初中数学 极坐标与参数方程、不等式选讲(含答案)

合集下载

极坐标与参数方程-习题及答案

极坐标与参数方程-习题及答案

金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。

详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。

考查了推理论证能力,运算求解能力。

2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。

【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。

极坐标与参数方程(解析版)

极坐标与参数方程(解析版)

极坐标与参数方程(解析版)1.在直角坐标系xOy 中,直线l 1的参数方程为1,,x m y tm =+⎧⎨=⎩(m 为参数),直线l 2的参数方程为1,,x n n y t =-⎧⎪⎨=-⎪⎩(n 为参数).设l 1与l 2的交点为P ,当t 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3∶(cos sin )10,ρθθ+-=,求l 3与C 的交点的极坐标.解∶(1)由直线l 1的参数方程消去参数m 可得直线1l 的普通方程为(1)y t x =-, 由直线l 2的参数方程消去参数n 可得直线l 2的普通方程为1x y t+=-, 消去t 得221x y +=,即C 的普通方程为()2210x y y +=≠.(2)3l 化为普通方程为10x y +-=,联立221,1(0),x y x y y +=⎧⎨+=≠⎩,得0,1,x y =⎧⎨=⎩ ∴l 3与C 的交点的极坐标为(1,)2π2.已知曲线C 的参数方程为2224484t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t 为参数). (1)求曲线C 的普通方程;(2)过点()0,1P 的直线l 与曲线C 交于A ,B 两点,求|PA |•|PB |的取值范围.解:(1)曲线C 的参数方程为2224484t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得2214y x +=(1)x ≠.(2)直线cos :1sin x t l y t αα=⎧⎨=+⎩()α为倾斜角代入曲线C 得:()2213cos 2sin 30t t αα++⋅-=⋅.设两根为1t ,2t ,122313cos PA PB t t α⋅==+故3,34PA PB ⎡⎤⋅∈⎢⎥⎣⎦. 3.已知曲线11cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),曲线23cos :2sin x C y θθ=⎧⎨=⎩(θ为参数).(1)化1C ,2C 的参数方程为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数απ=,点Q 为2C 上一动点,PQ 中点为M ,求点M 到直线332:2x t C y t =+⎧⎨=-⎩(t 为参数)距离的最小值以及此时点M 的坐标.【详解】(1)由22sin cos 1αα+=,曲线11cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数)得221:(1)(3)1C x y ++-=,曲线1C 表示(1,3)-为圆心,1为半径的圆,因为曲线23cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),所以222:194x y C +=,曲线2C 表示焦点在x轴上的椭圆,其中3a =,2b =.(2)由题意知(2,3)P -,(3cos ,2sin )Q θθ,则23cos 32sin ,22M θθ-++⎛⎫⎪⎝⎭.直线332:2x t C y t =+⎧⎨=-⎩,消t 得270x y +-=. ∴点M到直线的距离d =,即d ==3sin 5o θ=,4cos 5o θ=. 当()sin 1o θθ+=时,即2o πθθ=-时,min d =,此时4sin 5θ=,3cos 5θ=,点M 坐标为123,1010⎛⎫- ⎪⎝⎭.4.在直角坐标系xOy 中,点A 是曲线1C :22(2)4x y -+=上的动点,满足2OB OA =的点B 的轨迹是2C .(1)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求曲线1C ,2C 的极坐标方程;(2)直线l 的参数方程是1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),点P 的直角坐标是()1,0-,若直线l 与曲线2C 交于M ,N 两点,当线段PM ,MN ,PM 成等比数列时,求cos α的值.解:(1)点A 是曲线1C :()2224x y -+=上的动点,根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,转换为极坐标方程为 4cos ρθ=,由于点B 满足2OB OA =的点B 的轨迹是2C . 所以()2,A ρθ,则2C 的极坐标方程为2cos ρθ=.(2)直线l 的参数方程是1tcos sin x y t αα=-+⎧⎨=⎩(t 为参数),点P 的直角坐标是()1,0-, 若直线l 与曲线2C 交于M ,N 两点,2C 的极坐标方程为2cos ρθ=,转换为直角坐标方程为22(1)1x y -+=,即222x y x +=,得到()()()221cos sin 21cos t t t ααα=-++-+,化简得:24cos 30t t α-+=,所以124cos t t α+=,123t t =, 当线段PM ,MN ,PN 成等比数列时,则2MNPM PN =,整理得:()21212t t t t -=,故()212125t tt t +=,整理得cos 4α=±. 5.在平面直角坐标系xOy中,曲线1C 的参数方程为1222x t y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线2C的参数方程为cos 1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线12,C C 的极坐标方程;(2)已知射线:0,2()l θαραπ=><<π分别交曲线1C ,2C 于,M N 两点,若N 是线段OM 的中点,求α的值. 【详解】(1)因为曲线1C20y +-=, 所以曲线1Ccos sin 20θρθ+-=(写成sin()13ρθπ+=也给分). 因为曲线2C 的普通方程为22(1)1y x +-=,即2220x y y +-=, 所以曲线2C 的极坐标方程为22sin 0ρρθ-=,即2sin ρθ=.(2)设1,()M ρα,2,()N ρα,则1ρ=,22sin ρα=,因为N 是线段OM 的中点,所以122ρρ=,sin 4α=,整理得2sin sin )1ααα+=,所以tan 2α=, 因为2παπ<<,所以22παπ<<,所以726πα=,所以7π12α=. 6.平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x r y r αα=⎧⎨=⎩(α为参数,0r >),以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 2ρθ=.(1)若1r =,求曲线1C 的极坐标方程及曲线2C 的直角坐标方程;(2)若曲线1C 与2C 交于不同的四点A ,B ,C ,D ,且四边形ABCD的面积为求r .【详解】(1)当1r =时,曲线1C 的参数方程为cos sin x y αα=⎧⎨=⎩(α为参数),转化为直角坐标方程为221x y +=.根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,得到曲线的极坐标方程为1ρ=;曲线2C 的极坐标方程为22cos 2ρθ=,根据222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,转换为直角坐标方程为:222x y -=.(2)设(),A x y 满足0x >,0y >,由曲线的对称性可知矩形ABCD 的面积4S xy =, ∴242sin 2S xy ρθ==, 将22cos 2ρθ=,代入得4tan 2S θ==π6θ=,所以2224πcos3r ρ===,解得2r .7.已知椭圆2cos :sin x C y ϕϕ=⎧⎨=⎩(ϕ是参数),A 和B 是C 上的动点,且满足OA OB ⊥(O是坐标原点),以O 为极点、以x 轴的正半轴为极轴建立极坐标系,点D 的极坐标为4,3π⎛⎫- ⎪⎝⎭.(1)求线段AD 的中点M 的轨迹E 的普通方程; (2)利用椭圆C 的极坐标方程证明2211OAOB+为定值,并求AOB 面积的最大值.【详解】(1)由题意,椭圆2cos :sin x C y ϕϕ=⎧⎨=⎩(ϕ是参数),点D的直角坐标为(2,--,设点(,)M x y ,()2cos ,sin A αα因为M 为AD的中点,可得1cos 1sin 2x y αα=-+⎧⎪⎨=⎪⎩, 消去参数,可得点M 的轨迹方程为()(22141:x E y +++=.(2)由椭圆2cos :sin x C y ϕϕ=⎧⎨=⎩(ϕ是参数),可得椭圆C 的普通方程为2214xy +=,化为极坐标方程是2223sin 4ρρθ+=,变形得ρ=, 因为OA OB ⊥,设()1,A ρθ,2,2B πρθ⎛⎫+ ⎪⎝⎭,所以222212111154OA OB ρρ+=+=(定值),则1212AOB S ρρ==△,当sin 20θ=时,S 取得最大值为1. 8.在平面直角坐标系xOy 中,曲线C的参数方程为11x m my m m ⎧=++⎪⎪⎨⎪=-⎪⎩(m 为参数).(1)求曲线C 的普通方程;(2)过点()AC 的交点分别为点M ,N ,求11+AM AN的值. 【详解】解:(1)由11,x m m y m m ⎧=++⎪⎪⎨⎪=-⎪⎩得1,1,x m my m m ⎧-=+⎪⎪⎨⎪=-⎪⎩平方相减得(224x y -=.所以曲线C的普通方程为(224x y -=.(2)将过A的直线的参数方程1,22x ty⎧=⎪⎪⎨⎪=⎪⎩代入C的普通方程,得280t--=,设点M,N对应的参数分别1t,2t,所以12t t+=128t t=-.所以1t与2t异号,所以1212t t t t+=-.则121211AM AN t tAM AN AM AN t t+++==⋅12121t tt t-===.9.在平面直角坐标系中,圆C的参数方程为2cos12sinx ay a⎧=⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆C的极坐标方程;(2)若过原点的直线l被圆C截得的弦长为2,求直线l的倾斜角.【详解】(1)圆C的参数方程为2cos(12sinxyααα⎧=⎪⎨=+⎪⎩为参数),转换为普通方程为:22((1)4x y+-=,即2220x y y+--=,进一步利用cossinxyρθρθ=⎧⎨=⎩,得到圆C的极坐标方程为4sin()3πρθ=+;(2)设直线l的方程为:(tan,)2y kx kπϕϕ==≠或0()2xπϕ==,由圆C 的圆心C,2r,又弦长为2,∴圆心C到l的距离d==,解得k=,所以直线的倾斜角为150︒,当直线经过原点,且斜率不存在时,所截得的弦长也为2,故直线的倾斜角为90︒.l∴的倾斜角90ϕ=︒或150ϕ=︒.10.在直角坐标系xOy中,直线l的参数方程为1,1x my m=-⎧⎨=+⎩(m为参数).以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为4sin0ρθ+=.(1)求曲线C的直角坐标方程与直线l的极坐标方程;(2)若动直线1l:θα=和2l:2πθα=+((0,)4πα∈)分别与曲线C交于A和B,同时又分别与直线l交于E 和F,求OABOEFSS的取值范围.【详解】(1)由直线l的参数方程消去参数m可得20x y-+=,将cos,sinx yρθρθ==代入可得直线l的极坐标方程为cos sin20ρθρθ-+=,曲线C的极坐标方程化为24sin0ρρθ+=,将cos,sinx yρθρθ==代入可得曲线C的直角坐标方程为2240x y y++=;(2)设()(),,,,,,,22A B E FA B E Fππραραραρα⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭,则4sinAρα=-,4sin4cos2Bπραα⎛⎫=-+=-⎪⎝⎭,2sin cos E ραα=-,22cos sin sin cos 22F ρππαααα==+⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭, 所以11sin 8sin cos 4sin 2222OAB A B S OA OB πρρααα=⋅=⋅==,2211142sin 2222sin cos cos 2OEF E E S OE OF πρρααα=⋅=⋅==-,则2sin 2cos 2sin 4OABOEFS S ααα==, (0,),4(0,)4πααπ∈∴∈,则(]sin 40,1α∈,故OAB OEF S S 的取值范围为(]0,1.。

