减速器结构设计及传动尺寸设计计算

合集下载

减速器计算

减速器计算

mm minmm cos15八、键的选择本次设计的减速箱中共有3根十一、箱体及减速器附件说明:箱壳是安装轴系组件和所有附件的基座,它需具有足够的强度、刚度和良好的工艺性。

箱壳采用HT200灰铸铁铸造而成,易得道美观的外表,还易于切削。

为了保证箱壳有足够的刚度,常在轴承凸台上下做出刚性加固筋。

轴承采用润滑脂润滑,在轴承与轴肩连接处,采用挡油环结构。

防止箱体内全损耗系统用油将油脂洗去。

箱体底部应铸出凹入部分,以减少加工面并使支撑凸缘与地量好接触。

减速器附件:1)视孔和视孔盖箱盖上一般开有视孔,用来检查啮合,润滑和齿轮损坏情况,并用来加注润滑油。

为了防止污物落入和油滴飞出,视孔须用视孔盖、垫片和螺钉封死。

2)油面指示器油面指示器上有高油面和低油面指示孔,油面一般不能低于最低油面孔,不能高于最高油面孔。

一般油面高度为30~50mm,要浸到1~2齿,一般不超过齿轮半径的1/3。

3)油塞在箱体最底部开有放油孔,以排除油污和清洗减速器。

放油孔平时用油塞和封油圈封死。

油塞用细牙螺纹,材料为Q235钢。

封油圈采用石棉橡胶制成。

4)吊钩、吊耳为了便于搬运减速器,常在箱体上铸出吊钩和吊耳。

起调整个减速器时,一般应使用箱体上的吊钩。

对重量不大的中小型减速器,如箱盖上的吊钩、吊耳的尺寸根据减速器总重决定,才允许用来起调整个减速器,否则只用来起吊箱盖。

5)定位销为了加工时精确地镗制减速器的轴承座孔,安装时保证箱盖与箱体的相互位置,再分箱面凸缘两端装置两个直径为A7的圆锥销,以便定位。

长度应大于凸缘的总厚度,使销钉两端略伸凸缘以利装拆。

滚动轴承的外部密封装置:为了防止外界灰尘、水分等进入轴承,为了防止轴承润滑油的泄漏,在透盖上需加密封装置。

在此,我用的是毡圈式密封。

因为毡圈式密封适用于轴承润滑脂润滑,摩擦面速度不超过4~5m/s的场合。

十二、小结:心得小结附:弯矩图、扭矩图(轴1)具体参数见表格中“轴的设计”部分。

参考资料1吴克坚等主编.机械设计.北京:高等教育出版社,20032王之栎等主编.机械设计综合课程设计.北京:机械工业出版社,20033龚桂义主编.机械设计课程设计指导书.北京:高等教育出版社,19904龚桂义主编.机械设计课程设计图册.北京:高等教育出版社,19895范钦珊,蔡新.工程力学.北京:高等教育出版社,20066 宜沈平,赵傲生.计算机工程制图与机械设计.南京东南大学出版社,2004.。

减速器结构设计及传动尺寸设计计算

减速器结构设计及传动尺寸设计计算

减速器结构设计及传动尺寸设计计算一、运动简图图11—电动机2—V带3—齿轮减速器4—联轴器5—滚筒6—输送带二、工作条件该装置单向传送,载荷稍有波动,多灰尘,小批量,两班制工作,使用期限10年(每年按300天计算)。

