有源相控阵雷达原理
有源相控阵雷达原理

有源相控阵雷达原理有源相控阵雷达(Active Electronically Scanned Array,AESA)是一种先进的雷达技术,它采用了相控阵天线和主动相控技术,具有较高的抗干扰能力和快速目标搜索、跟踪能力。
相比传统的机械扫描雷达,有源相控阵雷达具有更快的响应速度和更灵活的目标探测能力,因此在现代军事应用中得到了广泛的应用。
有源相控阵雷达的原理基于相控阵天线和主动相控技术。
相控阵天线是由大量的单元阵列组成的,每个单元阵列都可以独立控制,通过改变每个单元阵列的相位和幅度,可以实现对雷达波束的灵活控制。
而主动相控技术则是通过对每个单元阵列的相位和幅度进行实时调控,以实现对雷达波束的实时调整和目标跟踪。
这种灵活的波束控制能力使得有源相控阵雷达可以快速地对多个目标进行跟踪和搜索,极大地提高了雷达的性能和效率。
有源相控阵雷达的原理还体现在其发射和接收的方式上。
传统的雷达通常采用单一的天线进行发射和接收,而有源相控阵雷达则采用了多个单元阵列,可以实现多波束的同时发射和接收。
这种多波束的发射和接收方式可以大大提高雷达的搜索速度和目标跟踪能力,同时也增强了雷达的抗干扰能力和隐身目标的探测能力。
除此之外,有源相控阵雷达还采用了先进的信号处理和数据处理技术。
相控阵天线可以实现对雷达波束的快速调整,同时也可以实现对雷达信号的实时处理和分析。
这种高效的信号处理和数据处理技术使得有源相控阵雷达可以实现对多个目标的快速跟踪和搜索,同时也可以实现对复杂环境下的抗干扰和隐身目标的探测。
总的来说,有源相控阵雷达的原理基于相控阵天线和主动相控技术,通过灵活的波束控制、多波束发射和接收以及先进的信号处理和数据处理技术,实现了对多个目标的快速跟踪和搜索,具有较高的抗干扰能力和快速响应的特点。
在现代军事应用中,有源相控阵雷达已经成为了主流的雷达技术,其在提高雷达性能和效率方面发挥着重要的作用。
无源有源相控阵雷达原理、电扫阵列及典型雷达系统

相参技术相参雷达是指雷达系统的发射信号、本振电压、相参震荡电压和定时器的触发脉冲均由同一基准信号提供,使得这些信号之间可以保持确定的相位关系,同时接收的回波信号也可以提取信号的相位信息。
相参技术对主振源信号具有极高的频率稳定度要求和频谱纯度,对天线性能,信号处理器等都具有很高的要求。
相同频率,不同相位的信号叠加效果移相器移相器的作用是将信号的相位移动一个角度,相位和频率保持稳定的对应关系是移相器的一个重要特性。
铁氧体移相器铁氧体移相器的基本原理是利用外加直流磁场改变波导内铁氧体的导磁系数,从而改变电磁波的相速,得到不同的相移量。
铁氧体移相器的主要优点是承受功率较高,插入损耗较小,带宽较宽。
其缺点是所需激励功率比PIN管移相器大,开关时间在微秒(us)量级。
半导体PIN二极管PIN二极管开关从“开”到“关”或者相反动作的起始状态达到稳定状态的时间称为开关时间。
以半导体PIN二极管作为开关器件的数字式移相器相位转换时间可以达到纳秒(ns)量级。
GaAs FETGaAs FET开关是数控移相器的主要构成元素,它作为一个三端器件,可以通过对栅偏置电压的控制来改变源漏间电阻,从而实现开关动作,转换时间也在纳秒(ns)量级。
相控阵雷达原理有了信号叠加的原理和移相器,相控阵雷达原理就好理解了,其基本思想:通过移相器改变每个辐射元件发射信号的相位,以提供相长/相消干涉,从而实现波束的电子扫描,在期望的方向上形成窄波束,雷达天线不需要机械转动。
电子扫描阵列很好的解决了机械雷达的机械惯性和扫描需要时间长等问题,实现了波束指向的无惯性快速扫描,为任务的灵活敏捷性创造了很好的条件。