(完整版)极坐标和参数方程知识点+典型例题及其详解

(完整版)极坐标和参数方程知识点+典型例题及其详解

极坐标和参数方程知识点+典型例题及其详解知识点回顾(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.错误!.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2. 错误!.线段AB 的中点所对应的参数值等于2BA t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==)中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==)5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0)直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

极坐标与参数方程和不等式选讲压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

极坐标与参数方程和不等式选讲压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题12极坐标与参数方程和不等式选讲压轴题题型/考向一:极坐标与参数方程题型/考向二:不等式选讲○热○点○题○型一极坐标与参数方程1.极坐标系:极径OM =ρ,即M 点与极点O 间的距离极角=θ∠XOM ,即以极轴OX 为始边,OM 为终边的角2.极坐标与直角坐标的互化例如()1-3-,,则()()33=3-1-=2=1-+3-=22θρtan ,又()1-3-, 在第三象限,所以πθ34=,⎪⎭⎫⎝⎛342∴π,3.常见曲线的极坐标方程4.常见曲线的参数方程①圆222()()x a y b r -+-=的参数方程是:cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数②椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数③过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数5:直线的标准参数方程中t的几何意义过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数00(,)P x y 点所对应的参数为0t =0,记直线l 与任意曲线相交于,A B 两点所对应的参数分别为12,t t ,则①线段AB 的中点O 所对应的参数为t =2+21t t ,如果线段AB 的中点恰好是P ,则有0=+21t t ②12AB t t =-=,③1212121212,0t t t t PA PB t t t t t t ⎧+⋅>⎪+=+=⎨-=⋅<⎪⎩,④1212121212,00t t t t PA PB t t t t t t ⎧+⋅<⎪-=-=⎨-=⋅>⎪⎩⑤1212PA PB t t t t ⋅=⋅=⋅注:①将直线的参数方程代入曲线的方程得到关于t 的二次方程,则由韦达定理得出:abt t -=+21、ac t t =216、直线一般式:过定点00(,)P x y 斜率αtan =k =ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 为参数)①若1=+22b a ,即为标准式,此时参数t 具备几何意义②若1≠+22b a ,参数t 不具备标准式中t 的几何意义.标准式与一般式的联系与互化:直线的普通参数方程⎩⎨⎧+=+=bt y y atx x 00(t 为参数)化为直线的标准参数方程的方法是将直线的方向向量化为直线的单位向量,即是化为参数方程⎪⎪⎩⎪⎪⎨⎧++=++=220220t b a b y y t b a a x x (t 为参数)7、经过极点或原点的三种直线方程:①普通方程:②极坐标方程:③参数方程:1.在平面直角坐标系xOy 中,已知直线l 的参数方程为41,535x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),抛物线C的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 和抛物线C 的直角坐标方程;(2)求直线l 被抛物线C 截得的弦长.2.在平面直角标系xOy 中,曲M 的参数方程为2sin y α⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线M 的普通方程;(2)若D 为曲线M 上一动点,求D 到l 距离的取值范围.3.在直角坐标系xOy 中,曲线C 的参数方程为y α=⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 4ρθ⎛⎫+= ⎪⎝⎭(1)求直线l 的一般方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,直线l 与x 轴相交于点P ,求PA PB ⋅的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为22sin y ϕ⎨=+⎩(其中ϕ为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,直线l πcos 44θ⎛⎫-= ⎪⎝⎭.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,点P 是曲线C 上的一动点,求PAB 面积的最大值.5.在平面直角坐标系xOy 中,直线l 过点()1,0M ,且倾斜角为π4,以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的参数方程是为2cos ,sin x y θθ=⎧⎨=⎩(θ参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)已知曲线C 与直线l 相交于A ,B 两点,则AB 的值.6.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+ ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.1sin ,2APO ∴∠≥∴在Rt OAP △中,||2||22OP OA ∴≤=,22(323)22x x ∴+-≤,两边平方得解得353522x -+≤≤,3⎡-2240x y x +-=,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设直线l 交曲线C 于两点A ,B ,求AOB ∠的大小.直线l 的参数方程为1cos ,1sin .x t y t ϕϕ=-+⎧⎨=+⎩(t 为参数).(1)若π4ϕ=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)过点()0,3P -向直线l 作垂线,垂足为Q ,说明点Q 的轨迹为何种曲线.9.在平面直角坐标系xOy 中,曲线1C 的参数方程为1sin y ϕ⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=.(1)求曲线1C 的极坐标方程与曲线2C 的直角坐标方程;(2)直线l :()6πθρ=∈R 与曲线1C ,2C 分别交于M 、N 两点(异于极点O ),P 为2C 上的动点,求△PMN 面积的最大值.y =⎪⎩极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222cos 2sin 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点.(1)求||||FA FB +的值;(2)若点P 是椭圆上任意一点,求PAB 的面积最大值.83○热○点○题○型二不等式选讲【考点1】基本不等式基本不等式的常见结论:(1)222a b ab +≥(,a b R ∈),当且仅当a b =时,等号成立;(2)2a b ab +≥(,0a b >),当且仅当a b =时,等号成立;(3)33a b c abc ++≥a b c ==时,等号成立(4)2b a a b+≥(,a b 同号,a b =时取等号。