三、原始数据滚筒直径D (mm ):450 运输带速度V (m/s ):0.28 滚筒周围力F (N ):12000 滚筒长度L(mm):800 四、设计说明书内容 1 电动机选择 2 主要参数计算 3 V 带传动的设计计算4 减速器斜齿圆柱齿轮传动的设计计算5 轴的设计计算及校核 6.箱体结构的设计 7. 润滑密封设计 8 参考文献1 电动机选择 (1)选择电动机类型按工作要求和条件,选用Y 系列全封闭自扇冷式笼型三相异步电动机,电压380V.(2)选用电动机容量n w =(60×1000)v/πD=11.89r/min P w =FV/1000=3.36kwV 带传动效率η1=0.96滚动轴承效率η2=0.99 , 闭式齿轮传动效率η3=0.97 ,联轴器效率η4=0.99 , 传功滚筒效率η5=0.96,其中总效率为32320.960.990.970.990.960.833v ηηηηηη=⨯⨯⨯⨯=⨯⨯⨯⨯=带轴承齿轮联轴滚筒P d =P w /η=4.034kw 选用电动机额定功率为4kw 通常,V 带传动的传动比范围为2到4,二级圆柱齿轮减速器为8到40,则总传动比的范围为16到160,故电动机转速可选范围为:n 1d =(16~160)×11.89=190~1900r/min.符合这一范围的同步转速有750 r/min 、 1000 r/min 、 1500 r/min 现以这三种对比查表可得Y132M-6符合要求,故选用它。

Y132M-6 (同步转速1000r/min)的相关参数表12. 主要参数的计算(1)确定总传动比和分配各级传动比传动装置的总传动比i a=n m/n w=960/11.89=80.74取V带传动单级传动比i01=2.8,减速器的总传动比i为:i=i a/i01=28.836 i12=(1.4i)1/2=6.354 i23=i/i12=4.538初分传动比为i 1=2.8,i2=6.354,i v带=4.538(2)计算传动装置的运动和动力参数本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速n1=n m/i w=343 r/minn2=n1/i1=54 r/minn3=n2/i2= 11.9 r/min2、各轴功率P1=P dη01=P d×ηv带= 4.0 × 0.96=3.84kwP2=P1η12=P1×η轴承×η齿轮=3.84× 0.99×0.97=3.69 kwP3=P2η23=P2×η轴承×η齿轮= 3.69× 0.99×0.97=3.54kw3、各轴转矩T d=9550P d/n d=40.1N.mT1=T d i带η01=107.79 N.m187.542 4.2430.990.97356.695T T i N m η==⨯⨯⨯=⋅ⅡⅠⅠⅡT 2=T 1i 1η12=657.7 N.m2356.695 3.0310.990.971038.221T T i N mη==⨯⨯⨯=⋅ⅢⅡⅡⅢT 3=T 2i 2η23=2866.15 N.m表2传动比3. V 带传动的设计计算(1)确定计算功率ca P查表可得工作情况系数 1.2A k = 故P ca =k A ×P= 1.2×4.0=4.8 kw(2)选择V 带的带型根据ca P n 、,由图可得选用A 型带。

减速器设计方法和计算

减速器设计方法和计算
螺旋齿轮传动

3


相对滑动较大,不宜重载
蜗杆
传动
自锁


10~80


传动比大,尺寸小;但效率低,常须用价格较贵的青铜材料,制造精度要求高
不自锁
渐开线行星齿轮传动
2K-H、
3K型


3~60


传动比大,结构较定轴齿轮传动紧凑,但安装复杂。类型不同,传动效率与传动比范围相差很大
K-H-V
少齿差型

一、各轴运动和动力参数的计算
各轴的运动和动力参数主要是指轴的转速、功率和转矩,它是进行传动零部件设计计算的重要依据。现以图3-4所示的双级圆柱齿轮减速器为例,说明机器传动系统各轴的转速、功率及转矩的计算。
图3-4双级圆柱齿轮减速器简图
1—电动机轴;2—高速轴;3—中间轴;4—低速轴;5—工作机轴;6—电动机;
7~83


