DNA甲基化

合集下载

DNA甲基化

DNA甲基化

DNA甲基化概述在哺乳动物基因组中,甲基化是一种表观遗传机制,包括将甲基转移到胞嘧啶的C5位置形成5-甲基胞嘧啶。

DNA甲基化通过招募参与基因抑制的蛋白或通过抑制转录因子与DNA的结合来调节基因表达。

在发育过程中,DNA甲基化的模式在基因组中发生变化,这是DNA从头甲基化和去甲基化的动态过程的结果。

DNA甲基化是被一个甲基转移酶家族所催化,转移S腺苷甲硫氨酸(SAM)的一个甲基到第五个碳胞嘧啶残基形成5mc , Dnmt3a和Dnmt3b可以建立一个新的DNA甲基化模式来去修饰DNA,被称为从头甲基化。

另一方面,Dnmt1在DNA复制过程中起作用,将亲代DNA链上的甲基化模式复制到新合成的子链上。

这三种DNA都广泛参与胚胎的发育。

这三种DNA都广泛参与胚胎的发育。

当细胞到达终末分化时,Dnmt的表达大大降低。

这似乎表明有丝分裂后细胞的DNA甲基化模式是稳定的。

大部分DNA的甲基化发生在鸟嘌呤核苷酸或CpG位点之前的胞嘧啶上。

总的来说,哺乳动物基因组中CpG位点的减少可能是由于5 - mc可脱氨成胸腺嘧啶的诱变潜力。

剩余的CpG位点分布在整个基因组中,除了CpG岛外,它们都被严重甲基化。

DNA甲基化对沉默逆转录病毒分子、调节组织特异性基因表达、基因印记和X染色体失活至关重要。

不同基因组区域的DNA甲基化可能根据潜在的遗传序列对基因活动产生不同的影响。

一、DNA甲基化的位置1.1 基因间区大约45%的哺乳动物基因组由转座因子和病毒因子组成,这些因子被大量甲基化而沉默。

这些元素中的绝大多数是通过DNA甲基化或随着时间的推移由于5mC的破坏而产生的突变而失活的。

如果表达,这些元素是潜在的有害的,因为它们的复制和插入可以导致基因损坏和DNA突变。

胞内颗粒(IAP)是小鼠基因组中最具侵袭性的逆转录病毒之一。

在整个生命过程中,IAP在配子形成、发育和成年阶段都被高度甲基化。

甚至在胚胎内部,当基因组其余部分相对低甲基化时,Dnmtl维持对IAP元件的抑制。

dna甲基化的概念

dna甲基化的概念

dna甲基化的概念
DNA甲基化是一种生物化学过程,其中甲基基团(CH3)加在DNA分子中的脱氧核苷酸上。

这个过程是通过DNA甲基转移酶酶催化的。

DNA甲基化在基因组稳定性和基因表达调控中起着重要作用。

它能够影响基因的表达模式,并且对细胞命运决定也有影响。

DNA甲基化通常发生在CpG双核苷酸的序列上,即DNA链上紧邻着一个胞嘧啶(C)核苷酸和一个鸟嘌呤(G)核苷酸组成的序列。

这些区域通常被称为CpG岛。

DNA甲基化可以导致基因的沉默和基因组稳定性,通过两种途径影响基因表达:一是通过直接阻碍转录因子与DNA结合,从而抑制基因的转录活性;二是通过招募甲基化相关蛋白质如甲基结合蛋白(MBD)来改变染色质的结构和组装方式,导致基因区域不稳定并更容易被染色质调控。