极坐标与参数方程,不等式选讲典型例题+详细答案

极坐标与参数方程,不等式选讲典型例题+详细答案

极坐标与参数方程,不等式选讲典型例题+详细答案极坐标与参数方程,不等式选讲常见典型问题总结例题+详细答案一、解答题1. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =√3cosαy =sinα(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.2. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =a?cos?ty =1+a?sin?t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C 1与C 2的公共点都在C 3上,求a .3. 已知直线l :{x =5+√32ty =√3+12t(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为ρ=2cosθ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,√3),直线l 与曲线C 的交点为A ,B ,求|MA |?|MB |的值.4. 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是{x =tcosαy =tsinα?(t 为参数),l 与C 交与A ,B 两点,|AB|=√10,求l的斜率.5. 在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,已知圆C 的圆心为极坐标:C (√2,π4),半径r =√3.(1)求圆C 的极坐标方程;(2)若过点P (0,1)且倾斜角α=π6的直线l 交圆C 于A ,B 两点,求|PA |2+|PB |2的值.6. 在直角坐标系xOy 中,直线l 的参数方程为{x =1?√22ty =4?√22t(t 为参数),再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C 的方程为ρ=4sinθ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为(1,4),求|MA |+|MB |的值.7. 在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+2cosαy =2sinα(α为参数),曲线C 2的参数方程为{x =2cosβy =2+2sinβ(β为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和曲线C 2的极坐标方程;(2)已知射线l 1:θ=α(0<α<π2),将射线l 1顺时针旋转π6得到射线l 2;θ=α-π6,且射线l 1与曲线C 1交于O ,P 两点,射线l 2与曲线C 2交于O ,Q 两点,求|OP |?|OQ |的最大值.8. 已知函数f (x )=|x -12|+|x +12|,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.9. 已知函数f (x )=|2x +3|+|2x -1|.(Ⅰ)求不等式f (x )<8的解集;(Ⅱ)若关于x 的不等式f (x )≤|3m +1|有解,求实数m 的取值范围.10. 已知函数f (x )=|x +1|+|x -1|.(1)若?x 0∈R ,使得不等式f (x 0)≤m 成立,求实数m 的最小值M ;(2)在(1)的条件下,若正数a ,b 满足3a +b =M ,求1 2a +1a+b 的最小值.11. 设函数f (x )=|x +2|-|x -1|.(1)求不等式f (x )>1解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围.12. 设函数f (x )=|x -1|+|x -a |(a ∈R )(1)当a =4时,求不等式f (x )≥5的解集;(2)若f (x )≥4对x ∈R 恒成立,求a 的取值范围.答案和解析1.【答案】解:(1)曲线C 1的参数方程为{x =√3cosαy =sinα(α为参数),移项后两边平方可得x 23+y 2=cos 2α+sin 2α=1,所以C 1的普通方程为x 23+y 2=1;曲线C 2的极坐标方程为ρsin (θ+π4)=2√2,即ρ(√22sinθ+√22cosθ)=2√2,由x =ρcosθ,y =ρsinθ,可得x +y -4=0,即C 2的直角坐标方程为直线x +y -4=0;(2)由题意可得当直线x +y -4=0的平行线与椭圆相切时,两平行线间的距离为|PQ |的最小值,设与直线x +y -4=0平行的直线方程为x +y +t =0,联立{x +y +t =0x 2+3y 2=3可得4x 2+6tx +3t 2-3=0,由直线与椭圆相切,可得△=36t 2-16(3t 2-3)=0,解得t =±2,显然t =-2时,|PQ |取得最小值,即有|PQ |=√1+1=√2,此时4x 2-12x +9=0,解得x =32,即为P (32,12).另解:设P (√3cosα,sinα),由P 到直线的距离为d =√3cosα+sinα?4|√2|2sin(α+π3)?4|√2,当sin (α+π3)=1时,|PQ |的最小值为√2,此时可取α=π6,即有P (32,12).2.【答案】解:(Ⅰ)由{x =acost y =1+asint ,得{x =acosty ?1=asint ,两式平方相加得,x 2+(y -1)2=a 2.∴C 1为以(0,1)为圆心,以a 为半径的圆.化为一般式:x 2+y 2-2y +1-a 2=0.①由x 2+y 2=ρ2,y =ρsinθ,得ρ2-2ρsinθ+1-a 2=0;(Ⅱ)C 2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x 2+y 2=4x ,② 即(x -2)2+y 2=4.由C 3:θ=α0,其中α0满足tanα0=2,得y =2x ,∵曲线C 1与C 2的公共点都在C 3上,∴y =2x 为圆C 1与C 2的公共弦所在直线方程,①-②得:4x -2y +1-a 2=0,即为C 3 ,∴1-a 2=0,∴a =1(a >0).3.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,令,∴x 2+y 2=2x ,故C 的直角坐标方程为(x -1)2+y 2=1;(2)直线l :{x =5+√32ty =√3+1(t 为参数),显然M 在直线l 上,把l 的参数方程代入(x -1)2+y 2=1可得t 2+5√3t +18=0,Δ=(5√3)24×18=3>0, ∴t 1+t 2=?5√3,t 1t 2=18, 故|MA |?|MB |=|t 1t 2|=18.4.【答案】解:(Ⅰ)∵圆C 的方程为(x +6)2+y 2=25,∴x 2+y 2+12x +11=0,∵ρ2=x 2+y 2,x =ρcosα,y =ρsinα,∴C 的极坐标方程为ρ2+12ρcosα+11=0.(Ⅱ)∵直线l 的参数方程是{x =tcosαy =tsinα(t 为参数),∴t =xcosα,代入y =t sinα,得:直线l 的一般方程y =x ·tanα,∵l 与C 交与A ,B 两点,|AB |=√10,圆C 的圆心C (-6,0),半径r =5,圆心到直线的距离d =√r 2?(|AB|2)2,∴圆心C (-6,0)到直线距离d =√1+tan 2α=√25?104,解得tan 2α=53,∴tanα=±√53=±√153.∴l 的斜率k =±√153.5.【答案】解:(1)∵圆C 的圆心为极坐标:C (√2,π4),∴x =√2sin π4=1,y =√2cos π4=1,∴点C 直角坐标C (1,1),∵半径r =√3,∴圆C 的直角坐标方程为(x -1)2+(y -1)2=3,由{x =ρcosθy =ρsinθ,得圆C 的极坐标方程为ρ2-2ρcosθ-2ρsinθ-1=0;(2)∵过点P (0,1)且倾斜角α=π6的直线l 交圆C 于A ,B 两点,∴直线l 的参数方程为{x =√3 2ty =1+12t, 把直线l 的参数方程代入圆C :(x -1)2+(y -1)2=3,得(√32t ?1)2+(12t )2=3,整理,得t 2?√3t ?2=0,t 1+t 2=√3,t 1t 2=-2,∴|PA |2+|PB |2=|t 1|2+|t 2|2=(t 1+t 2)2-2t 1?t 2=7.6.【答案】解:(1)圆C 的方程为ρ=4sinθ,∴ρ2=4ρsinθ,∴圆C 的直角坐标方程为x 2+y 2-4y =0.即x 2+(y -2)2=4.(2)将直线l 的参数方程代入圆的方程,整理,得t 2-3√2t +1=0,△=18-4=14>0,设A 、B 对应的参数为t 1,t 2,则t 1+t 2=3√2,t 1t 2=1,∴t 1,t 2均为正数,又直线l 过M (1,4),由t 的几何意义得:|MA |+|MB |=|t 1|+|t 2|=t 1+t 2=3√2.7.【答案】解:(1)曲线C 1的参数方程为{x =2+2cosαy =2sinα(α为参数),利用平方关系消去参数可得:曲线C 1的普通方程为(x -2)2+y 2=4,展开可得:x 2+y 2-4x =0,利用互化公式可得:ρ2-4ρcosθ=0,∴C 1极坐标方程为ρ=4cosθ.曲线C 2的参数方程为{x =2cosβy =2+2sinβ(β为参数),消去参数可得:曲线C 2的普通方程为x 2+(y -2)2=4,展开利用互化公式可得C 2极坐标方程为ρ=4sinθ.(2)设点P 极点坐标(ρ1,4cosα),即ρ1=4cosα.点Q 极坐标为(ρ2,4sin(α?π6)),即ρ2=4sin(α?π6).则|OP|?|OQ|=ρ1ρ2=4cosα?4sin(α?π6)=16cosα?(√32sinα?12cosα)=8sin(2α?π6)?4.∵α∈(0,π2),∴2α?π6∈(?π6,5π6),当2α?π6=π2,即α=π3时,|OP |?|OQ |取最大值4.8.【答案】解:(Ⅰ)当x <?12时,不等式f (x )<2可化为:12-x -x -12<2,解得:x >-1,∴-1<x <?12,2≤x ≤12时,不等式f (x )<2可化为:12-x +x +12=1<2,此时不等式恒成立,∴?12≤x ≤12,当x >12时,不等式f (x )<2可化为:-12+x +x +12<2,解得:x <1,∴12<x <1,综上可得:M =(-1,1);证明:(Ⅱ)当a ,b ∈M 时,(a 2-1)(b 2-1)>0,即a 2b 2+1>a 2+b 2,即a 2b 2+1+2ab >a 2+b 2+2ab ,即(ab +1)2>(a +b )2,即|a +b |<|1+ab |.9.【答案】解:(Ⅰ)不等式f (x )<8,即|2x +3|+|2x -1|<8,可化为①{x <?322x ?3?2x +1<8或②{?32≤x ≤122x +3?2x +1<8或③{x >122x +3+2x ?1<8,解①得-52<x <-32,解②得-32≤x ≤12,解③得12<x <32,综合得:-52<x <3即原不等式的解集为{x |-52<x <32}.(Ⅱ)因为∵f (x )=|2x +3|+|2x -1|≥|(2x +3)-(2x -1)|=4,当且仅当-32≤x ≤12时,等号成立,即f (x )min =4,又不等式f (x )≤|3m +1|有解,则|3m +1|≥4,解得:m ≤-53或m ≥1.10.【答案】解:(1)由题意,不等式|x +1|+|x -1|≤m 有解,即m ≥(|x +1|+|x -1|)min =M .∵|x +1|+|x -1|≥|(x +1)-(x -1)|=2,当且仅当(x +1)(x -1)≤0?-1≤x ≤1时取等号,∴M =2.(2)由(1)得3a +b =2,∴12a +1a+b=12(3a +b)(12a +1a +b ) =12[2a +(a +b)](12a +1a +b=12(1+2aa+b+a+b 2a+1)≥12(2+2√1)=2, 当且仅当2aa+b =a+b 2aa =b =12时取等号,故(12a +1a+b )min =2.11.【答案】解:(1)函数f (x )=|x +2|-|x -1|表示数轴上的x 对应点到-2对应点的距离减去它到1对应点的距离,而0对应点到-2对应点的距离减去它到1对应点的距离正好等于1,故不等式f (x )>1解集为{x |x >0}.(2)若关于x 的不等式f (x )+4≥|1-2m |有解,即|x +2|-|x -1|+4≥|1-2m |有解,故|x +2|-|x -1|+4 的最大值大于或等于|1-2m |.利用绝对值的意义可得|x +2|-|x -1|+4 的最大值为3+4=7,∴|1-2m |≤7,故-7≤2m -1≤7,求得-3≤m ≤4, m 的范围为[-3,4].12.【答案】解:(Ⅰ)当a =4时,不等式f (x )≥5,即|x -1|+|x -4|≥5,等价于,{x <1?2x +5≥5,或{1≤x ≤43≥5,或{x >42x ?5≥5.解得:x ≤0或x ≥5.故不等式f (x )≥5的解集为{x |x ≤0,或x ≥5 }.(Ⅱ)因为f (x )=|x -1|+|x -a |≥|(x -1)-(x -a )|=|a -1|.(当x =1时等号成立)所以:f (x )min =|a -1|.由题意得:|a -1|≥4,解得a ≤-3或a ≥5.。

