2003年海淀中考数学试题及答案

合集下载

2024年北京海淀中考数学试题及答案(1)

2024年北京海淀中考数学试题及答案(1)

2024年北京海淀中考数学试题及答案考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。

满分100分。

考试时间120分钟。

2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .146.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯7.下面是“作一个角使其等于AOB ”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD 长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

数学—2003-2014年北京市中考数学试题分类汇编:专题15+应用题(原卷版)

数学—2003-2014年北京市中考数学试题分类汇编:专题15+应用题(原卷版)

1.(2005年北京市4分)李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 9 10 质量(千克)14 21 27 17 18 20 19 23 19 22 据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别为【】A、200千克,3000元B、1900千克,28500元C、2000千克,30000元D、1850千克,27750元2.(2006年北京市大纲4分)某学校在开展“节约每一滴水”的活动中,从初三年级的240名同学中任选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨) 1 1.2 1.5 2 2.5同学数 4 5 6 3 2用所学的统计知识估计这240名同学的家庭一个月节约用水的总量大约是【】A、240吨B、300吨C、360吨D、600吨3.(2013年北京市4分)如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于【】A. 60mB. 40mC. 30mD. 20m1. (2003年北京市4分)如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=450,∠ACB=450,BC=60米,则点A到岸边BC的距离是▲ 米。

2.(2004年北京市4分)我们学习过反比例函数.例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为a=Sb(S为常数,S≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:▲ ;函数关系式:▲ .3.(2012年北京市4分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ m.4.(2014年北京市4分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为▲ m.1. (2003年北京市6分)列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”。

2003年北京中考数学含答案

2003年北京中考数学含答案

北京市2003年数学中考试题一、选择题(共14个小题,每小题4分,共56分)1.-5的绝对值是(A) 5 (B) 15 (C) -15 (D) -52.3-2计算的结果是(A) -9 (B) -6 (C) - 19 (D) 193.计算a 3·a 4的结果是(A) a 12 (B) a (C) a 7 (D) 2a 34.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为(A) 6×102亿立方米 (B) 6×103亿立方米 (C) 6×104亿立方米 (D) 0.6×104亿立方米5.下列图形中,不是中心对称图形的是(A) 菱形 (B) 矩形 (C) 正方形 (D) 等边三角形 6.如果两圆的半径分别为3cm 和5cm ,圆心距为10cm ,那么这两个圆的公切线共有(A) 1条 (B) 2条 (C) 3条 (D) 4条7.如果反比例函数y =kx 的图象经过点P(-2,3),那么k 的值是(A) -6 (B) - 32 (C) - 23(D) 68.在△ABC 中,∠C=90°,如果tanA =512 ,那么sinB 的值等于(A) 513 (B) 1213 (C) 512 (D) 1259.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,如果∠CAB =55o,那么∠AOB 为(A) 55o(B) 90o(C) 110o(D) 120oABOC第9题图· BCDA O E第13题图10.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于(A) 20πcm 2 (B) 40πcm 2 (C) 20 cm 2 (D) 4 0 cm 211.如果关于x 的一元二次方程kx 2-6x +9=0有两个不相等的实数根,那么k 的取值范围是(A) k <1 (B) k ≠0 (C) k <1且k ≠0 (D) k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是(A) 68,65 (B) 55,68 (C) 68,57 (D) 55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为(A) 2 (B) 3 (C) 4 (D) 514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升, 那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是二、填空题(共4个小题,每小题4分,共16分)15.在函数y =x +3 中,自变量x 的取值范围是___________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC ,如果BC =8cm ,AD:AB =1:4,那么△ADE 的周长等于________cm .日 期 答题个数 5月8日 5月9日 5月10日 5月11日 5月12日 5月13日 5月14日 68555056544868h(米) O 106 13510 (A )t(天) t(天) h(米)O 106 13510 (B )h(米)t(天) O 106 13510 (C )h(米)t(天)O 10613510 (D )17.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45o,∠ACB=45o,BC=60米,则点A到岸边BC的距离是_______米.18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…….猜想:第n个等式(n为正整数)应为____________________________.三、(共3个小题,共14分)19.(本小题满分4分)分解因式:x2-2xy+y2-920.(本小题满分4分)计算:12 +1-8 +( 3 -1)0ADB CE第16题图AB C第17题图21.(本小题满分6分)用换元法解方程:x2-3x+5+6x2-3x=0四、(本题满分5分)22.如图,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).⑴连结______________.⑵猜想:____________ = ____________.⑶证明:·DAB CF E五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x的方程x2-2mx+3m=0的两个实数根是x1,x2,且(x1-x2)2=16.如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在x1和x2之间,求m的值.七、(本题满分8分)25.已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积.AFMBD C E八、(本题满分8分)26.已知:抛物线y =ax 2+4ax +t 与轴的一个交点为A(-1,0).⑴ 求抛物线与x 轴的另一个交点B 的坐标;⑵ D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式; ⑶ E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在⑵中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.2003北京市中考数学试题答案第I 卷 (机读卷 共56分) 一. 选择题(共14个小题,每小题4分,共56分) 1. A 2. D 3. C 4. B 5. D 6. D 7. A8. B 9. C10. B 11. C 12. A 13. A 14. B第II 卷(非机读卷 共64分)二. 填空题(共4个小题,每小题4分,共16分) 15. x ≥-3 16. 6 17. 30 18. 91109()n nn -+=-(或911011()()nn n -+=-+)三. (共3个小题,共14分)19. (本小题满分4分)分解因式:x x y y 2229-+-解:x x y y 2229-+-=--()xy 292分=-+--()()x y x y 33 4分20. (本小题满分4分)计算:1218310+-+-()解:1218310+-+-()=--+21221 3分 =-24分21. (本小题满分6分)用换元法解方程x x x x2235630-++-=解:设x x y23-=,1分则原方程化为y y++=562分∴++=y y 2560解得y y 1223=-=-,3分当y =-2时,x x 232-=-∴-+=x x 2320解得x x 1212==, 4分当y =-3时,x x 233-=-∴-+=xx 2330 ∆=-<9120,∴此方程无实数根。

