分布直方图的步骤1.求极差(即一组数据中最大值 与 最小值 的差).2.决定 组距 与 组数 .3.将数据分组 .4.列 频率分布表.5.画频率分布直方图[通关方略]探究组距和组数的确定(1)组距的选择应力求“取整”,如果极差不利于分组(如不能被组数整除),可适当增大极差,如在左、右两端各增加适当范围(尽量使两端增加的量相同).(2)数据分组的组数与样本容量有关,一般样本容量越大,所分组数应越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.考点二频率分布折线图和总体密度曲线1.频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.2.总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.考点三茎叶图用茎叶图表示数据有两个突出的优点:一是茎叶图上没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时记录,方便记录与表示.考点四样本的数据特征(1)众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.(2)中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.(3)平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x =1n(x 1+x 2+…+x n ). (4)标准差:标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数,则s =1n [x 1-x 2x 2-x 2x n -x 2].(5)方差:标准差的平方s 2即为方差.则s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. [通关方略]1.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,标准差、方差越小,数据的离散程度越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.考向一频率分布直方图的应用【例1】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.[解析](1)由频率分布直方图可知(2a+0.04+0.03+0.02)×10=1,解得a=0.005.(2)由频率分布直方图估计这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图及表中数据得:分数段x y[50,60) 5 5[60,70) 40 20[70,80) 30 40[80,90) 20 25∴数学成绩在[50,90)之外的人数为100-5-20-40-25=10.反思总结解决频率分布直方图问题时要抓住(1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.考向二茎叶图的应用【例2】(2013年高考安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2,估计x 1-x 2的值.[解析] (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x1′、x2′,根据样本茎叶图可知,30(x1′-x2′)=30x1′-30x2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5.故x1-x2的估计值为0.5分.反思总结由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.变式训练1.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是________.解析:甲比赛得分的中位数为28,乙比赛得分的中位数为36,所以甲、乙两人比赛得分的中位数之和为28+36=64.答案:64考向三用样本的数字特征估计总体的数字特征【例3】甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数;(2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些.[解析] (1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7, x 乙=110(6+7+7+8+6+7+8+7+9+5)=7. (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0,s 2乙=1.2.(3)由x 甲=x 乙,说明甲、乙两战士的平均水平相当;又∵s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.反思总结平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.变式训练2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析:由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8;乙射靶5次的成绩分别为:5,5,5,6,9,所以x甲=4+5+6+7+85=6;x乙=5+5+5+6+95=6.所以x甲=x乙.故A不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确. s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确.甲的成绩的极差为:8-4=4,乙的成绩的极差为:9-5=4,故D 不正确.故选C.答案:C第四节变量间的相关关系、统计案例[最新考纲展示]1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. 4.了解回归分析的基本思想、方法及其简单应用.考点一变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关变量;与函数关系不同,相关变量是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.[通关方略]相关关系与函数关系有何异同点?共同点:二者都是指两个变量间的关系.不同点:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.考点二两个变量的线相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。

高中数学必修三《基本算法语句及算法案例》名师讲义(含答案)

高中数学必修三《基本算法语句及算法案例》名师讲义(含答案)

基本算法语句与算法案例
开篇语
算法是实践性很强的内容,只有通过自身的实践解决几个算法设计问题,才能体会到算
法思想,学会一些基本逻辑结构和语句.因此尽可能地通过实例体会和理解算法的含义,通
过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程,了解算法语言的基本构
成,理解几种基本算法语句.但并非必须使用信息技术才能学习算法,在数学中的算法更注
重设计算法的过程,体验算法的思想,培养有条理地思考表达能力,提高逻辑思维能力.本节课我们来复习几种基本的算法语句——赋值语句、输入和输出语句、条件语句、循环语句,在此基础上再了解几个算法案例,进一步体会算法的思想.
重难点易错点解析
题一:运行下面程序,输出结果为().
a=3
b=5
a=a+b
b=a b
PRINT a,b
A.3,5B.8,5
3
C.8,1D.8,
8
5
题二:运行下列程序,当输入数值-2时,输出结果是().
A.7 B. 3 C.0D.16
题三:下边程序运行后输出的结果分别是___________,____________.。