2021年高考数学经典例题 专题十一:坐标系参数方程与不等式选讲【含解析】

2021年高考数学经典例题 专题十一:坐标系参数方程与不等式选讲【含解析】

专题十一 坐标系参数方程与不等式选讲一、解答题1.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2)(22,)4π【解析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为33y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由223340y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎨⎩或31x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,3,1,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时22ρ= 当54πθ=时220ρ=-<,舍;即所求交点坐标为当2,),4π2.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)410(2)3cos sin 120ρθρθ-+= 【解析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可. 【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.22(04)(120)410AB ∴=++-=(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44. 【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当4k =时,0,0x y ≥≥,曲线1C 的参数方程化为 22cos (sin x tt y t⎧⎪⎨=⎪⎩为参数),两式相加消去参数t ,得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线 2C 化为直角坐标方程,联立12,C C 方程,即可求解.【详解】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t=⎧⎨=⎩为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t ⎧=⎨=⎩为参数), 所以0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t⎧=⎪⎨=⎪⎩为参数), 两式相加得曲线1C 1x y +=,1y x =21,01,01y x x x y =-≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=, 曲线2C 直角坐标方程为41630x y -+=,联立12,C C 方程2141630y x x x y ⎧=-⎪⎨-+=⎪⎩,整理得1232130x x -+=12x =或 136x =(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为 11(,)44.4.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)()1:404C x y x +=≤≤;222:4C x y -=;(2)17cos 5ρθ=. 【解析】(1)分别消去参数θ和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程. 【详解】(1)由22cos sin 1θθ+=得1C 的普通方程为:()404x y x +=≤≤;由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭; 设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =, ∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=, ∴所求圆的极坐标方程为17cos 5ρθ=. 5.已知曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为2cos 3sin 12ρθρθ-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若点P 为直线l 上的动点,点Q 是曲线C 上的动点,求PQ 的最小值.【答案】(1)C 的普通方程是2214x y +=,l 的直角坐标方程是23120x y --=;(2713. 【解析】(1)由22cos sin 1θθ+=可将曲线C 的参数方程化为普通方程,利用极坐标方程与普通方程之间的转换关系可得出直线l 的直角坐标方程;(2)设点()2cos ,sin Q θθ,利用点到直线的距离公式、辅助角公式以及余弦函数的有界性可求得PQ 的最小值. 【详解】(1)由2cos sin x y θθ=⎧⎨=⎩得,2222cos sin 12x y θθ⎫⎛+=+= ⎪⎝⎭,即2214x y +=,故曲线C 的普通方程是2214x y +=.由2cos 3sin 12ρθρθ-=及公式cos sin xy ρθρθ=⎧⎨=⎩,得2312x y -=,故直线l 的直角坐标方程是23120x y --=;(2)直线l 的普通方程为23120x y --=,曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数),设()2cos ,sin Q θθ,点Q 到直线23120x y --=距离为4cos 3sin 1213d θθ--=()5cos 12125cos 1313θϕθϕ+--+=(其中3tan 4ϕ=), 当()cos 1θϕ+=时,min 713d =min713PQ = 6.在直角坐标系xOy 中,曲线1C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的方程为2cos sin 10ρθρθ-+=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)已知点()0,1P ,曲线2C 和曲线1C 交于A ,B 两点,求||||PA PB ⋅的值.【答案】(1)1C 的普通方程为:224y x -=,2C 的直角坐标方程为:210x y -+=;(2)5. 【解析】(1)由极坐标与直角的互化公式,求得曲线2C 的直角坐标方程,再由曲线1C 的参数方程,消去参数,即可得到曲线1C 的普通方程;(2)由点()0,1P 在直线l 上,得出曲线2C 的一个参数方程为5251x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线1C ,利用根与系数的关系,结合参数的几何意义,即可求解. 【详解】(1)曲线1C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数得224y x -=,故曲线1C 的普通方程为:224y x -=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线2C 的直角坐标方程为:210x y -+=; (2)由(1)得曲线2C 的参数方程为52515x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代人1C 的方程得2225514⎛⎫⎫-= ⎪⎪ ⎪⎪⎝⎭⎝⎭,整理得2345150t t +-=,设A ,B 两点所对应的参数分别为12t t ,,所以0∆>,125t t =-,∴由参数t 的几何意义知12||||5PA PB t t ⋅==.7.在平面直角坐标系xOy 中,曲线1C 的参数方程为2,2,x t y t =⎧⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin cos m ρθθ=+.(1)求1C 的普通方程和2C 的直角坐标方程;(2)若1C 与2C 交于P ,Q 两点,求证:11OQ OPk k +为定值. 【答案】(1)1C 的普通方程为212x y =,2C 的直角坐标方程为40x my +-=;(2)证明见解析.【解析】(1)消去参数t 后,得到曲线1C 的普通方程,利用极坐标与直角坐标的互化公式sin x ρθ=,sin y ρθ=,求曲线2C 的直角坐标方程;(2)首先判断2t 的几何意义是抛物线212x y =上的点(除原点外)与原点连线的斜率,再将曲线2,2,x t y t =⎧⎨=⎩代入40x my +-=, 转化为关于t 的一元二次方程,利用根与系数的关系表示11OQOP k k +. 【详解】(1)解:由2,2,x t y t =⎧⎨=⎩(t 为参数),消去参数t , 得212x y =, 即1C 的普通方程为212x y =. 由4sin cos m ρθθ=+,得sin cos 4m ρθρθ+=,将cos x ρθ=,sin y ρθ=代入,得40x my +-=, ∴2C 的直角坐标方程为40x my +-=.(2)证明:由2,2,x t y t =⎧⎨=⎩(t 为参数),得()20yt x x=≠, 故2t 的几何意义是抛物线212x y =上的点(除原点外)与原点连线的斜率. 由(1)知,当0m =时,2C :4x =, 则1C 与2C 只有一个交点,不合题意,故0m ≠.把2,2,x t y t =⎧⎨=⎩代入40x my +-=, 得2240mt t +-=,设P ,Q 两点所对应的参数分别为1t ,2t , 则1212t t m +=-,122t t m⋅=-, ∴1212121111112222282OP OQ t t m k k t t t t m -++=+===⎛⎫⨯- ⎪⎝⎭. 8.在平面直角坐标系xOy 中,曲线C 的参数方程为22x y αα⎧=⎪⎨=⎪⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 32cos 14πρθ⎛⎫-= ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的倾斜角;(2)已知点M 的直角坐标为()0,1,直线l 与曲线C 相交于不同的两点,A B ,求MA MB +的值. 【答案】(1)222x y +=,4π;(26 【解析】(1)根据参数方程与普通方程的转化可得曲线C 的普通方程;由极坐标与直角坐标的转化可得直线l 的直角坐标方程,即可得直线的倾斜角;(2)将直线l 的直角坐标方程化为标准参数方程,联立椭圆方程,结合参数方程的几何意义即可求解. 【详解】(1)曲线C 的参数方程为22x y αα⎧=⎪⎨=⎪⎩,则有cos 2sin 2αα=⎪⎪⎨⎪=⎪⎩,则2222cos sin 122x y αα+=+=,即曲线C 的普通方程为222x y +=.直线l 32cos 14πρθ⎛⎫-=⎪⎝⎭332cos cos sin sin144ππρθρθ⎫+=⎪⎭, 将cos sin x y ρθρθ=⎧⎨=⎩222122y x ⎫-=⎪⎪⎭,即1y x -=,即10x y -+=, 所以斜率1k =,则tan 1θ=,由[)0,θπ∈,可得4πθ=,所以直线l 的倾斜角为4π. (2)由(1)知,点()0,1M 在直线:10l x y -+=上,则直线l 的参数方程为22212x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数). 