传动比大、体积小,重量轻、但高速轴转速受限制
摆线针轮行星传动


9~87


传动比大,体积小,重量轻,寿命长,承载能力比少齿差型行星传动高;制造精度要求高,高速轴转速受限
谐波齿轮传动

260


传动比大,结构紧凑,但材料热处理要求很高
摩擦轮传动


5~7


工作平稳,结构简单,有过载打滑作用,适用于冲压机械;但不能严格保证定传动比
1.功率
每种传动所能传递的功率大小与该传动的工作原理、承载能力、工作速度、效率、材料和制造精度等因素有关。一般来说,啮合传动传递的功率高于摩擦传动,但是啮合传动中的蜗杆传动则因齿面相对滑动速度较大,导致发热量大和效率较低而不宜传递较大的功率;同步带传动则因材料关系亦不能传递大的功率。

单级减速器设计计算

单级减速器设计计算

1.电机选择由传动方案可以估算出系统的传动效率:n=0.995*0.982*0.98*0.96=0.899则电机输入功率为Pd==8.922kW根据已知条件及计算结果选择电机,其各项参数如下表所示。

表电机各项参数表卷筒转速n==52.55r/min传动比i==27.78传动比分配:6.2*4.48=27.7763.各轴的运动动力参数1)各轴转速:=1460/6.2=235.48r/minn1n= 235.48/4.48=52.56r/min22)各轴功率:P=8.922*0.96*0.98=8.394kW1P=8.394*0.98*0.98=8.061kW23)各轴扭矩:Td=58360N.mm=340423N.mmT1=1464660N.mT24.第一对齿轮设计计算1)类型、材料、精度等级的选择选用直齿圆柱齿轮,软齿面,7级精度(GB-10095-88)材料:小齿轮40Cr(调质)硬度为280HBS大齿轮45#钢(调质)硬度为240HBS大小齿轮硬度差为40HBS小齿轮齿数预选Z 1,Z 2。

=2 2)按接触强度计算设计公式:d t 1≥2.32 []3211⎪⎪⎭⎫⎝⎛±H E Z u u d KT σφ ① 确定公式内各计算数值 试选K t =1.3 T 1=340423N.mm 选择齿宽系数:d φ=1.2查得材料弹性影响系数:Z E =189.8MPa 21查取接触疲劳强度极限:小齿轮:1lim H σ=600MPa 大齿轮:2lim H σ=550MPa 应力循环次数: N 1=1.356*109 N 2=0.303*109查取接触疲劳寿命系数: K 1HN =0.92 K 2HN =0.95 计算接触疲劳许用应力:按实效率为1%取安全系数:S=1[]sK H HN H 1lim 11σσ==552MPa[]sK H HN H 2lim 22σσ==522.5MPa② 计算1 d t 1≥90.55mm2 圆周速度:V=10006011⨯n d t π==3.622m/s3 齿宽:t d d b 1∙=φ=108.66mm4 计算齿宽于齿高比m t ==3.622h= 2.25m t =8.15 =13.335 计算载荷系数由V=1.12m/s 和7级精度可查得直齿轮有 1==ααF H K K 可以查取使用系数 1=A K 可以查取 421.1=βH K 由52.667.5962.36==h b 421.1=βH K 可以查得31.1=βF K 606.1421.1131.11=⨯⨯⨯==βαH H V A K K K K K6 按实际载荷系数校正分度圆直径mm k k d d t t 152.583.1606.1196.543311=⨯== mm z d m 908.220152.5811===3)按弯曲强度校核 设计公式:[]32112⎪⎪⎭⎫⎝⎛*≥F SaFa d Y Y z KT m σφ ① 确定公式内各计算数值1 疲劳强度极限查取:MPa FE 5001=σ MPa FE 3802=σ2 弯曲疲劳寿命系数:85.01=FN K 9.02=FN K3 计算许用应力取弯曲疲劳安全系数为S=1.4 []MPa F 571.3034.150085.01=⨯=σ[]MPa F 86.2384.138088.02=⨯=σ 4 计算载荷系数480.113.113.11=⨯⨯⨯==βαF F V A K K K K K5 查取齿形系数及应力校正系数80.21=αF Y 17.22=αF Y 55.11=αS Y 785.12=αS Y 6 计算两齿轮的[]F F S Y Y σαα加以比较[]0142965.0111=F F S Y Y σαα []0162164.0221=F F S Y Y σαα ② 计算mm m 949.10162164.020161716480.1232=⨯⨯⨯⨯≥与接触应力计算结果相比模数更小及接触强度满足时弯曲强度也满足, 为了重合度好应尽量取小的模数。