相控阵天线是相控阵雷达组成的核心之一,相控阵天线既有有源、无源之分,也有一维、二维之分。
无源电子扫描阵列Passive Electronically Scanned Array, PESA无源电子扫描阵列天线表面的阵元只有改变信号相位的能力而没有发射信号的能力,信号的产生还是依靠天线后方的信号产生器,然后利用波导管将产生的信号号送到信号放大器上,再传送到阵列单元上面,接收时则反向而行。
相控阵雷达的工作原理

相控阵雷达的工作原理相控阵雷达是一种利用相位控制技术实现方向控制和波束形成的雷达系统。
它由一组发射和接收单元组成,每个单元都有一个发射/接收模块,能够实现相位控制和波束形成。
在工作时,相控阵雷达首先通过控制每个发射单元的发射时刻和相位,使得它们同时发射雷达信号。
这样可以形成一个相干的波前,并且具有较高的能量集中度。
接下来,通过控制每个接收单元的接收时刻和相位,使得它们对回波信号进行相干合成。
相控阵雷达的工作原理主要包括以下几个步骤:1. 相控天线阵列:相控阵雷达的关键是天线阵列,它由大量发射与接收单元组成,并排列成矩阵状。
每个单元有一个发射器和一个接收器,可以单独控制其相位和时延。
2. 发射信号时延:根据要检测的目标方向,计算出每个发射单元到目标的传播时间,并进行精确的时延控制。
通过使得每个发射单元的信号到达目标的时间相同,就可以形成一个合成波前。
3. 发射信号相位控制:除了时延控制外,每个发射单元还需要控制发射信号的相位。
根据目标方向的角度,计算出每个单元的发射信号相位,使得各个单元的发射信号形成相干叠加。
4. 回波信号接收:接收信号与发射信号相似,但经过目标的散射和传播后会发生相位和时延的变化。
接收单元首先对回波信号进行采样,并对每个接收单元的信号进行时延和相位调整,以保持相干性。
5. 相干合成:接收到的经过调整的回波信号通过相干合成,即对各个接收单元的信号进行加权和求和。
这样可以增强目标信号的能量,从而提高雷达的灵敏度和分辨率。
通过以上步骤,相控阵雷达实现了对目标的方向控制和波束形成。
它可以快速扫描、精确定位目标,并具有较高的抗干扰能力。
因此,在军事、航空、天文等领域得到广泛应用。
有源相控阵雷达浅谈

233学术论丛有源相控阵雷达浅谈张建强西安电子工程研究院摘要:相控阵雷达的原理,组成,关键技术及特点。
关键词:有源相控阵;优点;发展趋势引言:有源相控阵技术是近年来发展的雷达新技术。
它将是提高雷达在恶劣电磁环境下对付快速,机动及隐身目标的一项关键技术。
经过40余年的发展,该技术终于在各种雷达上取得了成功的应用。
有源相控阵技术可以极大的扩展雷达的功能和提高雷达的性能,提高和丰富作战的能力和作战模式。
一、有源相控阵雷达的原理及关键技术相控阵雷达是一种新型的有源电扫阵列多功能雷达。
它不但具有传统雷达的功能,而且具有其它射频功能。
一般的雷达波束扫描是靠雷达天线的转动实现的,被称为机械扫描。
而相控阵雷达是用电的方式控制雷达波束的指向变动来进行扫描发现目标的,这种方式被称为电扫描。
在相控阵雷达天线阵上,排列着上成千上万个能发射电磁波的辐射器,每个辐射器配有一个"移相器",每个"移相器"都由电子计算机控制。
当雷达工作时,电子计算机就通过控制这些"移相器",来改变每个辐射器向空中发射电磁波的"相位",从而使电磁瓣能像转动的天线一样,一个相位一个相位地偏转,从而完成对空搜索使命。
不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。
天线的单元数目越多,则波束在空间可能的方位就越多。
当搜索远距离目标时,成千山万个T/R 模块通过计算机控制集中向一个方向发射电磁波,使天线的辐射总功率大大提高,从而可以探测更远距离的目标。