将直线l 的参数方程代入曲线C 的普通方程,得22221222⎛⎫⎛⎫++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭整理得:2210t t +-=,设点,A B 对应的参数分别为12,t t ,则12122,1t t t t +=-=-. 所以()()()221212121242416MA MB t t t t t t t t +=+=-=+---⨯-【点睛】方法点睛:本题考查了参数方程、极坐标方程与直角坐标方程的转化,参数方程几何意义求线段关系,利用直线的参数方程求直线与圆锥曲线相交的弦长,方法是:(1)将直线参数方程代入圆锥曲线方程,得到关于参数t 的一元二次方程; (2)利用韦达定理写出12t t +,12t t ; (3)利用弦长公式()21212124AB t t t t t t =-=+-.9.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线1C 的参数方程为sin ,cos 2,x y αα=⎧⎨=⎩(α为参数),直线2C 的极坐标方程为π6θ=-. (1)将1C 的参数方程化为普通方程,2C 的极坐标方程化为直角坐标方程; (2)求与直线2C 平行且与曲线1C 相切的直线l 的直角坐标方程. 【答案】(1)212y x =-()330,0x y x +=≥;(2)32524y x =+. 【解析】(1)将sin ,cos 2,x y αα=⎧⎨=⎩转化为2sin ,12sin ,x y αα=⎧⎨=-⎩消去α求解; (2)设切线方程为33yx b ,联立23312y x b y x ⎧=-+⎪⎨⎪=-⎩,由0∆=求解. 【详解】(1)因为曲线1C 的参数方程为sin ,cos 2,x y αα=⎧⎨=⎩(α为参数),所以2sin ,12sin ,x y αα=⎧⎨=-⎩消去α得212y x =-. 因为直线2C 的极坐标方程为π6θ=-, 所以πsin 3tan tan 6cos ρθθρθ⎛⎫=-== ⎪⎝⎭, 即33y x =-()330,0x y x +=≥. (2)设切线方程为33yx b ,由2312y x b y x ⎧=+⎪⎨⎪=-⎩, 得232103x x b -+-=, 所以()238103b ⎛⎫∆=--⨯-= ⎪ ⎪⎝⎭,解得2524b =, 所以切线方程是325324y x =-+, 10.在花语中,四叶草象征幸运.已知在极坐标系下,方程2sin 2ρθ=对应的曲线如图所示,我们把这条曲线形象地称为“四叶草”.(1)当“四叶草”中的π0,2θ⎡⎤∈⎢⎥⎣⎦时,求以极点为圆心的单位圆与“四叶草”交点的极坐标;(2)已知A 为“四叶草”上的点,求点A 到直线π:sin 34l ρθ⎫⎛+= ⎪⎝⎭距离的最小值以及此时点A 的极坐标. 【答案】(1)π1,12⎫⎛ ⎪⎝⎭和5π1,12⎫⎛ ⎪⎝⎭;(2)最小值为1,π2,4A ⎫⎛ ⎪⎝⎭.【解析】(1)直接利用单位圆1ρ=与方程2sin 2ρθ=联立即可求解; (2)将直线l 的极坐标方程化为直角坐标方程,观察发现点π2,4A ⎫⎛⎪⎝⎭到直线l 的距离即为最小值 【详解】(1)以极点为圆心的单位圆的极坐标方程为:1ρ=,所以联立12sin 2ρρθ=⎧⎨=⎩,π0,2θ⎡⎤∈⎢⎥⎣⎦得π12θ=或5π12θ=, 所以所求交点的极坐标为π1,12⎫⎛ ⎪⎝⎭和5π1,12⎫⎛ ⎪⎝⎭. (2)直线π:sin 34l ρθ⎫⎛+= ⎪⎝⎭的直角坐标方程为32x y += “四叶草”2sin 2ρθ=极径的最大值为2,且可于点π2,4A ⎫⎛ ⎪⎝⎭处取得, 连接OA 且与直线32x y +=π3,4M ⎫⎛ ⎪⎝⎭, 所以点A 与点M 的距离的最小值为1.11.在直角坐标系xOy 中,曲线C 的参数方程为33cos 3sin x y αα=+⎧⎨=⎩(α为参数),点P 的坐标为()0m ,.(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)若直线l :123x m t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与曲线C 交于A ,B 两点,若2PA PB ⋅≥,求26m m -的取值范围.【答案】(1)6cos ρθ=;(2)[][)9,22,3--⋃. 【解析】(1)先消去参数得到C 的直角坐标方程,再利用cos ,sin x y ρθρθ==代入即得C 的极坐标方程;(2)将直线的参数方程代入曲线C 的直角坐标方程得到关于t 的二次方程,再根据判别式大于零和122PA PB t t ⋅=≥,即解得 26m m -的取值范围.【详解】解:(1)因为C 的参数方程为33cos 3sin x y αα=+⎧⎨=⎩( α为参数),所以C 的直角坐标方程为()2239x y -+=,即 226x y x +=,故C 的极坐标方程为6cos ρθ=;(2)将直线l :123x m t y ⎧=+⎪⎪⎨⎪=⎪⎩( t 为参数)代入226x y x +=,可得:()22360t m t m m +-+-=,则()()223460m m m ∆=--->,即263m m -<,因为21262PA PB t t m m ⋅==-≥,所以 2962m m -≤-≤-或2263m m ≤-<,故26m m -的取值范围为[][)9,22,3--⋃. 12.在直角坐标系xOy 中,曲线1C 的参数方程为2cos sin k kx ty t ⎧=⎨=⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin 120ρθρθ--=. (1)当2k =时,求出1C 的普通方程,并说明该曲线的图形形状.(2)当1k =时,P 是曲线1C 上一点,Q 是曲线2C 上一点,求PQ 的最小值.【答案】(1)22,02x y x +=≤≤,是以(2,0)A ,(0,1)B 为端点的线段;(2713【解析】(1)利用22sin cos 1t t +=消去参数t ,求出曲线1C 的普通方程,即可得出结论;(2)当1k =时,曲线得1C 普通方程,由cos ,sin x y ρθρθ==,将曲线 2C 化为直角坐标方程,利用点到直线的距离公式可求解. 【详解】(1)当2k =时,消t 得22,0,0x y x y +=≥≥, 是以(2,0)A ,(0,1)B 为端点的线段.(2)当1k =时,曲线1C 的普通方程为椭圆:2214x y +=;由cos ,sin x y ρθρθ==得曲线2C 的普通方程为直线:23120x y --=;由221423120x y x y ⎧+=⎪⎨⎪--=⎩得272128250y y ++=, 2518412807210080120=-∆-⨯<=,可知直线与椭圆相离,则PQ 的最小值为P 到直线的距离最小值, 则131313d ===,当sin()1t ϕ-=时,713 13.(Ⅰ)求21234x +x --<的解集M ;(Ⅱ)在(Ⅰ)的条件下,设a ,b ,c M ∈,证明:(2)a b -,(2)b c -,(2)c a -不能都大于1. 【答案】(Ⅰ){|02}x x <<;(Ⅱ)证明见解析. 【解析】 (Ⅰ)讨论12x <、1322x ≤≤、32x >分别求得解集,取并即为所求解集M .(Ⅱ)根据基本不等式有0(2)1a a <-≤,0(2)1b b <-≤,0(2)1c c <-≤,结合反证法即可证明结论. 【详解】(Ⅰ)由题设,13222x +x --<,∴当12x <时,1322222x x x -+-=-<,得102x <<;当1322x ≤≤时,131222x x -+-=<恒成立; 当32x >时,1322222x x x -+-=-<,得322x <<;∴综上,得{|02}M x x =<<.(Ⅱ)由(Ⅰ)知:a ,b ,(0,2)c ∈, ∴220(2)()12a a a a -+<-≤=,220(2)()12b b b b -+<-≤=,220(2)()12c c c c -+<-≤=,其中等号成立的条件为,,1a b c =.∴0(2)(2)(2)1a b b c c a <-⋅⋅-⋅⋅-⋅≤,假设(2)a b -,(2)b c -,(2)c a -都大于1,即(2)(2)(2)1a b b c c a -⋅⋅-⋅⋅-⋅>显然与结论矛盾. ∴(2)a b -,(2)b c -,(2)c a -不能都大于1,得证. 14.已知()|2||1|f x x x =+-- (Ⅰ)解不等式()f x x ≤;(Ⅱ)设()f x 的最大值为t ,如果正实数m ,n 满足2m n t +=,求21m n+的最小值. 【答案】(Ⅰ)[3,1][3,)--⋃+∞;(Ⅱ)83. 【解析】(Ⅰ)利用零点分解法解不等式即可.(Ⅱ)去绝对值,写出分段函数()f x 的解析式,根据函数的单调性求出函数的最大值3t =,从而可得23m n +=,再利用基本不等式即可求解.【详解】解:(Ⅰ)()|2||1|f x x x =+--①当2x -≤时,()2(1)3f x x x x =--+-=-≤,3x ∴≥-,2x ≤-,32x ∴-≤≤-②当21x -<<时,()2(1)21f x x x x x =++-=+≤,21x ∴-<≤-; ③当1≥x 时,()2(1)3f x x x x =+--=≤,Q 3x ≥ 综上知不等式()f x x ≤的解集为[3,1][3,)--⋃+∞.(Ⅱ)由已知,3,2()21,213,1x f x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,在(2,1)-是增函数,所以max ()3f x =,23∴+=m n ,0m >,0n >则21121(2)3m n m n m n ⎫⎛+=⋅++ ⎪⎝⎭14148442333n m n m m n m n ⎛⎫⎛=++≥⨯+⋅= ⎪⎝⎭⎝. 当且仅当4n mm n =,即224=m n , 即322m n ==,34n =时,21m n +取得最小值83.15.已知函数()|33||2|f x x x =+++. (1)求不等式()10f x >的解集;(2)若方程()34f x a =-有实数解,求实数a 的取值范围. 【答案】(1)155,,44⎫⎫⎛⎛-∞-⋃+∞ ⎪ ⎪⎝⎝⎭⎭;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【解析】(1)分2x <-,21x -≤≤-,1x >-三种情况求解即可得答案.(2)结合(1)的结论首先确定函数()f x 的最小值,再解()min 34a f x -≥即可得答案. 【详解】(1)依题意,|33||2|10x x +++>.当2x <-时,33210x x ---->,解得154x <-; 当21x -≤≤-时,33210x x --++>,解得112x <-,无解;当1x >-时,33210x x +++>,则54x >,故54x >;故不等式()10f x >的解集为155,,44⎫⎫⎛⎛-∞-⋃+∞ ⎪ ⎪⎝⎝⎭⎭. (2)依题意,()|33||2|f x x x =+++45,221,2145,1x x x x x x --<-⎧⎪=---≤≤-⎨⎪+>-⎩,由一次函数的性质知,()f x 在(],1-∞-上单调递减,在()1,-+∞上单调递增, 所以()min ()11f x f =-=,即()f x 的值域为[1,)+∞, 因为方程()34f x a =-有实数解, 所以341a -≥,解得12a ≤, 故实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.16.已知函数()|1||24|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若存在x ∈R ,使不等式2()3|2|2f x x t t --≥-成立,求t 的取值范围. 