减速器斜齿圆柱齿轮传动的设计计算

减速器斜齿圆柱齿轮传动的设计计算

减速器斜齿圆柱齿轮传动的设计计算设计和计算减速器斜齿圆柱齿轮传动的步骤如下:1.确定传动比:减速器的传动比是由齿轮的齿数确定的。

假设需要的传动比为n,即输入齿轮的齿数与输出齿轮的齿数之比,可根据应用需求确定。

2.确定输入齿轮和输出齿轮的模数:模数是齿轮齿数与齿轮直径的比值,一般用m表示。

通过传动比和齿轮的齿数可以计算出输入齿轮和输出齿轮的模数。

3.确定输入齿轮和输出齿轮的分度圆直径:分度圆直径是齿轮齿顶和齿底的圆周上的直径。

分度圆直径可通过模数和齿数计算得出。

4.确定输入齿轮和输出齿轮的齿宽:齿宽是齿轮齿廓的宽度,也是齿轮传动中齿轮接触面积的重要参数。

齿宽一般需根据应用负载、传动功率、齿轮材料等因素进行估算和确定。

5.确定输入齿轮和输出齿轮的齿数:通过传动比和齿轮的模数计算出输入齿轮和输出齿轮的齿数。

6.计算输入齿轮和输出齿轮的齿廓曲线:齿轮的齿廓曲线决定了齿轮的传动性能。

常见的齿廓曲线有直线齿廓、渐开线齿廓等,齿轮选择时根据应用需要进行选择。

7.计算输入齿轮和输出齿轮的轴向模数:轴向模数是齿轮齿厚度的参数,可通过齿宽和齿轮的齿数计算得出。

8.校核输入齿轮和输出齿轮的强度:校核齿轮的强度是确保减速器传动可靠性和寿命的重要步骤。

校核齿轮的强度包括弯曲强度校核、接触疲劳强度校核等。

根据应用条件和齿轮材料可进行强度校核。

9.计算输入齿轮和输出齿轮的啮合效率:啮合效率是齿轮传动中能量的转换效率。

齿轮传动的效率取决于齿轮材料、润滑状况、齿轮齿型等因素。

通过计算可确定齿轮传动的啮合效率。

10.校核输入齿轮和输出齿轮的动态性能:校核齿轮的动态性能是确保减速器传动平稳性和减振性的重要步骤。

动态性能校核包括齿轮的动载荷分析、振动分析等。

以上是减速器斜齿圆柱齿轮传动设计计算的基本步骤和内容。

根据具体应用情况,还可进行其他设计计算,例如齿轮材料的选择、润滑方式的选择等。

设计计算的准确性和合理性对减速器的使用寿命和可靠性有重要影响,因此需要在设计过程中严格按照相关规范和标准进行。

减速器设计计算及说明

减速器设计计算及说明

引言:减速器是一种常用的机械设备,广泛应用于工业生产中的各个领域。

本文将对减速器的设计计算及说明进行详细阐述。

我们将介绍减速器的基本概念和工作原理,然后分析减速器的设计要点和计算方法。

接下来,我们将详细讨论减速器设计中的五个大点,每个大点包括59个小点的详细阐述。

我们将总结减速器设计计算及说明的要点和注意事项。