此外,DNA甲基化在胚胎发育、细胞分化,以及致病性疾病的发生等过程中也发挥着重要的调节功能。

DNA甲基化可以被环境因素和生物学过程所影响,并且在许多疾病中也具有重要作用,包括癌症、神经系统疾病和心血管疾病等。

因此,研究DNA甲基化在基因表达和疾病发生中的作用对于理解基因组调控和疾病机制非常重要。

DNA甲基化检测技术

DNA甲基化检测技术
钙/钙调素-依赖的丝氨酸/苏氨酸磷酸化酶; 凋亡抑制
肿瘤类型
乳腺癌、肺癌、食管癌、结肠癌、胃癌、胰、 肝 癌
乳腺癌、卵巢癌 GIT 、头与颈部瘤、NHL、肺癌
肺癌
E-cadherin ER GSTP1 hMLH1
MGMT P15
增强增殖、侵袭与转移 激素抵抗 失去对致癌物活性代谢产物的解毒作用 缺损DNA错配修复,基因点突变
3、损伤与修复
一方面参与凋亡和修复的基因受DNA 甲基化调控,另一方面异常甲 基化往往会导致DNA 的多种损伤。此外 ,甲基化还可能直接参与DNA损 伤的识别和修复过程.
4、其他 :
甲基化还参与DNA 的复制和包装及 DNA片段的转座等。
基因组甲基化的特点:
◆可逆性——许多甲基化位点可以根据细胞活性的要求重新 甲基化或去甲基化;
DNA甲基化与肿瘤的关系
MGMT基因在许多肿瘤中被认为是抗肿瘤药物治疗的预测标记。MGMT启 动子肿瘤特异性甲基化,可以抑制MGMT蛋白的活性,从而使得肿瘤细胞对 烷化类的抗肿瘤药物敏感,因而被广泛用于肿瘤化疗治疗。
Figure: Kaplan–Meier Estimates of Overall Survival, According to MGMT Promoter Methylation Status.
p53-相关基因,与DNA 修复及耐药性有 关 细胞的过度激活与增殖
乳腺癌、甲状腺癌、胃癌 乳腺癌、前列腺癌 前列腺癌、乳腺癌、肾癌 结肠癌、胃癌、子宫内膜瘤、卵巢癌
肺癌、脑瘤 非白血性白血病、淋巴瘤、鳞状细胞癌、肺癌
RASSF1A
失去了对G1/S负调控抑制作用
肺癌、乳腺癌、卵巢癌、肾癌、鼻咽癌
Rb
◆组织特异性——不同的组织细胞具有不同的甲基化模式, 为基因表达设定程序。

DNA甲基化

DNA甲基化

DNA甲基化DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

含义:在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5'—CG—3’序列。

大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5’端的非编码区,并成簇存在.甲基化位点可随DNA的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。

DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B-DNA向Z-DNA的过渡,由于Z—DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。

另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。

DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6—甲基腺嘌呤(N6—mA)及7-甲基鸟嘌呤(7—mG)结构基因:含有很多CpG 结构,2CpG 和2GPC 中两个胞嘧啶的5 位碳原子通常被甲基化,且两个甲基集团在DNA 双链大沟中呈特定三维结构.基因组中60%~ 90%的CpG 都被甲基化,未甲基化的CpG 成簇地组成CpG 岛,位于结构基因启动子的核心序列和转录起始点。

有实验证明超甲基化阻遏转录的进行.DNA 甲基化可引起基因组中相应区域染色质结构变化,使DNA 失去核酶ö限制性内切酶的切割位点,以及DNA 酶的敏感位点,使染色质高度螺旋化,凝缩成团,失去转录活性.5 位C 甲基化的胞嘧啶脱氨基生成胸腺嘧啶(C-T转换),由此可能导致基因置换突变,发生碱基错配,如果在细胞分裂过程中不被纠正,就会诱发遗传病或癌症.酶的分类:动物中DNA 甲基转移酶有两种:1) DNM T1,持续性DNA 甲基转移酶-—作用于仅有一条链甲基化的DNA 双链,使其完全甲基化,可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶)联合作用阻断转录;2)DNM T3a、移酶可能参与细胞生长分化调控,其中DNM T3b在肿瘤基因甲基化中起重要作用。

DNA甲基化——表观遗传学的重要组成部分

DNA甲基化——表观遗传学的重要组成部分

DNA甲基化——表观遗传学的重要组成部分DNA甲基化是一种表观遗传学调控机制,通常指DNA分子上的甲基化修饰。

这种化学变化涉及DNA链上的甲基基团与Cytosine碱基的配对,对基因表达和细胞分化等生命过程具有重要作用。

DNA甲基化不仅在正常生长发育中发挥至关重要的作用,而且也涉及很多人类疾病的发展。

本文将介绍DNA甲基化的基本原理、分布方式、调控机制及其在疾病中的作用。

一、DNA甲基化的基本原理DNA是由4种不同的核苷酸构成的,其中包括Adenine、Thymine、Cytosine和Guanine。

DNA的甲基化通常发生在Cytosine碱基的C5位,即通过甲基基团与细胞内的S-Adenosyl Methionine(SAM)反应,形成5-甲基Cytosine(5mC)。