【答案】(1)[]1,3-;(2)[]1,3-. 【解析】(1)分1,12,2x x x ≤--<<≥三种情况去掉绝对值后解不等式()6f x ≤即可;(2)令()()321|2|h x f x x x x =--=+--,求出其最大值,然后使其最大值大于等于22t t -,解关于t 的不等式即可得答案【详解】(1)|1||24|6x x ++-≤,1(1)(24)6x x x ≤-⎧∴⎨-+--≤⎩或12(1)(24)6x x x -<<⎧⎨+--≤⎩或2(1)(24)6x x x ≥⎧⎨++-≤⎩ 解得11x x ≤-⎧⎨≥-⎩或121x x -<<⎧⎨≥-⎩或23x x ≥⎧⎨≤⎩ 1x ∴=-或12x -<<或23x ≤≤13x ∴-≤≤∴原不等式的解集为[]1,3-(2)令()()321|2|h x f x x x x =--=+--则3,1()21,123,2x h x x x x -≤-⎧⎪=--<<⎨⎪≥⎩max ()3h x ∴=,存在x ∈R ,使得2()3|2|2f x x t t --≥-成立,232t t ∴≥-,13t ∴-≤≤故满足条件的t 的取值范围为[]1,3-17.已知()()220f x x m x m m =--+>的最小值为52-. (1)求m 的值;(2)已知0,0a b >>,且22a b m +=,求证:331b a a b+≥.【答案】(1)1m =;(2)证明见解析; 【解析】(1)去绝对值变成分段函数,根据分段函数的单调性可求出()f x 的最小值,与已知最小值相等列式可求出; (2)利用分析法结合基本不等式即可证明.【详解】解:(1)3,2()223,223,2x m x m m f x x m x m x m m x m x m x ⎧⎪-+-⎪⎪=--+=---<<⎨⎪⎪-⎪⎩,()0m >()f x ∴在区间(-∞,]2m上单调递减,在区间[2m ,)+∞上单调递增,5()()3222min m m f x f m ∴==-=-,1m ∴=;(2)由(1)0a >,0b >,且221a b +=,要证331b a a b+,只要证44b a ab +, 即证22222()2a b a b ab +-, 即证22210a b ab +-, 即证(21)(1)0ab ab -+, 即证21ab , 即证222ab a b +,显然2212a b ab =+,当且仅当22a b ==时取等号. ∴331b a a b+.18.数()1f x x x =-+. (1)求不等式()5f x ≥的解集;(2)已知函数()f x 的最小值为t ,正实数,,a b c 满足22,a b c t ++=证明:112.a c b c+≥++ 【答案】(1)(][,3)2,-∞-⋃+∞;(2)证明见解析. 【解析】(1)解含绝对值的不等式,先要去掉绝对值号,将函数写为分段函数,然后再在各个区间求解,取并集. (2)求出函数的最小值,即1,t =得出()()22a b c a c b c ++=+++=,结合所要证明的不等式,联想到基本不等式进行求解. 【详解】(1)解:由题可得()12,011,0121,1x x f x x x x x x -≤⎧⎪=-+=<<⎨⎪-≥⎩,所以()5,f x ≥即0125x x ≤⎧⎨-≥⎩或1115x <<⎧⎨≥⎩或1215x x ≥⎧⎨-≥⎩解得2x -≤或3,x ≥所以不等式()5f x ≥的解集为(][,3)2,-∞-⋃+∞.()2证明:()111f x x x x x =-+≥--=,则1,t =则()()22a b c a c b c ++=+++=,故()()1111112222b c a c a c b c a c b c a c b c a c b c ++⎛⎫⎛⎫+=++++=++≥⎡⎤ ⎪ ⎪⎣⎦++++++⎝⎭⎝⎭当且仅当1a c b c +=+=时取等号. 【点睛】(1)解双绝对值不等式的办法通常利用分段函数,在不同区间上求解,最后取并集.(2)利用a b a b a b -≤±≤+求出最小值,即1,t =特别要结合所证明的不等式的特点来进行变形,以应用基本不等式解决问题,抓住特点是核心.19.已知函数()216f x x a x =+-+-(1)当0a =时,解不等式()12f x >(2)记集合(){}20M x f x b =-=,若存在a R ∈使M,求实数b 的取值范围.【答案】(1)5{|2x x <-或19}2x >;(2)5,2⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)根据绝对值的定义分类讨论解不等式;(2)由绝对值三角不等式()f x 的最小值,得()f x 值域,2b 属于这个值域,从而得()2min25b a ≥+,解之可得结论. 【详解】解:(1)当0a =时有1612x x -->+; 当1x <时,1612,x x -+->则52x <-, 故52x <-; 当16x ≤≤时,1612x x -+->.则512>.无解﹔当6x >时,1612,x x -+->则192x >. 故192x >. 故不等式()12f x >的解集为5{|2x x <-或19}2x > (2)()()222||16165x f x x a x a x a +-≥=+-+---=+ 当且仅当()()2160x a x +--≤时取等号.则可知()2min 5f x a =+.即()f x 的值域为)25,a ⎡++∞⎣,因为存在a R ∈使M .故()2min255b a ≥+=.则故实数b 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. 20.已知函数()3533f x x x =-++. (1)求不等式()40f x <的解集;(2)若不等式2()2log f x m m >+对任意x ∈R 恒成立,求m 的取值范围. 【答案】(1)19,73⎛⎫- ⎪⎝⎭;(2)()0,4. 【解析】(1)利用零点分段法,解不等式组即可得到结果.(2)由绝对值三角不等式可得35338x x -++≥,从而得到22log 8m m +<,然后解不等式可得m 的范围. 【详解】(1)()353340f x x x =-++<,∴536240x x ⎧≥⎪⎨⎪-<⎩ 或513840x ⎧-<<⎪⎨⎪<⎩ 或16240x x ≤-⎧⎨-+<⎩ , 解得:1973x -<<, 不等式()40f x <的解集为19,73⎛⎫-⎪⎝⎭; (2)因为()()()353335338f x x x x x =-++≥--+=,当513x -≤≤时可取到等号,所以22log 8m m +<,令()22log g m m m =+,则()g m 为()0,∞+上的增函数,且()48g =, 所以04m <<,故m 的取值范围为()0,4. 21.已知函数f (x )=|x -2|+|x +1|. (1)解不等式f (x )>x +2;(2)记f (x )的最小值为m ,正实数a ,b ,c 满足a +b +c =m 333222.33a b c a b c++++≥【答案】(1)()(),13,-∞⋃+∞;(2)证明见解析. 【解析】(1)利用“零点分段法”,分为2x ,12x -<<,1x -三种情形,解不等式即可; (2)根据绝对值三角不等式求出m 的值,可得()333333()3ab c a b c a b c++++++=,由柯西不等式可得结果. 【详解】(1)当2x 时,()21212f x x x x x =-++=->+,解得3x >,所以3x >;当12x -<<时,()2132,f x x x x =-++=>+解得1,x <所以11;x -<<当1x -时,()21122,f x x x x x =---=->+解得1,3x <-所以 1.x -综上,1x <或3,x >故不等式的解集是()(),13,-∞⋃+∞.(2)因为()21213,x x x x -++--+=当且仅当()()210x x -+时等号成立,所以 3.m =()222222333111222222333333()33a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦++==()2313131222222222233a ab bc c a b c ⎛⎫⋅+⋅+⋅ ⎪++⎝⎭=当且仅当333222111222,a b c abc==即a b c ==时等号成立,33322233a b c a b c ++++.22.已知函数()|2||1|f x x a x =--+. (1)当2a =时,求不等式()1f x <的解集;(2)若0a >,不等式()20f x +>恒成立,求实数a 的取值范围. 【答案】(1)()0,4;(2)()0,2. 【解析】(1)当2a =时,求得函数()f x 的解析式,分类讨论,即可求解;(2)当0a >,化简函数()f x 的解析式,利用一次函数的性质,求得min 12af =--,结合题意列出不等式,即可求解. 【详解】(1)当2a =时,函数()3,122113,113,1x x f x x x x x x x -≥⎧⎪=--+=--<<⎨⎪-+≤-⎩,当1≥x 时,由()1f x <,可得31x -<,解得14x ≤<;当11x -<<时,由()1f x <,可得131x -<,解得01x <<;当1x <-时,由()1f x <,可得31x -<,此时解集为空集, 综上所述:不等式()1f x <的解集为()0,4.(2)若0a >,函数()1,213,121,1a x a x a f x a x x a x x ⎧--≥⎪⎪⎪=---<<⎨⎪+-≤-⎪⎪⎩由一次函数性质可知()f x 在,2a ⎛⎫-∞ ⎪⎝⎭为减函数,在+2a ⎛⎫∞ ⎪⎝⎭,为增函数,所以min 122a a f f ⎛⎫==--⎪⎝⎭, 因为不等式()20f x +>恒成立,即min 2f >-,即122a-->-,解得2a < 又因为0a >,所以()0,2a ∈,即实数a 的取值范围()0,2. 23.已知函数()2|||2|f x x x =+-. (1)求不等式()4f x <的解集;(2)记()f x 的最小值为M ,a ,b ,c 为正实数且3a b c M ++=,求证:2226b c aa b c++≥.【答案】(1)2|23x x ⎧⎫-<<⎨⎬⎩⎭;(2)证明见解析. 【解析】(1)对x 分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)根据函数的单调性求出()f x 的最小值2M =,则6a b c ++=,由基本不等式可得22ba b a+≥,22c b c b+≥,22a c a c +≥,相加后化简即可.【详解】(1)依题意得32,2()2,0223,0x x f x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩, 2324x x x ≥⎧⇒∈∅⎨-<⎩,020224x x x ≤<⎧⇒≤<⎨+<⎩,0202343x x x <⎧⇒-<<⎨-<⎩, 综上可得()4f x <的解集是2|23x x ⎧⎫-<<⎨⎬⎩⎭; (2)由32,2()2,0223,0x x f x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩可知 ()f x 在(),0-∞上递减,在()0,∞+上递增, ()f x 的最小值为(0)2f =,即2M =.所以6a b c ++=,由22b a b a +≥,22c b c b+≥,22a c a c +≥, 相加可得()2222b c a a b c a b c a b c+++++≥++, 即222612b c a a b c +++≥,2226b c a a b c++≥ 当且仅当2a b c ===时取等号.24.