高中数学必修三基本算法语句和算法分析案例课后练习(含答案)

高中数学必修三基本算法语句和算法分析案例课后练习(含答案)

基本算法语句与算法案例课后练习题一:阅读下列程序.INPUT“A=”;AA=A*2A=A*3A=A*4A=A*5PRINT AEND若输入的A的值为1,则输出的结果A的值为().A.5B.6 C.15 D.120题二:请写出下面程序运算输出的结果.(1) a=5b=3c=(a+b)/2d=c*cPRINT d;(2)a=1b=2c=a+bb=a+c-bPRINT a,b,c;(3)a=10b=20c=30a=bb=cc=aPRINT a,b,c().B.3 C.10 D.6题四:下面程序在开始运行后,通过键盘输入三个值a=3,b=24,c=7,则输出结果是().程序:,24C.24,7,3 D.7,3,24题五:(1) (2)程序运行后输出的结果是().(1)(2)A.9917B.100 21C.101 18 D.102 23题六:下面程序的功能是输出1~100间的所有偶数.程序:(1)试将上面的程序补充完整;(2)改写为WHILE型循环语句.题七:程序Ⅰ程序Ⅱx=1x=x*2x=x*3 PRINT x END INPUT x y=x*x+6 PRINT y END(1)程序Ⅰ的运行结果为________;(2)若程序Ⅱ与程序Ⅰ运行结果相同,则程序Ⅱ输入的值为________.题八:在一次数学考试中,小明、小亮、小强的成绩分别为a,b,c,后来发现统计错了.小亮的成绩记在了小明的名下,小强的成绩记在了小亮的名下,而小明的成绩记在小强的名下了.请设计程序更正成绩单,并输出.().A.-1 B.4或-1C.4 D.2或-2x的值为________.,b=-1,n=5,则输出的是________.).C.21、17 D.14、21题十三:2010年温哥华冬奥短道速滑1000米决赛中,中国选手王濛以1分29秒213的成绩夺金,成就个人在本届冬奥会上的三冠王,现在已知王濛在50次训练中的成绩,请画出程序框图,要求求出成绩优秀分数的平均分,并输出(规定时间少于1分31秒为优秀).程序如下:S=0m=0i=1DOINPUT“x=”;xIF x<91/60THENS=S+xm=m+1END IFi=i+1LOOP UNTIL i>50P=S/mPRINT PEND题十四:青年歌手电视大奖赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分数.要求画出程序框图(假定分数采用10分制,即每位选手的分数最低为0分,最高为10分).程序如下:题十五:用更相减损术求81与135的最大公约数时,要进行________次减法运算.题十六:用辗转相除法求下面两数的最大公约数,并用更相减损术检验你的结果:(1)80, 36;(2)294, 84题十七:用秦九韶算法求多项式f (x)=7x3+3x2-5x+11在x=23时的值,在运算过程中下列数值不会出现的是().A.164 B.3 767C.86 652 D.85 169题十八:用秦九韶算法计算多项式f (x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值.基本算法语句与算法案例课后练习参考答案题一:D.详解:执行赋值语句后A的值依次为2, 6, 24, 120,故最后A的值为120.题二:(1) 16;(2) 1,2,3;(3) 20, 30, 20.详解:(1)因为a=5,b=3,c=(a+b)/2=4,所以d=c2=16,输出d的值为16.(2)因为a=1,b=2,c=a+b,所以c=3,b=a+c-b,即b=1+3-2=2.所以输出1,2,3.(3)由b=20及a=b知a=20,由c=30及b=c知b=30,再由c=a及a=20知c=20.所以a=20,b=30,c=20,输出a,b,c的值是20, 30, 20.题三:D.详解:由程序知a=3时,y=2×3=6.题四:C.详解:当a=3,b=24,c=7时,此时b>a,首先是a、b交换数值,即a=24,b=3,c=7,又此时c>b,执行的程序是b、c交换数值,即b=7,c=3,所以a=24,b=7,c=3.