一、减速器的基本概念和工作原理1.减速器的定义和分类2.减速器的工作原理和作用3.减速器的组成部分和结构特点二、减速器设计的基本要点和计算方法1.载荷分析和选型计算a.转矩计算和载荷分析b.选型计算和参数确定2.齿轮传动设计及计算a.齿轮模数和齿轮比计算b.齿轮齿数和模数的选择c.齿轮齿面接触强度和疲劳寿命计算3.轴承选择和计算a.轴承类型和选用原则b.轴承计算和寿命估算4.轴的设计和计算a.轴的尺寸和材料选择b.轴的强度和刚度计算5.外壳设计和计算a.外壳材料和结构设计b.外壳的强度和稳定性计算三、减速器设计中的大点一:载荷分析与选型计算1.减速器工作条件和载荷分析方法2.载荷选型计算的基本原理和方法3.应力分析和强度校核4.齿轮合理选型的关键因素和注意事项5.配套电动机的选取及功率计算四、减速器设计中的大点二:齿轮传动设计与计算1.齿轮传动的基本原理和特点2.齿轮模数和齿数计算方法3.齿轮齿面接触强度和疲劳寿命的计算4.齿轮传动的噪声和振动分析5.齿轮传动设计的优化方法和技巧五、减速器设计中的大点三:轴承选择与计算1.轴承的结构和分类2.轴承的选型计算和额定寿命估算3.轴承的装配和润滑4.轴承的热平衡和振动分析5.轴承故障分析和维修方法六、减速器设计中的大点四:轴设计与计算1.轴的基本要求和设计准则2.轴的尺寸和材料的选择3.轴的强度和刚度计算方法4.轴的疲劳强度和寿命估算5.轴联接的设计和计算七、减速器设计中的大点五:外壳设计与计算1.外壳的结构和功能要求2.外壳的材料和制造工艺选择3.外壳的强度和稳定性分析4.外壳的密封和散热设计5.外壳的防护和装配要求总结:减速器设计的过程复杂而严谨,需要考虑多个因素的综合影响。

减速器箱体结构设计

减速器箱体结构设计

放油孔与放油螺塞装配的画法: 见设计指导书P72图108。
5.起吊装置
见手册P216图18-2。 作用:为方便减速器的搬运,而 在箱体上设置起吊耳或起吊钩。
结构尺寸:见手册P149表11-3。 画法:参考手册P220~221。
6. 设置定位销
作用:保证箱盖与底座装配时准 确定位。在两端的凸缘上叉开各 布置一个。
2. 通气器
作用:保持箱体内、外压力的平 衡。在箱体顶部或直接在视孔盖 板上设置通气器,如图示。
通气器的结构型式及尺寸: 见手册P150表11-5。
通气器结构设计: 参考手册P216图例18-2。
3. 油标(见手册P84表7-10) 作用:检查、指示减速器内油面的 高度。
1)油标孔位置及结构: 见手册P221图18-7。注意,油孔最 低点应略高于箱内油面高度,螺
减速器箱体结构设计
一、箱体各部分名称 见手册P146~147表11-1、图11-1。
二、箱体的结构
箱体做成剖分式,分箱盖与 底座。
注意:剖分面与轴线在同一平面。
1. 轴承座孔旁联接凸台
此部位设计成加厚,以增加联接 刚性。
凸台厚度尺寸h: 根据Md1查手册P149表11-2,定出 C1、C2,通过作图确定出h。
7. 设置1~2个启盖螺钉 以方便打开箱盖。
塞螺纹直径选M16 1.5
2)油标装配结构的画法: 见手册P84表7-10及P216图18-2。
4. 放油孔及放油螺塞
作用:排放箱体内的污油。放油 螺塞用细牙螺纹,规格:M20× 1.5。
装配结构:螺塞和凸台端面间加 有防漏用的油垫,以保持密封。
位置设计:应在机座油池的最低 处设置放油孔,油池底面做成向 放油孔方向倾斜10~20。