DNA甲基化是基因组合成和生物遗传变异的关键机制之一。

它可以调控基因的表达和细胞分化,与疾病的发展密切相关。

虽然越来越多的研究表明,DNA甲基化是一种可逆的表观遗传修饰,但它仍然是一种稳定的标记,可以被逐代遗传,影响基因表达和细胞分化。

二、DNA甲基化的分布方式DNA甲基化在不同种类和类型的细胞中存在和分布不同。

在人体内,DNA甲基化主要发生在GC富集区域,如基因启动子、繁殖起始点、转录因子结合区等。

这些区域往往影响到基因表达的调控,因此被视为关键的甲基化信号的地点。

另一方面,DNA甲基化还出现在基因体内部的非编码区域,如intron、intergenic regions、satellite DNA和telomeres。

虽然对它们的确切功能还有争议,但这些甲基化信号可能参与调控DNA复制、染色体结构和修复。

三、DNA甲基化的调控机制DNA甲基化是由DNA甲基转移酶(DNMTs)负责催化核苷酸中的甲基基团的加成。

DNMTs可以对一些具有特定序列和结构的DNA区域进行偏好性的甲基化修饰。

这些区域的一个重要特征是在基因表达和细胞分化中发挥着重要的作用。

dna甲基化的过程和机制

dna甲基化的过程和机制

dna甲基化的过程和机制
DNA甲基化的过程和机制如下:
DNA甲基化是指在DNA分子的特定位置上添加甲基基团,甲基化后的DNA序列可能发生某些改变,比如可以调节基因的表达等。