山东省2003年中考数学试题评价报告

山东省2003年中考数学试题评价报告

2003年中考数学试题评价报告本评价组收到济南、青岛、淄博、烟台、潍坊、济宁、泰安、威海、临沂、滨州、菏泽11份数学学科初中毕业、升学考试试卷以及部分地市报送的相关材料。

各单位报送的材料如下表:一、背景描述上述11份试卷均采用闭卷、笔试的形式,这是由数学学科的特点所决定的。

从各市的试卷可知,总题数在24~30道,客观题一般在16~22道;主观题一般在8道左右,最多的有10道题。

总题量及客观题的数量与2002年相当。

主观题数量与2002年基本保持一致,分值有所增加。

各市的试卷中,客观题主要有选择题、填空题两种题型,主观题除了传统的题型外,还有近几年出现的阅读理解题、推理判断题、画图设计题、开放题、实验探究题和动手操作题以及评价性问题等。

各题型分值、比例见下表:二、评价标准本项评价依据教育部《关于初中毕业、升学考试改革的指导意见》和《关于积极推进中小学评价与考试制度改革的通知》的精神,遵循《九年义务教育全日制中学数学教学大纲(试用修订版)》的内容范围与要求,体现《全日制义务教育数学课程标准(试验稿)》的理念。

中考数学试卷的评价标准是:试卷要有利于全面推进素质教育,有利于推进国家基础教育课程改革;有利于体现义务教育的性质,突出初中数学课程的基础性、普及性和发展性,升学试卷要有利于高中(中专)选拔优秀学生;并对初中数学教学给予正确的导向,有利于促进学生生动、活泼、主动的学习,有助于学生创新意识和实践能力的培养。