题五:B.详解:只要a<100,a的值就加1,a=99时,执行循环体a=a+1后,a的值为100.此时结束循环,故结束循环后a的值为100.当i=7时最后执行一次循环体此时i=7+2=9,S=2×9+3=21题六:(1)①m=0②i=i+1;(2)见详解.详解: (1)①m=0②i=i+1;(2)改写为WHILE型循环程序如下:题七:(1)6;(2)0.详解:(1)Ⅰ中,x=x*2=2,x=x*3=2×3=6,故输出x的值是6.(2)Ⅱ的功能是求y=x2+6的函数值,由题意Ⅱ中y=6,∴x2+6=6,即x=0.输入的值为0.题八:见详解.详解:程序如下:INPUT “更正前的成绩”;a ,b ,cx =aa =cc =b b =xPRINT “更正后的成绩”;a ,b ,cEND题九: B .详解:该程序执行的功能是给出x ,求分段函数y =⎩⎨⎧x 2-3x +5 (x <0)(x -1)2 (x ≥0)的相应y 的值. 当y =9时,可得x =4或x =-1.题十: 1或-1.详解:本程序执行的功能是求函数y =⎩⎨⎧(x -1)2 (x ≥0)(x +1)2 (x <0)的函数值. 由函数的性质知当x =1或x =-1时,y 有最小值为0.题十一: 3.详解:当i =1时,c =3+(-1)=2,a =-1,b =2;当i =2时,c =-1+2=1,a =2,b =1;当i =3时,c =2+1=3,a =1,b =3,此时i =4.因为n =5,故n -2=3,此时循环结束,输出c =3.题十二: C .详解:第一个程序中,i =7时执行循环体i =i +2,此时i 为9,S =2×9+3=21.结束循环.第二个程序中,i =7时,S =2×7+3=17.然后,执行i =i +2,此时i =9,结束循环.题十三: 见详解.详解:程序框图如图题十四:见详解.详解:由于共有12名评委,所以每位选手会有12个分数,我们可以用循环结构来完成这12个分数的输入,同时设计累加变量求出这12个分数之和.本问题的关键在于从这12个输入的分数中找出最大数与最小数,以便从总分中减去这两个数.由于每位选手的分数都介于0分和10分之间,故我们可以先假设其中的最大数为0,最小数为10,然后每输入一个评委的分数,就进行一次比较.若输入的数大于0,就将其代替最大数,若输入的数小于10,就用它代替最小的数,依次比较下去,就能找出这12个数中的最大数与最小数.循环结束后,从总和中减去最大数与最小数,再除以10,就得到该选手最后的平均分数.程序框图如图所示.题十五:3.详解:辗转相减的过程如下:135-81=54,81-54=27,54-27=27.要进行3次减法运算.题十六:(1)4;(2)42.详解:(1)80=36×2+8,36=8×4+4,8=4×2+0,即80与36的最大公约数是4.验证:80-36=44,44-36=8,36-8=28,28-8=20,20-8=12,12-8=4,8-4=4,∴80与36的最大公约数为4.(2)294=84×3+42,84=42×2.即294与84的最大公约数是42.验证:∵294与84都是偶数可同时除以2,即取147与42的最大公约数后再乘2.147-42=105,105-42=63,63-42=21,42-21=21,∴294与84的最大公约数为21×2=42.题十七:D.详解:f (x)=((7x+3)x-5)x+11,按由内到外的顺序依次计算一次多项式x=23时的值v0=7;v1=v0·23+3=164;v2=v1·23-5=3 767;v3=v2·23+11=86 652.故不会出现D项.题十八:0.详解:将f (x)改写为f (x)=(((((x-12)x+60)x-160)x+240)x-192)x+64,由内向外依次计算一次多项式当x=2时的值v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.∴f (2)=0,即x=2时,原多项式的值为0.。