已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【答案】(1) 见解析(2) 见解析 【解析】(1)由柯西不等式即可证明,(2)由a 3+b 3=2转化为()()323a b a b +-=+ab ,再由均值不等式可得:()()323a b a b +-=+ab ≤2()2a b +,即可得到14(a +b )3≤2,问题得以证明. 【详解】证明:(1)由柯西不等式得:553324a b a b a b ++≥+()()()=,当且仅当ab 5=ba 5,即a =b =1时取等号;(2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2, ∴(a +b )[(a +b )2﹣3ab ]=2, ∴(a +b )3﹣3ab (a +b )=2,∴()()323a b a b +-=+ab ,由均值不等式可得:()()323a b a b +-=+ab ≤2()2a b +∴(a +b )3﹣2()334a b +≤,∴14(a +b )3≤2, ∴a +b ≤2,当且仅当a =b =1时等号成立. 25.已知,,a b c 为正数,且2a b c ++=,证明:(1)43ab bc ac ++≤; (2)2228a b cb c a---⋅⋅≥. 【答案】(1)见解析(2)见解析 【解析】(1)将a +b +c =2平方,然后将基本不等式2222222,2,2a b ab b c bc a c ac +≥+≥+≥三式相加,进行证明;(2)由22a b c bc b b -+=≥2222b a c ac c b a bac c c a a a-+-+=≥=≥,三式相乘进行证明. 【详解】(1)将a +b +c =2平方得:2222224a b c ab ab ac +++++=, 由基本不等式知:2222222,2,2a b ab b c bc a c ac +≥+≥+≥,三式相加得:222a b c ab bc ac ++≥++,则2224222333a b c ab bc ac ab bc ac =+++++≥++ 所以43ab bc ac ++≤,当且仅当a =b =c =23时等号成立(2)由22a b c bc b b b -+=≥2222b a c ac c b a ba c c c a a a-+-+=≥=≥则2222228a b c bc ac ba b c a ---⋅⋅≥=, 即2228a b c b c a ---⋅⋅≥当且仅当23a b c ===时等号成立 26.设函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.【答案】(1)见解析 (2)5 【解析】(1)()13,,212,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5. 27.设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a ≥-. 【答案】(1) 43;(2)见详解. 【解析】(1) 22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++≥-++++=+++=故2224(1)(1)(1)3x y z -++++≥等号成立当且仅当111x y z -=+=+而又因1x y z ++=,解得531313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩时等号成立所以222(1)(1)(1)x y z -++++的最小值为43. (2)因为2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥. 根据柯西不等式等号成立条件,当21x y z a -=-=-,即22321323a x a y a z a +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩时有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a ≥-. 28.已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析 【解析】(1)1abc =111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥(2)()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又2a b ab +≥2b c bc +≥2a c ac +≥a b c ==时等号同时成立)()()()()3332322224a b b c c a ab bc ac abc ∴+++++≥⨯=又1abc = ()()()33324a b b c c a ∴+++++≥29.已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞ 【解析】(1)当1a =时,原不等式可化为|1||2|(1)0x x x x -+--<;当1x <时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(1)0x ->,显然成立, 此时解集为(,1)-∞;当12x ≤<时,原不等式可化为(1)(2)(1)0x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(10)x -<,显然不成立;此时解集为空集; 综上,原不等式的解集为(,1)-∞;(2)当1a ≥时,因为(,1)x ∈-∞,所以由()0f x <可得()(2)()0a x x x x a -+--<, 即()(1)0x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,2(),1()2()(1),x a a x f x x a x x a-≤<⎧=⎨--<⎩,因为1a x ≤<时, ()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[1,)+∞. 30.设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤恒成立,求a 的取值范围. 【答案】(1)[2,3]-;(2) ][(),62,-∞-⋃+∞. 【解析】 (1)当1a =时,()24,1,2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤.(2)()1f x ≤等价于24x a x ++-≥.而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是][(),62,-∞-⋃+∞. 31.已知()11f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 【答案】(1)12x x ⎧⎫>⎨⎬⎩⎭;(2)(]0,2 【解析】(1)当1a =时,()11f x x x =+--,即()2,1,2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为12x x⎧⎫⎨⎬⎩⎭. (2)当()0,1x ∈时11x ax x +-->成立等价于当()0,1x ∈时11ax -<成立. 若0a ≤,则当()0,1x ∈时11ax -≥; 若0a >,11ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(]0,2. 32.在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程. 【答案】(1) 22(1)4x y ++=.(2) 423y x =-+. 【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为()2214x y ++=.(2)由(1)知2C 是圆心为()1,0A -,半径为2的圆.由题设知,1C 是过点()0,2B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22221k k -+=+,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. 当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22221k k +=+,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+. 33.在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离. 【答案】(15 (2)2. 【解析】(1)设极点为O .在△OAB 中,A (3,4π),B 22π), 由余弦定理,得AB 223(2)232cos()524ππ+-⨯⨯⨯-=(2)因为直线l 的方程为sin()34ρθπ+=, 则直线l 过点(32,)2π,倾斜角为34π.又2,)2B π,所以点B 到直线l 的距离为3(322)sin()242ππ⨯-=. 34.如图,在极坐标系Ox 中,(2,0)A ,2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =P 的极坐标.【答案】(1) 2cos ([0,])4πρθθ=∈,32sin ([,])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈, (2) 3,)6π,3,)3π,23,)3π,5(3,)6π. 【解析】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,])4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos 3([0,])4πθθ=∈得6πθ=,此时P 的极坐标为(3,)6π解方程32sin 3([,])44ππθθ=∈得3π=θ或23πθ=,此时P 的极坐标为3,)3π或23,)3π解方程32cos 3([,])4πθθπ-=∈得56πθ=,此时P 的极坐标为53,)6π故P 的极坐标为3,)6π,3,)3π,23,)3π,53,)6π. 35.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 【答案】(1)023ρ=l 的极坐标方程为sin()26πρθ+=;(2)4cos ()42ππρθθ=≤≤【解析】(1)因为点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上, 所以004sin 4sin 233πρθ===即(23,)3M π,所以tan33OM k π==因为直线l 过点(4,0)A 且与OM 垂直, 所以直线l 的直角坐标方程为34)y x =-,即340x y -=; 因此,其极坐标方程为cos 3sin 4ρθρθ=,即l 的极坐标方程为sin()26πρθ+=;(2)设(,)P x y ,则OP y k x =, 4AP y k x =-, 由题意,OP AP ⊥,所以1OP APk k =-,故2214y x x=--,整理得2240x y x +-=,因为P 在线段OM 上,M 在C 上运动,所以02,02x y ≤≤≤≤, 所以,P 点轨迹的极坐标方程为24cos 0ρρθ-=,即4cos ()42ππρθθ=≤≤.。