甲基化的机制主要涉及到DNA甲基转移酶(DNMT)的作用。

DNMTs是一类能够将甲基基团从S-腺苷甲硫氨酸(SAM)转移到DNA分子上的酶,是DNA甲基化过程的主要参与者。

在DNA甲基化过程中,DNMT首先将SAM转化为活性中间体,然后将活性中间体的甲基基团转移到DNA分子上。

DNA甲基化的过程可以分为以下几个步骤:
识别和结合:DNMT首先识别DNA分子上的特定序列,通常是富含胞嘧啶的区域。

识别后,DNMT结合到DNA分子上,形成一个复合体。

甲基化反应:在复合体中,SAM的甲基基团被转移到DNA分子上,通常是胞嘧啶残基的5位碳原子上。

这个过程涉及到化学键的转移,需要消耗能量。

释放和去甲基化:完成甲基化反应后,DNMT从DNA分子上释放下来,留下甲基化的DNA序列。

在某些情况下,甲基化的DNA序列可以被去甲基化,即甲基基团被去除,恢复到未甲基化的状态。

去甲基化的过程通常涉及到特定的去甲基化酶的作用。

总之,DNA甲基化是一种重要的表观遗传修饰方式,可以影响基因的表达和功能。

了解DNA甲基化的过程和机制有助于深入理解生物
学和医学中的许多问题,包括发育、疾病和治疗方法等。

一、 DNA甲基化与基因表达

一、 DNA甲基化与基因表达

一、DNA甲基化与基因表达
DNA甲基化是最早发现的修饰途径之一,可能存在于所有高等生物中。

DNA 甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。

1.DNA甲基化的主要形式
5-甲基胞嘧啶,N6-甲基腺嘌呤和7-甲基鸟嘌呤。

在真核生物中,5-甲基胞嘧啶主要出现在CpG和CpXpG中,原核生物中CCA/TGG和GATC也常被甲基化。

真核生物细胞内存在两种甲基化酶活性:一种被称为日常型(mainte-nance)
甲基转移酶,另一种是从头合成(denovo synthesis)甲基转移
酶。

前者主要在甲基化母链(模板链)指导下使处于半甲基化的DNA双链分子上与甲基胞嘧啶相对应的胞嘧啶甲基化。

日常型甲基转移酶常常与DNA内切酶活性相耦联,有3种类型。

II类酶活性包括内切酶和甲基化酶两种成分,而I类和III类都是双功能酶,既能将半甲基化DNA甲基化,又能降解外源无甲基化DNA。

由于甲基化胞嘧啶极易在进化中丢失,所以,高等真核生物中CG序列远远低于其理论值。

哺乳类基因组中约存在4万个CG islands,大多位于转录单元的5'区。

没有甲基化的胞嘧啶发生脱氨基作用,就可能被氧化成为U,被DNA修复系统所识别和切除,恢复成C。

已经甲基化的胞嘧啶发生脱氨基作用, 它就变为T, 无法被区分。

因此, CpG序列极易丢失。

DNA甲基化与CpG岛

DNA甲基化与CpG岛
DNA甲基化与CpG岛
• 引言 • DNA甲基化的功能 • CpG岛的特性与分布 • DNA甲基化与CpG岛的关系 • DNA甲基化与CpG岛的研究方法 • DNA甲基化与CpG岛的前景与展望
01
引言
DNA甲基化的定义
DNA甲基化是指在DNA序列中,CpG位点的胞嘧啶被甲基所 修饰的过程。这种修饰是一种重要的表观遗传学标记,对基 因表达和细胞分化等生物学过程具有重要影响。
甲基化与失活
在X染色体失活过程中,DNA甲基化在X染色体上广泛发生,导致相关基因沉默 和X染色体整体失活。这种甲基化模式有助于维持X染色体失活的稳定性和遗传性 。
03
CpG岛的特性与分布
CpG岛的识别标准
01
CpG密度高
CpG岛内CpG位点的密度显著高于 周围序列。
启动子关联
CpG岛通常与基因的启动子区域相 关联。
该方法使用特异性抗体富集甲基化的DNA片段, 然后进行高通量测序,以识别甲基化位点。
该方法使用甲基化结合蛋白(MBD蛋白)富集甲 基化的DNA片段,然后进行高通量测序,以识别 甲基化的CpG岛。
06
DNA甲基化与CpG岛的前景与展望
在疾病诊断和治疗中的应用
肿瘤甲基化检测
通过检测肿瘤组织中DNA的甲基化状态 ,有助于肿瘤的早期诊断和预后评估。
在基因组印记和X染色体失活过程中, DNA甲基化起到关键作用,通过甲基 化特定基因或基因组区域,使这些基 因或区域沉默,不参与基因表达。
基因组印记
印记基因
基因组印记是指某些基因在不同细胞类型中的表达存在差异,这些差异由DNA 甲基化水平决定。印记基因通常在发育过程中由父本或母本来源的等位基因选 择性表达。
亚硫酸氢盐测序
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DNA甲基化DNA甲基化(DNA methylation)是最早发现的修饰途径之一,大量研究表明,DNA 甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

含义:在甲基转移酶的催化下,DNA的CG两个核苷酸的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶,这常见于基因的5'—CG-3'序列.大多数脊椎动物基因组DNA都有少量的甲基化胞嘧啶,主要集中在基因5’端的非编码区,并成簇存在。

甲基化位点可随DNA 的复制而遗传,因为DNA复制后,甲基化酶可将新合成的未甲基化的位点进行甲基化。

DNA的甲基化可引起基因的失活,DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,甲基化达到一定程度时会发生从常规的B—DNA向Z-DNA的过渡,由于Z-DNA结构收缩,螺旋加深,使许多蛋白质因子赖以结合的原件缩入大沟而不利于转录的起始,导致基因失活。

另外,序列特异性甲基化结合蛋白(MBD/MeCP)可与启动子区的甲基化CpG岛结合,阻止转录因子与启动子作用,从而阻抑基因转录过程。

DNA甲基化主要形成5-甲基胞嘧啶(5—mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)结构基因:含有很多CpG 结构,2CpG 和2GPC 中两个胞嘧啶的5 位碳原子通常被甲基化,且两个甲基集团在DNA 双链大沟中呈特定三维结构。

基因组中60%~ 90% 的CpG 都被甲基化,未甲基化的CpG 成簇地组成CpG 岛,位于结构基因启动子的核心序列和转录起始点。

有实验证明超甲基化阻遏转录的进行。

DNA 甲基化可引起基因组中相应区域染色质结构变化,使DNA 失去核酶ö限制性内切酶的切割位点,以及DNA 酶的敏感位点,使染色质高度螺旋化,凝缩成团,失去转录活性。