人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_提高(1)

人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_提高(1)

人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习几何概型【学习目标】1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算;4.能运用模拟的方法估计概率,掌握模拟估计面积的思想. 【要点梳理】要点一、几何概型 1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D的测度的测度.说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为:P=v 的体积/V 的体积要点二、均匀随机数的产生 1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法(1)实例法.包括掷骰子、掷硬币、抽签、转盘等.(2)计算器模拟法.现在大部分计算器的RAND 函数都能产生0~1之间的均匀随机数. (3)计算机软件法.几乎所有的高级编程语言都有随机函数,借用随机函数可以产生一定范围的随机数. 要点诠释:1.在区间[a ,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.3.用随机模拟试验不规则图形的面积的基本思想是:构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.4.利用计算机和线性变换Y=X*(b-a)+a ,可以产生任意区间[a ,b]上的均匀随机数. 【典型例题】类型一:与长度有关的几何概型问题例1.假设车站每隔10分钟发一班车,随机到达车站,问等车时间不超过3分钟的概率 ?【思路点拨】以两班车出发间隔( 0,10 )区间作为样本空间 S ,乘客随机地到达,即在这个长度是10 的区间里任何一个点都是等可能地发生,因此是几何概率问题.【答案】0.3【解析】 记“等车时间不超过3分钟”为事件a ,要使得等车的时间不超过 3 分钟,即到达的时刻应该是图中a 包含的样本点,P=的长度的长度S a =103= 0.3 .【总结升华】在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数. 举一反三:【变式1】 某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间大于10 min 的概率. 【答案】13【解析】 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T=5,T 2T=10,如图所示.记“等车时间大于10 min ”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上时,事件A 发生,区域T 1T 2的长度为15,区域T 1T 的长度为5. ∴11251()153T T P A T T ===的长度的长度.即乘客等车时间大于10 min 的概率是13. 0← S →10【变式2】在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率为( ). A .14 B .12 C .34 D .23【答案】C【变式3】某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率. 【答案】16【解析】 因为电台每隔1小时报时一次,他在0到60之间任何一个时刻打开收音机是等可能的,所以他在哪个时段打开收音机的概率只与该时间段的长度有关,这符合几何概型的条件,因此,可以通过几何概型的概率公式得到事件发生的概率.于是,设A={等待报时的时间不多于10分钟}.事件A 是打开收音机的时刻位于50~60的时间段内,因此由几何概型求概率的公式得60501()606P A -==. 即“等待报时的时间不超过10分钟”的概率为16.类型二:与面积有关的几何概型问题 【几何概型 例4】例2.两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率. 【思路点拨】两人不论谁先到最多只等40分钟,设两人到的时间分别为x 、y ,则当且仅当2||3x y -≤时,两人才能见面,所以此问题转化为面积性几何概型问题。

高中数学必修三总结及经典例题解析(全)

高中数学必修三总结及经典例题解析(全)

. p◆高一数学必修 3 公式总结以及例题§1 算法初步秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个 n次多项式,只要作 n 次乘法和 n 次加法即可。

表达式如下:a x n+ a nn -1 x n -1+ ...+ a = ((((a x + a1 nn -1)x + a )x + ... )x + a )x + an -2 2 1例题: 3x 6 + 4 x 5 + 5x 4 + 6 x 3 + 7 x 2 + 8x + 1 ,当 x = 0.4 时,需要做几次加法和乘法 运算 ? 答案: 6 , 6即 : (((((3x + 4)x + 5)x + 6)x + 7)x + 8)x + 1❖理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调使用的算法… ()1. 描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码)2. 算法的特征:①有限性:算法执行的步骤总是有限的,不能无休止的进行下去②确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是一个或多个。

没有输出的算法是无意义的。

③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时间内可以完成,在时间上有一个合理的限度3. 算法含有两大要素: ①操作:算术运算,逻辑运算,函数运算,关系运算等②控制结构:顺序结构,选择结构,循环结构♦流程图:( ): 是用一些规定的图形、连线及简单的文字说明表示算法及程序结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。