减速器的结构及其设计

减速器的结构及其设计

减速器的结构及其设计减速器是一种机械传动装置,主要由驱动轴、传动轴、主动轮、从动轮、齿轮箱等组成。

减速器的结构和设计根据实际应用需求和传动原理来确定,下面将详细介绍几种常见的减速器结构及其设计。

1.平行轴硬齿面减速器平行轴硬齿面减速器是一种常见的减速器结构,主要用于传动轴之间的平行传动。

其结构由两组平行的齿轮组成,一组为主动轮,一组为从动轮。

主动轮和从动轮之间通过啮合的齿轮进行传动。

设计时需要考虑齿轮的模数、齿数、压力角等参数,以及轴承的选用和润滑油的供给。

2.斜齿轮减速器斜齿轮减速器是一种传动角度不为90度的减速器结构,主要用于传动轴之间的非平行传动。

其结构和平行轴硬齿面减速器类似,由主动轮和从动轮组成,但齿轮轴的轴线与传动轴之间的角度不为90度。

设计时需要考虑斜齿轮的啮合角度、齿轮的模数、齿数等参数,以及轴承的选用和润滑油的供给。

3.行星齿轮减速器行星齿轮减速器是一种常见的高效、紧凑的减速器结构,主要用于需要较大减速比的传动应用。

其结构由一个太阳轮、多个行星轮和一个内部齿圈组成。

太阳轮是主动轮,行星轮是从动轮,内部齿圈是固定不动的。

设计时需要考虑齿轮的模数、齿数、行星轮的数量等参数,以及轴承的选用和润滑油的供给。

4.锥齿轮减速器锥齿轮减速器是一种用于传动轴之间的交叉传动的减速器结构,主要用于需要进行角度传动的应用。

其结构由一个主动轮和一个从动轮组成,主动轮和从动轮的齿轮轴之间的交叉角度一般为90度。

设计时需要考虑锥齿轮的模数、齿数、压力角等参数,以及轴承的选用和润滑油的供给。

减速器的设计中需要考虑多种因素,如载荷、转速、传动比、噪声、摩擦、磨损等。

一般来说,设计减速器时需要确定一些基本参数,如输入转速、输出转速、额定载荷、传动比等,然后根据这些参数进行齿轮的设计和选型,同时还需要进行热力学分析、强度分析、动力学分析等,以确保减速器的性能和可靠性。

在减速器的设计中,还需要考虑材料的选择以及加工工艺的确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减速器结构设计及传动尺寸设计计算一、运动简图图11—电动机2—V带3—齿轮减速器4—联轴器5—滚筒6—输送带二、工作条件该装置单向传送,载荷稍有波动,多灰尘,小批量,两班制工作,使用期限10年(每年按300天计算)。

三、原始数据滚筒直径D (mm ):450 运输带速度V (m/s ):0.28 滚筒周围力F (N ):12000 滚筒长度L(mm):800 四、设计说明书内容 1 电动机选择 2 主要参数计算 3 V 带传动的设计计算4 减速器斜齿圆柱齿轮传动的设计计算5 轴的设计计算及校核 6.箱体结构的设计 7. 润滑密封设计 8 参考文献1 电动机选择 (1)选择电动机类型按工作要求和条件,选用Y 系列全封闭自扇冷式笼型三相异步电动机,电压380V.(2)选用电动机容量n w =(60×1000)v/πD=11.89r/min P w =FV/1000=3.36kwV 带传动效率η1=0.96滚动轴承效率η2=0.99 , 闭式齿轮传动效率η3=0.97 ,联轴器效率η4=0.99 , 传功滚筒效率η5=0.96,其中总效率为32320.960.990.970.990.960.833v ηηηηηη=⨯⨯⨯⨯=⨯⨯⨯⨯=带轴承齿轮联轴滚筒P d =P w /η=4.034kw 选用电动机额定功率为4kw 通常,V 带传动的传动比范围为2到4,二级圆柱齿轮减速器为8到40,则总传动比的范围为16到160,故电动机转速可选范围为:n 1d =(16~160)×11.89=190~1900r/min.符合这一范围的同步转速有750 r/min 、 1000 r/min 、 1500 r/min 现以这三种对比查表可得Y132M-6符合要求,故选用它。