如果对付近距离目标,这些T/R 模块可以产生多个波束根据担负的任务不同有搜索、确认、跟踪、识别真假目标。
这种雷达的工作基础是相位可控的阵列天线,"相控阵"由此得名。
相位控制可采用相位法、实时法、频率法和电子馈电开关法。
同时天线阵列还可进行机械转动,这样不但克服了平面相控阵雷达天线观察空域有限的缺点,而且大幅提高了雷达数据率,改善了对目标的跟踪性能。
相控阵雷达的工作原理

相控阵雷达的工作原理
相控阵雷达是一种基于电磁波的探测技术,利用相控阵天线阵
列来实现目标的探测、跟踪和定位。
相控阵雷达具有高分辨率、快
速扫描和多目标跟踪等优点,因此在军事、航空航天、气象和地质
勘探等领域得到了广泛的应用。
相控阵雷达的工作原理主要包括以下几个方面,天线阵列、波
束形成和信号处理。
首先,天线阵列是相控阵雷达的核心部件,由许多个天线单元
组成,每个天线单元都可以独立发射和接收电磁波。
这些天线单元
之间的距离是按照一定的几何排列,可以形成一个二维或三维的天
线阵列。
通过控制每个天线单元的相位和幅度,可以实现对电磁波
的发射和接收方向的控制。
其次,波束形成是相控阵雷达实现目标探测和跟踪的关键技术。
通过调节每个天线单元的相位和幅度,可以形成一个可控方向的波束。
这样,相控阵雷达可以实现对目标的定向发射和接收,从而实
现对目标的高分辨率探测和精确定位。
最后,信号处理是相控阵雷达对接收到的信号进行处理和分析的过程。
相控阵雷达可以同时接收多个方向的信号,并通过信号处理算法来提取目标的特征信息,实现对目标的跟踪和识别。
同时,相控阵雷达还可以通过对接收到的信号进行干扰抑制和自适应波束形成,提高雷达系统的抗干扰能力和目标探测性能。
总的来说,相控阵雷达的工作原理是通过控制天线阵列的相位和幅度,实现对电磁波的发射和接收方向的控制,从而实现对目标的高分辨率探测、快速扫描和多目标跟踪。
相控阵雷达具有灵活性强、探测性能好和抗干扰能力强等优点,因此在现代雷达系统中得到了广泛的应用。
使用相控阵雷达进行目标探测的步骤和原理

使用相控阵雷达进行目标探测的步骤和原理相控阵雷达是一种基于相控技术的雷达系统,它能够实现多波束的发射和接收,具有高分辨率、高精度和多目标探测等特点。
在现代军事和民用领域广泛应用。
本文将介绍使用相控阵雷达进行目标探测的步骤和原理。
一、相控阵雷达的基本原理相控阵雷达由许多天线组成,这些天线被组织成一个二维或三维阵列。
每个天线都可以独立进行发射和接收信号。
通过控制相位差,可以实现波束的相应调控。
相控阵雷达主要通过以下原理实现目标探测:1. 多波束形成:相控阵雷达可以同时形成多个波束,每个波束可以独立指向不同的方向。
通过调整每个波束的发射相位差,可以实现对不同方向的目标同时探测。
2. 自适应波束形成:相控阵雷达可以根据环境和目标的变化,实时调整波束形成参数,提高雷达的性能。
例如,可以通过自适应波束形成技术,抑制多径效应和杂波干扰,提高探测的信噪比。
3. 高精度测角:相控阵雷达可以利用相控阵的几何结构,实现高精度的目标测角。
通过测量每个波束的相位差,可以计算出目标相对于雷达的方位和俯仰角。
4. 捷联测量:相控阵雷达可以利用多波束的测量结果,实现对目标位置的捷联测量。
通过将多个波束的测量结果进行融合,可以提高目标位置的准确性和可靠性。
二、相控阵雷达目标探测的步骤相控阵雷达进行目标探测的步骤主要包括以下几个环节:1. 发射信号:相控阵雷达首先需要发射一组电磁波信号。
这些信号会经过射频与微波电路的处理,形成合适的脉冲信号。
2. 波束形成:发射的信号进入相控阵雷达的阵列天线,通过调控每个天线的发射相位和幅度,形成多个波束。