注意:1. 画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯2. 拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇 到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流 程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书 写方法了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法案例【学习目标】1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序;3.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质;4.了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换.【要点梳理】要点一、辗转相除法也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r;第二步:若r0=0,则n为m,n的最大公约数;若r≠0,则用除数n除以余数r得到一个商q1和一个余数r1;第三步:若r1=0,则r为m,n的最大公约数;若r1≠0,则用除数r除以余数r1得到一个商q2和一个余数r2;……依次计算直至rn =0,此时所得到的rn-1即为所求的最大公约数.用辗转相除法求最大公约数的程序框图为:程序:INPUT “m=”;m INPUT “n=”;n IF m<n THEN x=mm=nn=xEND IFr=m MOD n WHILE r<>0r=m MOD nm=nn=rWEND PRINT n END 要点诠释:辗转相除法的基本步骤是用较大的数除以较小的数,考虑到算法中的赋值语句可以对同一变量多次赋值,我们可以把较大的数用变量m 表示,把较小的数用变量n 表示,这样式子)0(n r r q n m <≤+⋅=就是一个反复执行的步骤,因此可以用循环结构实现算法.要点二、更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术.更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.翻译出来为:第一步:任意给出两个正整数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.理论依据:由r b a r b a +=→=-,得b a ,与r b ,有相同的公约数 更相减损术一般算法:第一步,输入两个正整数)(,b a b a >;第二步,如果b a ≠,则执行3S ,否则转到5S ; 第三步,将b a -的值赋予r ;第四步,若r b >,则把b 赋予a ,把r 赋予b ,否则把r 赋予a ,重新执行2S ; 第五步,输出最大公约数b . 程序:INPUT “a=”,a INPUT “b=”,b WHILE a<>bIF a>=ba=a-b;ELSEb=b-aWENDENDPRINT b或者INPUT “请输入两个不相等的正整数”;a,bi=0WHILE a MOD 2=0 AND b MOD 2=0a=a/2b=b/2i=i+1WENDDOIF b<a THENt=aa=bb=tEND IFc=a-ba=bb=cLOOP UNTIL a=bPRINT a^iEND要点诠释:用辗转相除法步骤较少,而更相减损术虽然有些步骤较长,但运算简单.要点三、秦九韶计算多项式的方法12121012312102312101210()()(())((()))n n n n n n n n n n n n n n n n n n n f x a x a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a --------------=+++++=+++++=+++++==+++++L L L L LL L令12(1)((()))k n n n n k n k v a x a x a x a x a -----=+++++L L ,则有01nk k n kv a v v x a --=⎧⎨=+⎩,其中n k Λ,2,1=.这样,我们便可由0v 依次求出n v v v Λ,,21;01323212101,,,a x v v a x v v a x v v a x v v n n n n n +=+=+=+=----Λ要点诠释:显然,用秦九韶算法求n 次多项式的值时只需要做n 次乘法和n 次加法运算 要点四、进位制进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值.可使用数字符号的个数称为基数,基数为n ,即可称n 进位制,简称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数.对于任何一个数,我们可以用不同的进位制来表示.比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的.表示各种进位制数一般在数字右下角加注来表示,如111001(2)表示二进制数,34(5)表示5进制数.1.k 进制转换为十进制的方法:012211)(0121a k a k a k a k a a a a a a a n n n n k n n +⨯+⨯++⨯+⨯=---ΛΛ,把k 进制数a 转化为十进制数b 的算法程序为:INPUT “ a,k,n=”;a,k,n i=1 b=0WHILE i<=nt=GET a[i]b=b+t*k^(i-1)i=i+1WENDPRINT bEND2.