5 位C 甲基化的胞嘧啶脱氨基生成胸腺嘧啶(C—T转换),由此可能导致基因置换突变,发生碱基错配,如果在细胞分裂过程中不被纠正,就会诱发遗传病或癌症。

酶的分类:动物中DNA 甲基转移酶有两种:1)DNM T1,持续性DNA 甲基转移酶-—作用于仅有一条链甲基化的DNA 双链,使其完全甲基化,可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶) 联合作用阻断转录;2)DNM T3a、移酶可能参与细胞生长分化调控,其中DNM T3b在肿瘤基因甲基化中起重要作用.去甲基化有两种方式:1)被动途径:由于核因子N F 粘附甲基化的DNA,使粘附点附近的DNA不能被完全甲基化,从而阻断DNM T1 的作用;2)主动途径:是由去甲基酶的作用,将甲基基团移去的过程。

在DNA 甲基化阻遏基因表达的过程中,甲基化CpG 粘附蛋白起着重要作用。

虽然甲基化DNA 可直接作用于甲基化敏感转录因子E2F、CREB、A P2、CM ycöM yn、N F2KB、Cmyb、Ets,使它们失去结合DNA 的功能从而阻断转录,但是,甲基化CpG 粘附分子可作用于甲基化非敏感转录因子(SP1、CTF、YY1),使它们失活,从而阻断转录。

人们已发现 5 种带有恒定的甲基化DNA 结合域(MBD ) 的甲基化CpG 粘附蛋白.其中M ECP2、MBD1、MBD2、MBD3 参与甲基化有关的转录阻遏;MBD1 有糖基转移酶活性,可将T 从错配碱基对TöG 中移去,MBD4 基因的突变还与线粒体不稳定的肿瘤发生有关.在MBD2 缺陷的小鼠细胞中,不含M ECP1 复合物,不能有效阻止甲基化基因的表达。

这表明甲基化CpG 粘附蛋白在DNA 甲基化方式的选择,以及DNA 甲基化与组蛋白去乙酰化、染色质重组相互联系中的有重要作用.哺乳动物一生中DNA甲基化水平经历2次显著变化,第一次发生在受精卵最初几次卵裂中,去甲基化酶清除了DNA分子上几乎所有从亲代遗传来的甲基化标志;第二次发生在胚胎植入子宫时,一种新的甲基化遍布整个基因组,甲基化酶使DNA重新建立一个新的甲基化模式。

细胞内新的甲基化模式一旦建成,即可通过甲基化以“甲基化维持"的形式将新的DNA甲基化传递给所有子细胞DNA分子。

1 概述DNA中碱基的化学修饰近年来一直是生命科学领域研究的热点之一。

其中,胞嘧啶第5位碳原子上的甲基化动态修饰研究得较为深入。

早在上世纪中叶,科学家就发现DNA胞嘧啶可以被甲基化修饰,修饰之后的碱基称为“5—甲基胞嘧啶(5—methylcytosine)”,简称为5mC。

后来,又陆续发现了发生在同一个碳原子上的其它修饰,并且这些修饰之间可以相互转化(如图1所示)。

图1 (本图取自Wu, H。

and Y。

Zhang, Reversing DNA methylation: mechanisms, genomics, and biological functions。

Cell,2014。

156(1—2):p. 45-68)如上图所示,C可以被DNMT(DNA甲基转移酶)转化为5mC,5mC可以被TET (一种DNA去甲基化酶)依次转化为5hmC、5fC、5caC,最后由TDG/BER介导的碱基修复机制重新生成C,完成整个循环。

首先讲一下甲基化的过程,也就是在胞嘧啶的5‘碳原子上面加上一个甲基的过程。

甲基化的过程主要是由DNA methyltransferase也就是DNMT来承担的。

在真核生物细胞内,不同的物种之间DNMT的数目和结构稍有不同,但大体上具有一定的同源性(图2).图2 DNMT(图2摘自Goll, M。

G。

and T.H. Bestor, Eukaryotic cytosine methyltransferases。

Annu Rev Biochem,2005. 74:p。

481-514。

)人类细胞中的情况和老鼠(Mus musculus)中的情况差不多,也是DNMT1、DNMT2、DNMT3A/B和DNMT3L等构成.其中,DNMT1的功能主要是在DNA复制的时候维持DNA的甲基化,DNMT3A、DNMT3B的功能主要是DNA的从头甲基化,而DNMT3L不具有甲基化功能,它对DNMT3A 和DNMT3B的催化活性具有调节作用。