每个波束可以独立指向不同的方向。
3. 目标回波接收:当发射的信号遇到目标时,会被目标反射回来,形成回波。
相控阵雷达的阵列天线接收并采集回波信号,并将其传送到接收机。
4. 信号处理:接收机对接收到的回波信号进行放大、滤波和混频等处理。
然后,利用自适应波束形成技术,抑制干扰信号和杂波,提取目标信号。
相控阵雷达工作原理

相控阵雷达工作原理相控阵雷达是一种利用相控阵技术实现目标探测、跟踪和测量的雷达系统。
它通过合理控制阵元之间的相位差,实现波束的电子扫描,从而达到快速、高精度的目标探测和跟踪的目的。
相控阵雷达的工作原理可以总结为三个步骤:发射、接收和信号处理。
首先是发射过程。
相控阵雷达系统中的每个阵元都可以独立发射电磁波。
当发射脉冲信号到达目标并反射回来时,接收阵元会接收到这个信号。
其次是接收过程。
接收阵元接收到反射回来的信号后,会将其转换为电信号,并通过波束形成网络传输到信号处理单元。
在接收过程中,阵元之间的相位差将会影响到接收到的信号的相位。
最后是信号处理过程。
相控阵雷达的信号处理单元会对接收到的信号进行处理和分析。
其中一个关键步骤是波束形成,即通过调整阵元之间的相位差,使得接收到的信号在特定方向上叠加增强,而在其他方向上相互抵消。
这样就可以实现电子扫描,即快速改变波束的方向。
相控阵雷达的工作原理可以通过以下几个方面来解释:1. 阵元之间的相位差:相控阵雷达中的每个阵元都可以独立发射和接收信号。
通过调整阵元之间的相位差,可以实现波束的电子扫描。
当相位差为0时,阵元之间的信号叠加增强,波束指向正前方;当相位差为180度时,阵元之间的信号互相抵消,波束指向正后方。
通过改变相位差的大小和方向,可以实现波束在水平和垂直方向上的扫描。
2. 波束形成:波束形成是相控阵雷达中的一个重要步骤。
通过调整阵元之间的相位差,可以使接收到的信号在特定方向上叠加增强,而在其他方向上相互抵消。
这样就可以实现目标的定位和跟踪。
波束形成的原理是利用相位差引起的干涉效应,使得波束在特定方向上的信号强度最大化。
3. 信号处理:相控阵雷达的信号处理单元会对接收到的信号进行处理和分析。
其中一个重要的任务是目标检测和跟踪。
通过分析接收到的信号,可以判断目标的位置、速度和其他特征。
信号处理也包括对噪声的抑制和对干扰的抵抗,以保证雷达系统的性能。
相控阵雷达具有以下优点:1. 高精度:相控阵雷达可以通过精确控制阵元之间的相位差,实现高精度的目标探测和跟踪。
相控阵雷达的工作原理

相控阵雷达的工作原理
相控阵雷达是一种利用多个天线元件配合工作的雷达系统,它的工作原理基于相控阵技术。
首先,相控阵雷达由许多个天线元件组成。
每个天线元件是一个小型的天线发射器和接收器,它们可以通过电子控制进行调节和控制。
在雷达工作时,首先通过控制系统将天线元件的发射信号进行时间和相位的调控,然后通过天线发射器将调控后的信号发出。
这些发射信号以不同的相位和时间间隔依次发射,形成一个发射波束。
当发射波束与目标物相互作用后,目标物会反射一部分的能量。
这些反射信号由天线收集到,并通过接收器进行接收。
接收到的信号经过放大和处理后,通过控制系统进行相位和时间的调控,然后传递给相应的处理单元进行信号处理。
在信号处理过程中,利用不同天线元件接收到的信号的相位和时间信息,可以确定目标物相对于雷达的位置和速度。
通过对这些信息进行计算和分析,可以实现目标物的跟踪和定位。
相控阵雷达通过调节和控制每个天线元件的发射信号,可以改变发射波束的方向和束宽。
由于每个天线元件的信号调控是在微秒级别进行的,因此相控阵雷达可以实现快速的波束扫描和定向,提高雷达系统的灵活性和性能。