十进制转化为k进制数b的步骤为:第一步,将给定的十进制整数除以基数k,余数便是等值的k进制的最低位;第二步,将上一步的商再除以基数k,余数便是等值的k进制数的次低位;第三步,重复第二步,直到最后所得的商等于0为止,各次所得的余数,便是k进制各位的数,最后一次余数是最高位,即除k取余法.要点诠释:1、在k进制中,具有k个数字符号.如二进制有0,1两个数字.2、在k进制中,由低位向高位是按“逢k进一”的规则进行计数.3、非k进制数之间的转化一般应先转化成十进制,再将这个十进制数转化为另一种进制的数,有的也可以相互转化.【典型例题】类型一:辗转相除法与更相减损术例1.分别用辗转相除法和更相减损术求378与90的最大公约数.【答案】18【解析】用辗转相除法:378=90×4+18,90=18×5.∴378与90的最大公约数是18.用更相减损术:∵378与90都是偶数,∴用2约分后得189和45.189-45=144,144-45=99,99-45=54,54-45=9,45-9=36,36-9=27,27-9=18,18-9=9.【总结升华】比较辗转相除法与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显;(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.由该题可以看出,辗转相除法得最大公约数的步骤较少.对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.举一反三:【变式1】(1)用更相减损术求两个正数84与72的最大公约数.(2)利用辗转相除法求3869与6497的最大公约数与最小公倍数.【解析】(1)因为84=21×4,72=18×4,所以21-18=3,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.所以21和18的最大公约数等于3.所以84和72的最大公约数等于12.【总结升华】先约简,再求21与18的最大公约数,然后乘以约简的4得84与72的最大公约数.(2)6497=3869×1+2628,3869=2628×1+1241,2628=1241×2+146,1241=146×8+73,146=73×2+0.最小公倍数为3 869×6497÷73=344341.例2.求三个数:168,54,264的最大公约数.【思路点拨】运用更相减损术或辗转相除法,先求168和54的最大公约数a,再求a与264的最大公约数.【答案】6【解析】采用更相减损术先求168和54的最大公约数.(168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→(6,18)→(6,12)→(6,6).故168和54的最大公约数为6.采用辗转相除法求6和264的最大公约数.∵264=44×6+0,∴6为264与6的最大公约数,也是这三个数的最大公约数.【总结升华】求最大公约数通常有两种方法:一是辗转相除法;二是更相减损术,对于3个数的最大公约数的求法,则是先求其中两个数的最大公约数m,再求m与第三个数的最大公约数.同样可推广到求3个以上数的最大公约数.举一反三:【变式1】求三个数324,243,135的最大公约数.【答案】27【解析】∵324=243×1+81,243=81×3+0,∴324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,∴81与135的最大公约数为27.∴三个数324,243,135的最大公约数为27.更相减损术:∵324-243=81,243-81=162,162-81=81,∴81是324和243的最大公约数.又135-81=54,81-54=27,54-27=27,∴27是81与135的最大公约数.∴三个数324,243,135的最大公约数为27.例3.甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,问每瓶最多装多少?【思路点拨】由题意,每个小瓶最多能装的溶液的质量应是三种溶液质量的最大公约数.【答案】7g【解析】先求147与343的最大公约数.343-147=196,196-147=49,147-49=98,98-49=49,∴147与343的最大公约数是49.再求49与133的最大公约数.133-49=84,84-49=35,49-35=14,35-14=21,21-14=7,14-7=7.∴147,343,133的最大公约数是7.故每瓶最多装7g.【总结升华】本题关键是分析清楚题意,找出三个数的最大公约数.求三个以上(含三个数)的数的最大公约数时,可依次通过求两个数的最大公约数与第三个数的最大公约数来求得.类型二:秦九韶算法例4.利用秦九韶算法求2345()10.50.166630.041680.00835f x x x x x x =+++++在x=0.2时的值.写出详细计算过程.【思路点拨】秦九韶算法是我国南宋的数学家秦九韶首先提出来的.(1)特点:它通过一次式的反复计算,逐步计算高次多项式的求值问题,即将一个n 次多项式的求值问题,归结为重复计算n个一次式1()i i a x a -+.即1210()((()))n n n f x a x a x a x a x a --=++++L L .(2)具体方法如下:已知一个一元n 次多项式1110()n n n n f x a x a x a x a --=++++L 0.