Y132M-6 (同步转速1000r/min)的相关参数表12. 主要参数的计算(1)确定总传动比和分配各级传动比传动装置的总传动比i a=n m/n w=960/11.89=80.74取V带传动单级传动比i01=2.8,减速器的总传动比i为:i=i a/i01=28.836 i12=(1.4i)1/2=6.354 i23=i/i12=4.538初分传动比为i 1=2.8,i2=6.354,i v带=4.538(2)计算传动装置的运动和动力参数本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速n1=n m/i w=343 r/minn2=n1/i1=54 r/minn3=n2/i2= 11.9 r/min2、各轴功率P1=P dη01=P d×ηv带= 4.0 × 0.96=3.84kwP2=P1η12=P1×η轴承×η齿轮=3.84× 0.99×0.97=3.69 kwP3=P2η23=P2×η轴承×η齿轮= 3.69× 0.99×0.97=3.54kw3、各轴转矩T d=9550P d/n d=40.1N.mT1=T d i带η01=107.79 N.m187.542 4.2430.990.97356.695T T i N m η==⨯⨯⨯=⋅ⅡⅠⅠⅡT 2=T 1i 1η12=657.7 N.m2356.695 3.0310.990.971038.221T T i N mη==⨯⨯⨯=⋅ⅢⅡⅡⅢT 3=T 2i 2η23=2866.15 N.m表2传动比3. V 带传动的设计计算(1)确定计算功率ca P查表可得工作情况系数 1.2A k = 故P ca =k A ×P= 1.2×4.0=4.8 kw(2)选择V 带的带型根据ca P n 、,由图可得选用A 型带。

(3)确定带轮的基准直径d d 并验算带速v1、初选小带轮的基准直径1d d 。

查表8-6和8-8可得选取小带轮的基准直径d d1= 125 mm2、验算带速v 按计算式验算带的速度 v=πd d1n/60×1000= 6.28s因为530m s v m s <<,故此带速合适。

3、计算大带轮的基准直径2d d 按式(8-15a)计算大带轮的基准直径d d2=i v 带d d1=2.8×125=350mm 根据教材表8-8,圆整得d d2= 355mm。

(4)确定V 带的中心距a 和基准直径d L(1)按计算式初定中心距0500a mm =12012(0.7()2())d d d d d d a d d +≤≤+(2)按计算式计算所需的基准长度22100120()2()24d d d d d d d L a d d a π-≈+++=1644mm查表可选带的基准长度L d =1600mm(3)按计算式计算实际中心距a a ≈a 0+(L d −L d 0)= 452mm (5)验算小带轮上的包角1α()12157.3180150.8120d d d d aα≈--=≥ (6)计算带的根数由1125.960min d d mm n r ==查表可得 1.37P kw =根据960min , 2.8n r i ==和A 型带,查表可得00.11P kw ∆=、0.92k α=、0.99L k =。

()00 3.56caLP P P k k αZ ==+∆ 故取V 带根数为4根4 减速器斜齿圆柱齿轮传动的设计计算(1)高速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。

(2)运输装置为一般工作机器,速度不高,故选用7级精度。

(3)材料选择:查表可选择小齿轮材料为40Cr (调质),硬度为280HBS ;大齿轮材料为45钢(调质),硬度为240HBS ,二者材料硬度差为40HBS 。

(4)选小齿轮齿数120Z =,大齿轮齿数2 4.2432085Z =⨯=,取285Z = (5)选取螺旋角,初选螺旋角14β=2、按齿面接触强度设计,按计算式试算即1t d ≥(1)确定公式内的各计算数值①因为原动机为电机所以试选 1.6t k =,由图10-2610.740αε=,20.820αε=则有12 1.560αααεεε=+=②小齿轮传递转矩1107.79T N m=③查图10-30可选取区域系数 2.433H Z = 查表10-7可选取齿宽系数1d Φ=④查表10-6可得材料的弹性影响系数12189.8E Z MP =。