在哺乳动物体细胞染色体当中,有一种序列中CG含量比较高,并且CG成对出现,我们把这种CG成对密集出现的序列叫做CpG岛。

哺乳动物体细胞的DNA胞嘧啶甲基化主要发生在CpG岛当中(这种规律在植物细胞当中不存在,下文讲的主要是动物细胞DNA甲基化)。

在动物的某些较为特殊的细胞当中,如卵母细胞、胚胎肝细胞和成熟的神经细胞当中,CpG岛以外的甲基化现象同样非常显著.不同的细胞甲基化水平千差万别,功能多种多样。

如图3所示:图3(图3摘自Lister,R., et al.,Human DNA methylomes at base resolution show widespread epigenomic differences. Nature,2009. 462(7271): p. 315-322。

)H1细胞为胚胎干细胞,IMR90细胞为人胚肺成纤维细胞。

左图中的上下两个饼图可以看出,在干细胞里面非CpG区域的甲基化水平相对较高。

左边的b图可以看出,在OCT4基因附近,CG原件甲基化水平比IMR90低,而CHG和CHH序列的甲基化水平较高。

右图可以看出,总体上来说,干性较强的细胞中,非CG甲基化水平较高。

下图(图4)说明了mCG和mCH与神经细胞生长发育的关系。

图4(图4摘自Lister, R.,et al。

, Global Epigenomic Reconfiguration During Mammalian Brain Development。

Science, 2013。

341(6146): p. 1237905-1237905。

)在神经元细胞当中,mCH的含量比非神经元细胞的含量高很多,在人的神经元当中更甚,mCH的占比甚至超过了mCG。

左图可以看出mCH和mCG的分布都有一定的位点特异性。

从以上两个例子可以看出,DNA甲基化与细胞的生长发育、基因的选择性表达有着密切的关系。

目前为止,研究较为深入的是CpG岛甲基化,非CpG甲基化的功能和调控我们几乎对其一无所知。

人类细胞中大约有28 million个CpGs,体细胞的CpG岛有60—80%被甲基化修饰。

2 甲基化和去甲基化的机制DNA甲基化的过程发现较早.具体说来,DNMT3A和DNMT3B,负责 denovo methylation,即把原来没有发生甲基化修饰的DNA双链进行修饰。

在DNA复制的过程中,由于其半保留复制的特性,新合成的两条双链各有一半保留了模板的甲基化胞嘧啶,而新合成的那另外一条单链则没有被修饰.DNMT1的作用就是去识别DNA中那条被修饰的单链的甲基化位点,把没有被甲基化修饰的那条新合成的单链进行修饰,故称之为maintenance methylation.(图5)图5(来源于Nat Rev Genet. 2001 Jan;2(1):21—32.Genomic imprinting: parental influence on the genome.)对DNA去甲基化过程的研究则相对来讲起步较晚。

其实在很早之前,人们已经能够观察到DNA当中甲基化水平的变化并且成功纯化出了甲基化酶,然而去甲基化相关的蛋白质一直没能发现。

正如上图所示,去甲基化一共有两条途径,active demethylation 和passive demethylation。

在DNA合成的过程中,如果DNMT1不能结合到DNA上去,那么合成的DNA当中5mC的含量便会降低,这种去甲基化的活动是由DNA复制来完成的,因此称为“被动去甲基化”。

那么是否存在一些蛋白质能够把5mC变成C,行使“主动"去甲基化功能呢?2000年前后的数十年时间里,世界各地的科研工作者卯足了劲,都想成为第一个发现去甲基化酶的人,然而,事与愿违,不止一次有人宣称他们发现了这个去甲基化酶,然而后来事实证明他们是错的。

这种情况一直持续到2009年,发表在CNS上的一系列paper 宣告了TET去甲基化酶的发现。

2009年-2011年的一系列文章表明,DNA主动去甲基化的过程较为复杂,这个过程需要几步反应(图6):图6(来自Kohli, R.M. and Y。

Zhang,TET enzymes,TDG and the dynamics of DNA demethylation。

Nature,2013。

502(7472):p. 472—479。

)TET的作用主要是把5mC转化成5hmC,5fC和5caC,此后再经过一些额外的途径将这些中间产物转化为C(TDG-BER蛋白介导的过程)。

相关文档
最新文档