当x=x 0,我们可按顺序一项一项地计算,然后相加,求得0()f x .【答案】1.2214024 【解析】 v 0=0.00835,v 1=v 0x+0.04168=0.00835×0.2+0.04168=0.043 35, v 2=v 1x+0.16663=0.04335×0.2+0.16663=0.1753, v 3=v 2x+0.5=0.1753×0.2+0.5=0.53506, v 4=v 3x+1=0.53506×0.2+1=1.107012, v 5=v 4x+1=1.107012×0.2+1=1.2214024. 【总结升华】秦九韶算法的原理是01(1,2,3,,)n kk n k v a v v x a k n --=⎧⎨=+=⎩L .在运用秦九韶算法进行计算时,应注意每一步的运算结果,像这种一环扣一环的运算,如果错一步,则下一步,一直到最后一步就会全部算错.同学们在计算这种题时应格外小心. 举一反三:【变式1】用秦九韶算法求多项式764()85321f x x x x x =++++当x=2时的值. 【答案】1397【解析】765432()85030021((((((85)0)3)0)0)2)1f x x x x x x x x x x x x x x x =++⋅++⋅+⋅++=+++++++. v 0=8,v 1=8×2+5=21,v 2=21×2 4-0=42,v 3=42×2 4-3=87,v 4=87×2+0=174,v 5=174×2+0=348,v 6=348×2+2=698,v 7=698×2+1=1397,所以,当x=2时,多项式的值为1397.【变式2】用秦九韶算法计算多项式65432()654327f x x x x x x x =++++++在x=0.4时的值时,需做加法和乘法的次数和是( )A .10B .9C .12D .8【答案】 C【解析】 ()(((((65)4)3)2)1)7f x x x x x x x =++++++.∴加法6次,乘法6次,∴6+6=12(次),故选C .类型三:进位制例5.(1)试把十进制数136转化为二进制数;(2)试把十进制数1 234转化为七进制数.【答案】(1)10001000【解析】 (1)由于136=2×68+0,68=2×34+0.34=2×17+0.17=2×8+1.8=2×4+0.4=2×2+0.2=2×1+0.1=2×0+1.所以136=10001000(2).(2)1234=7×176+2,176=7×25+1.25=7×3+4.3=7×0+3.所以1234=3412(7).【总结升华】(1)应注意搞清每一次除法中的被除数、除数,当商为零时停止除法,把每步所得的余数倒着排成一个数,就是相应的二进制数.(2)十进制数转化为七进制数与转化为二进制数的方法类似,要认真体会其原理.举一反三:【变式1】(1)把十进制数89转化为二进制数;(2)将十进制数2l转化为五进制数.【解析】(1)用除2取余法:∴89=2×(2×(2×(2×(2×(2×(2×0+1)+0)+1)+1)+0)+0)+1=2×(2×(2×(2×2×(22×0+2+0)+1)+1)+0)+0)+1 =……=1×26+0×25+1×24+1×23+0×22×0×21+1×20=1011001(2)(2)用除5取余法,可得.∴21=41(5)例6.把210121l转化为八进制数.(3)【答案】3326(8)【解析】先将三进制数转化为十进制数,再将十进制数转化为八进制数.2101211(3)=2×36+1×35+1×33+2×32+1×31+1×30=1458+243+27+18+3+1=1750.1750=8×218+6.218=8×27+2.27=8×3+3.∴1750=8×218+6=8(8×27+2)+6=8(8(8×3+3)+2)+6=8(3×82+3×8+2)+6=3×83+3×82+2×8+6=3326(8),∴2101211(3)=3326(8).【总结升华】从本例的解答中,大家要有两个提高.第一,把三进制数转化为八进制数,十进制数起了桥梁和纽带的作用,具体体现是2101211(3)=1750=3326(8).第二,在把1750转化为3326(8)时,我们没有列竖式,大家要从中体会一下方法的内在规律.举一反三:【变式1】在十进制中,01232004410010010210=⨯+⨯+⨯+⨯,那么在五进制中数码2 004折合成十进制为( )A .29B .254C .602D .2 004【答案】B解析:0123200445050525254=⨯+⨯+⨯+⨯=,故选B .【变式2】(1)将二进制数1611111L 123个(2)转化成十进制数;(2)将七进制数235(7)转化成八进制数.【答案】(1)2621-(2)174(8)【解析】对于(1),按照形式a n a n ―1a n ―2…a 1a 0(2)=a n ×2n+a n ―1×2n ―1+…+a 1×2+a n 计算即可;对于(2),先将七进制数转化成十进制数,再将所得十进数转化成八进制数.(1)151********(2)11111212121221=⨯+⨯++⨯+⨯=-L L 123个.(2)235(7)=2×72+3×7+5=124,利用除8取余法得124=174(8),过程如图所示,所以235(7)转化成八制数为174(8). 【巩固练习】 1.1337与382的最大公约数是( ).A .3B .382C .191D .2012.用辗转相除法求得459和357的最大公约数是( ).A .3B .9C .17D .513.下列各数中最小的是( )A.)2(111111B.)6(210C.)4(1000D.(9)814.