历年高考数学试题极坐标及参数方程

历年高考数学试题极坐标及参数方程

历年高考数学试题极坐标、参数方程与不等式选讲1.〔直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线⎩⎨⎧=+=θθsin cos 3:1y x C 〔θ为参数〕和曲线1:2=ρC 上,那么AB 的最小值为________.2.假设不等式a x x ≥-++21对任意R x ∈恒成立,那么a 的取值围是___。

3.如图,,,90B D AE BC ACD ∠=∠⊥∠=,且6,4,12AB AC AD ===,那么BE =42。

4.在直角坐标系xOy 中,曲线1C 的参数方程为2cos (3sin x y ααα=⎧⎪⎨=⎪⎩为参数).在极坐标系〔与直角坐标系xOy 取一样的长度单位,且以原点O 为极点,以x 轴正半轴为极轴〕中,曲线2C 的方程为(cos sin )10,ρθθ-+=那么1C 与2C 的交点个数为 .5.两曲线参数方程分别为⎩⎨⎧==θθχsin cos 5y 〔0θ≤<π〕和⎪⎩⎪⎨⎧==ty t x 245〔t R ∈〕,它们的交点坐标为。

6.如图3,AB,CD 是半径为a 的圆O 的两条弦,他们相交于与AB 的中点P ,PD=23a,30OAP ∠=°,那么CP=。

7.在极坐标系〔ρ,θ〕〔02θπ≤≤〕中,曲线ρ=2sin θ与cos 1ρθ=-的交点的极坐标为。

8.如图4,在梯形ABCD 中,AB∥CD,AB=4,CD=2.E,F 分别为AD ,BC 上点,且EF=3,EF∥AB,那么梯形ABFE 与梯形EFCD 的面积比为。

9.抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩〔t 为参数〕假设斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,那么r =________.10.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。

极坐标与参数方程经典题型(附含详细解答)

极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题14 极坐标与参数方程、不等式选讲1.【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l的直角坐标方程为2110x ++=;(2.【解析】(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+, 所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l. 【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值问题. 2.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. 【答案】(12)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B,2π), 由余弦定理,得AB(2)因为直线l 的方程为sin()34ρθπ+=,则直线l过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 【名师点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力. 3.【2019年高考全国Ⅰ卷】已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++. 【答案】(1)见解析;(2)见解析.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c ++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.【名师点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.4.【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭;(2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos 23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ== 即 4cos ρθ=.因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π. 【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.5. 【2018年理数全国卷II 】设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.一、考向分析:二、考向讲解考查内容解 题 技 巧(1)在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置). (2)在极坐标系下,点的极坐标不惟一性易忽视.坐标系与参数方程坐标系 参数方程直角坐标系 圆的参数方程椭圆的参数方程极坐标系 直线的参 数方程 不等式选讲绝对值不等式不等式证明的基本方法绝对值不等 式的解法比较法综合法 分析法 绝对值三 角不等式柯西不 等式极坐标与参数方程注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.(3)确定极坐标方程时要注意极坐标系的四要素:极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.(4)研究曲线的极坐标方程往往要与直角坐标方程进行相互转化.当条件涉及“角度”和“到定点距离”时,引入极坐标系将会给问题的解决带来很大的方便.(5)已知直线l经过点M0(x0,y0),倾斜角为α,点M(x,y)为l上任意一点,则直线l的参数方程为⎩⎪⎨⎪⎧x=x0+t cosα,y=y0+t sinα(t为参数)。

a.若M1,M2是直线l上的两个点,对应的参数分别为t1,t2,则|M0M1→||M0M2→|=|t1t2|,|M1M2→|=|t2-t1|=t2+t12-4t1t2。

b.若线段M1M2的中点为M3,点M1,M2,M3对应的参数分别为t1,t2,t3,则t3=t1+t22。

c.若直线l上的线段M1M2的中点为M0(x0,y0),则t1+t2=0,t1t2<0。

提醒:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值,否则参数不具备该几何含义。

不等式证明的基本方法1.绝对值不等式的求解方法(1)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法:|ax+b|≤c⇔-c≤ax+b≤c,|ax+b|≥c⇔ax+b≥c或ax+b≤-c,然后根据a,b的取值求解即可.(2)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:①利用绝对值不等式的几何意义求解,体现数形结合思想;②利用“零点分段法”求解,体现分类讨论思想.a.令每个绝对值符号的代数式为零,并求出相应的根;b.将这些根按从小到大排列,把实数集分为若干个区间;c.由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;d.取各个不等式解集的并集就是原不等式的解集.③通过构建函数,利用函数图象求解,体现函数与方程思想.2.解决绝对值不等式的参数范围问题常用以下两种方法:(1)将参数分类讨论,将其转化为分段函数解决;(2)借助于绝对值的几何意义,先求出含参数的绝对值表达式的最值或取值范围,再根据题目要求,求解参数的取值范围. 由于|x -a|+|x -b|与|x -a|-|x -b|分别表示数轴上与x 对应的点到a ,b 对应的点的距离之和与距离之差,因此对形如|x -a|+|x -b|≤c(c >0)或|x -a|-|x -b|≥c(c >0)的不等式,利用绝对值的几何意义求解更直观. (3)应熟记以下转化:f(x)>a 恒成立⇔f(x)min>a;f(x)<a 恒成立⇔f(x)max<a;f(x)>a 有解⇔f(x)max >a;f(x)<a 有解⇔f(x)min<a;f(x)>a 无解⇔f(x)max≤a;f(x)<a 无解⇔f(x)min≥a.3.绝对值不等式的综合应用a .研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.b .f(x)<a 恒成立⇔f(x)max <a. f(x)>a 恒成立⇔f(x)min >a.4.利用综合法证明不等式时,应注意对已证不等式的使用,常用的不等式有: (1)a 2≥0;(2)|a|≥0;(3)a 2+b 2≥2ab ;它的变形形式又有(a +b)2≥4ab ,a 2+b 22≥⎝⎛⎭⎫a +b 22等;(4)a +b 2≥ab (a≥0,b≥0),它的变形形式又有a +1a ≥2(a>0),b a +ab ≥2(ab>0),b a +ab≤-2(ab<0)等. 5.分析法证明不等式的注意事项:用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析法的过程仅需要寻求充分条件即可,而不是充要条件,也就是说,分析法的思维是逆向思维,因此在证题时,应正确使用“要证”、“只需证”这样的连接“关键词”. 6、证明绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|.主要的三种方法: (1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明. (3)转化为函数问题,数形结合进行证明.7、当x 的系数相等或相反时,可以利用绝对值不等式求解析式形如()f x x a x b =+++的函数的最小值,以及解析式形如()f x x a x b =+-+的函数的最小值和最大值,否则去绝对号,利用分段函数的图象求最值.利用柯西不等式求最值时,要注意其公式的特征,以出现定值为目标.考查绝对值不等式的证明:【例】已知0a >,0b >,332a b +=, 证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++2224()ab a b =+-4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +++≤33()24a b +=+, 所以3()8a b +≤,因此2a b +≤.【例】已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明:8ac bd +≤. 【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤, 因为22224,16,a b c d +=+=所以2()64ac bd +≤,因此8ac bd +≤. 【例】设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a ++≥ 【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=.所以()31ab bc ca ++≤,即13ab bc ca ++≤(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥, ∴222()2()a b c a b c a b c b c a +++++≥++ 即222a b c a b c b c a ++≥++,∴2221a b c b c a++≥ 考查绝对值不等式的解法:【例】设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3x x x <->或.【解析】当x <0时,原不等式可化为122x x -+->,解得x <13-; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【名师点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力. 考查不等式恒成立问题:【例】已知函数f (x )=|x +1|-|x -2|。

相关文档
最新文档