总而言之,相控阵雷达利用多个天线元件的协同工作,通过调节每个天线元件的发射信号,实现波束的控制和调整,从而实现对目标物的跟踪和定位。
这种工作原理使得相控阵雷达具有较高的目标检测和定位能力,被广泛应用于军事、航空、航天、气象等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源相控阵雷达原理
相控阵雷达是一种使用多个天线单元来产生波束扫描并形成方向图的新型雷达技术。
其中有源相控阵雷达利用天线单元中的光源、光电传感器和信号处理器来实现波束扫描和
控制。
其原理基于两个主要的因素:相位控制和干涉。
本文将详细介绍有源相控阵雷达的
原理。
一、原理概述
相控阵雷达系统由许多小型天线组成。
它持续地改变每个天线单元的相位和振幅,以
使扫描波束在空间中旋转和扇形地向外扩展。
系统中的所有天线单元按照确定的几何方式
排列,就可以组成一个阵列。
通过改变每个天线的相位和振幅,可以在各个空间方向上创
建一个梳状的波纹状的阵列,并通过将不同的相位和振幅施加到阵列的不同单元中,产生
可控向某一方向的波束。
有源相控阵雷达包括天线单元和信号处理器两个主要部分。
天线单元中的光源负责产
生微波信号,光电传感器用于接收信号,并将其转化为电信号。
信号处理器负责分析电信号,对波束进行扫描和控制。
通过不同的信号处理算法,相控阵雷达可以实现距离测量、
距离速度特征提取、目标探测等功能。
相控阵雷达最重要的特征是其波束扫描能力。
基于天线阵列的干涉原理,相位差控制
不同天线之间发射出的电磁波的相位,从而能够控制波束的方向和宽度,实现扫描。
二、原理详解
1.波束扫描原理
有源相控阵雷达发射电磁波是通过天线单元阵列中的各单元以不同的相位和振幅同时
发射。
在到达目标处的反射波达到不同天线时,由于不同天线之间的时间和相位差别,因
此反射波的相位和振幅也不同,这就产生了一种几何干涉的效应。
干涉的结果就是,在某个特定方向上的反射波的相位和振幅被放大,而在其他方向上
的反射波则被相互抵消。
因此可以实现向某个特定方向上发射一定角度的电磁波,而其余
方向则几乎没有发射。
由于天线组织成的阵列具有波束扫描能力,其能够跟随目标扫描方向,并在相应方向上发射束式波,从而获得高方位分辨率。
波束宽度是相控阵雷达的另一个重要原理。
较短的阵列长度具有较高的方向分辨率,
但会导致波束宽度增大, 阵列长度较长,则会减小波束宽度,但相应的方向分辨率会变
低。
相控阵雷达采用出射波或反射波探测距离目标时,波的干涉效应决定着波束的宽度。
当单个波源激励所有天线单元时,产生的阵列信号表现出超斯托克斯效应,波束宽度很大,
用来进行目标探测,但不适合要求高精度的方位控制。
因此,相控阵雷达的阵列长度不宜
过长,需要选择适当的工作状态加以调整,以达到波束宽度和目标精度的平衡。
3.控制原理
相控阵雷达的天线单元阵列通过将源信号以不同的相位和振幅同时发射,从而实现波
束扫描控制。
此时,通过改变相位和振幅的组合方式来满足扫描统一规则,并对接收到的
反射波进行信号处理,实现距离测量、距离速度特征提取、目标探测等功能。
控制方式的实现可通过数字信号处理器和嵌入式处理器实现,具有高效性和精度性。
三、应用领域
有源相控阵雷达被广泛应用于航空、军事、安防、交通运输、气象、医疗等领域。
在
航空领域,相控阵雷达应用于导航和防撞系统,以提高飞行安全。
在军事领域,它常用于
雷达设备的控制、目标探测和跟踪;安防领域,它可用于目标识别和跟踪;交通运输领域,相控阵雷达可在高速公路上实现车辆在车道中的自动驾驶;在气象领域,它可用于气象预测;在医疗领域,它可用于诊断和治疗疾病。