用秦九韶算法计算多项式65432()126016024019264f x x x x x x x =-+-+-+,当2x =时,(2)f 的值为A .0B .2C .-2D .45.把67转化为二进制数为( ).A .1100001(2)B .1000011(2)C .110000(2)D .100011l (2)6.用秦九韶算法求多项式52()42f x x x =-+当x=3时的值时,需要进行的乘法运算和加减运算的次数分别为( ).A .4,2B .5,3C .5,2D .6.27.已知一个k 进制数132与十进制数30相等,那么k 等于( ).A .-7或4B .-7C .4D .都不对8. 计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制数的对应关系如下表:十六进制0 1 2 3 4 5 6 7 8 9 A B C D E F 十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 例如,用十六进制表示:E+D=1B ,则A ×B 等于( ).A .6EB .72C .5FD .B09.三个数72,120,168的最大公约数是.10.(1)l 011010(2)=________.(2)154(6)=________(7).11.已知a=333,b=24,则使得a=bq+r (q ,r 均为自然数,且0≤r <b )成立的q 和r 的值分别为________.12. 秦九韶的算法中有n 个一次式,若令0n v a =,我们可以得到01___(12).n k k v a v v x k n -=⎧⎨=+=⎩L ,,,,我们可以利用 结构来实现.13.用秦九韶算法求多项式x x x x x x x x f ++++++=234567234567)(当3=x 时的值.14.古时候,当边境有敌人来犯时,守边的官兵通过在烽火台上举火向国内报告,如下图,若烽火台上点火,则用数字1表示,若不点火用数字0表示,约定二进制数对应的十进制数的单位是1000,请你计算一下,这组烽火台表示边境有多少敌人入侵?15.设有甲、乙、丙三种溶液,质量分别为146kg 、334kg 、229kg .要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同.每瓶最多装多少?【答案与解析】1.【答案】C【解析】 1337=382×3+191,382=191×2+0,1337与382的最大公约数为191.2.【答案】D【解析】 ∵459=357×1+102,357=102×3+51,102=51×2+0,即51为459和357的最大公约数.3. 【答案】A【解析】把这四个数都化为十进制数63111111)2(=,78210)6(=,641000)4(=,(9)8173=,故选A.4.【答案】A【解析】 按秦九韶算法计算.5.【答案】B【解析】 利用除2取余法易得67=1000011(2).6.【答案】C【解析】52()42(((4))1))2f x x x x x x x x =-+=-+,所以需要进行5次乘法运算和2次加减运算.7. 【答案】C【解析】 ∵132(k )=1×k2+3k+2=30,∴k=-7或k=4.又∵k >0,∴k=4.故选C .8. 【答案】A【解析】A ×B 用十进制可以表示为10×11=110,而110=6×16+14,所以用十六进制表示为6E ,故选A .9. 【答案】24【解析】 12072148,7248124,48242,168247=⨯+=⨯+=⨯=⨯10.【答案】80 130【解析】(1)1011010(2)=0×20+1×21+0×22+1×23+1×24+0×25+1×26=90.(2)154(6)=4×60+5×61+1×62=4+30+36=70.将70转化为七进制数,故70=130(7).11.【答案】13,21【解析】 用333除以24,商即为q ,余数就是r .333=24×13+21.12. 【答案】n k a -;循环13. 【答案】21324【解析】()((((((76)5)4)3)2)1)f x x x x x x x =++++++012345677,73627,273586,8634262,26236789,789322369,2369317108,71083021324,V V V V V V V V ==⨯+==⨯+==⨯+==⨯+==⨯+==⨯+==⨯+=(3)21324f ∴=14.【答案】27000【解析】由题图可知,从左到右的五个烽火台,表示二进制数的自左到右的五个数位.这组烽火台表示的二进制数是11011(2),转化为十进制数为11011(2)=1×24+1×23+0×22+1×21+1×20=16+8+2+1=27.又27×1000=27000,所以,这组烽火台表示边境共有27000个敌人入侵.15.【答案】536【解析】12515046636==,31513534436==,2208029936==. 15013515363636-=,13515120363636-=,12015105363636-=, 1051590363636-=,901575363636-=,751560363636-=, 601545363636-=,451530363636-=,301515363636-=, 即146与334的最大公约数为1536. 801565363636-=,651550363636-=,501535363636-=, 351520363636-=,20155363636-=,155********-=,1055363636-=. 综上所述,146、334、229的最大公约数是536.。

相关文档
最新文档