⑤查图10-21d 得按齿面硬度选取小齿轮的接触疲劳强度极限lim1600H a MP σ=,大齿轮的接触疲劳强度极限lim 2550H a MP σ=。

⑥按计算式计算应力循环次数()81160603431283005 4.93910h N n jL ==⨯⨯⨯⨯⨯⨯=⨯882 4.939100.777106.354N ⨯==⨯⑦查图可选取接触疲劳寿命系数1 1.02HN k =,2 1.12HN k =。

⑧计算接触疲劳许用应力取失效概率为1%,安全系数1S =,按计算式(10-12)得[]1lim11 1.02600612HN H H a k MP Sσσ==⨯= []2lim22 1.12550616HN H H ak MP Sσσ==⨯=(2)计算相关数值①试算小齿轮分度圆直径1t d ,由计算公式得152.51t d mm ≥=②计算圆周速度110.943601000t d n v m s π==⨯③计算齿宽b 及模数nt m1152.5152.51d t b d mm =Φ=⨯=11cos 2.548t nt d m mm Z β== 2.25 2.25 2.548 5.733nt h m mm mm ==⨯=50.079.165.466b h == ④计算总相重合度βε10.318tan 0.318120tan14 1.586d Z βεβ=Φ=⨯⨯⨯=[][][]1261261661422H H H a MP σσσ++===⑤计算载荷系数k查表可得使用系数1A k =,根据0.943v m s =,7级精度,查表10-8可得动载系数 1.07V k =,由表10-4查得H K β的值与直齿轮的相同,为 1.4191.350F k β=, 1.4H F k k αα==故载荷系数1 1.07 1.4 1.419 2.126A V H H k k k k k αβ==⨯⨯⨯= ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得1152.5157.72td d mm ==⨯= ⑦计算模数n m11cos 2.80n d m mm Z β== 3、按齿根弯曲强度设计,按计算式(10-17)试算即n m ≥(1)确定公式内的各计算数值 ①、计算载荷系数1 1.07 1.4 1.35 2.022A V F F k k k k k αβ==⨯⨯⨯=②根据纵向重合度 1.586βε=,查图10-28可得螺旋角影响系数0.88Y β=。

③查图可选取区域系数 2.433H Z =,30.795αε=,40.875αε=则有34' 1.67αααεεε=+=④查表取应力校正系数1 1.569Sa Y =,2 1.783Sa Y =。

⑤查表取齿形系数1 2.724Fa Y =,2 2.194Fa Y =。

(线性插值法)⑥查图10-20C 可得小齿轮的弯曲疲劳强度极限1500FE a MP σ=,大齿轮的弯曲疲劳强度极限2380FE a MP σ=。

⑦查图可取弯曲疲劳寿命系数10.87FN k =,20.90FN k =。

⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 1.4S =,按计算式(10-22)计算得[]1110.87500310.7141.4FN FE F a k MP S σσ⨯=== []2220.90380244.2861.4FN FE F a k MP S σσ⨯===⑨计算大、小齿轮的[]Fa SaF Y Y σ并加以计算[]1112.724 1.5690.014310.714Fa Sa F Y Y σ⨯==[]2222.194 1.7830.016244.286Fa Sa F Y Y σ⨯==大齿轮的数值较大。

(2)设计计算2.12n m mm ≥= 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 2.25n m mm =,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径155.046d mm =来计算应有的齿数,于是有11cos 24.89nd Z m β== 取125Z =,则211159Z i Z == 4、几何尺寸计算 (1)计算中心距()()1225159 2.25213.52cos 2cos14n Z Z m a mmβ++⨯===⨯将中心距圆整为190a mm =。

相关文档
最新文档