数学试题应关注学生的发展和数学素养的养成,注重考查数学核心内容与基本能力;应突出考查对数学思想方法的理解与简单应用;应重视考查获取数学信息、认识数学对象的基本过程与方法;应有利于渗透考查学生用数学、做数学的意识;应突出试题的教育价值,体现全面提高学生素质的导向,促进教师教学方式的改革,促进学生学习方式的变更;应合理设计各种试题,为学生探索、创新和发挥自己的水平提供机会与空间。

命题要科学、严谨,不出人为编造的偏题、怪题。

北京市海淀区2003年中考英语试题

北京市海淀区2003年中考英语试题

北京市海淀区2003年高级中等学校招生考试英语试题考生须知:1. 本试题共8页,七道大题。

满分120分。

考试时间120分钟。

2. 试题所有答案一律填涂、书写在答题卡上。

在试卷上作答无效。

3. 认真填写学校、姓名和准考证号。

4. 选择题每小题只准选一个答案,多选不得分。

5. 做听力试题时,可先将答案写在试卷上,待听力内容全部结束后,再将答案填涂到答题卡上。

一.听力(共20分)(A)听句子,选择恰当的答语。

(共5分,每小题1分)1. A. You’re welcome . B. The same to you . C. Hold on , please .2. A.Good morning . B. I’ve got a bad cold . C. I’m sorry to hear that .3. A. Thank you . B. It doesn’t matter . C. OK . See you then .4. A. It’s Fr iday . B. It’s half past three . C. It’s July .5. A. Sunny . B. Lucky . C. Heavy .(B)听对话,选择最佳答案。

(共5分,每小题1分)听5段对话,根据对话内容,从第6—10小题所给的A、B、C三个选项中,选择可以回答问题的最佳答案。

6. Where are the two speakers ?A. In a reading-room .B. In a cinema .C. In a shop .7. What’s Zhang Tao’s mother ?A. A nurse .B. A driver .C. A worker .8. What color is Helen’s sweater ?A. Blue .B. Green .C. Red .9. How long will the man wait for the next train ?A. 15 minutes .B. 50 minutes .C. 5 minutes .10. What did the man feel about his math exam ?A. Not hard .B. Not pleased .C. Not bad .(C)听短文,判断下列句子正误。

北京市历年中考数学试题及答案(word版)

北京市历年中考数学试题及答案(word版)

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013—2015)》中,北京市提出了总计约3 960亿元的投资计划.将3 960用科学计数法表示应为A. 39。

6×102B。

3。

96×103C。

3。

96×104 D. 3。

96×1042. 的倒数是A。

B。

C. D.3。

在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为A。

B。

C。

D.4。

如图,直线,被直线所截,∥,∠1=∠2,若∠3=40°,则∠4等于A。

40°B。

50°C。

70° D. 80°5。

如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60m B。

40mC。

30m D. 20m6。

下列图形中,是中心对称图形但不是轴对称图形的是7。

某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A。

6.2小时B。

6。

4小时C。

6.5小时D。

7小时8. 如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO的面积为,则下列图象中,能表示与的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9。

分解因式:=_________________10。

请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为__________12. 如图,在平面直角坐标系O中,已知直线:,双曲线。

2003年中考数学试卷

2003年中考数学试卷

2003年中考数学试卷
2003年中考数学试卷指的是在2003年中考中使用的数学科目的试卷。

这份试卷将由当地教育部门或考试机构组织专家进行命题,并按照中考数学科目的要求进行设计。

以下是 2003年中考数学试卷具体的题目示例:
选择题1:若关于 x 的一元二次方程 x^2 + 4x + k - 1 = 0 有两个不相等的实数根,则 k 的取值范围是 ()
A. k < 5
B. k > 5
C. k < -5
D. k > -5
选择题2:下列图形中,是轴对称图形但不是中心对称图形的是 ()
A. 正三角形
B. 正方形
C. 正五边形
D. 正六边形
填空题1:计算:√4 + | -2| - (1/2)^(-1) = ___.
填空题2:若反比例函数 y = (m - 1)/x 的图象在每一个象限中,y随着x 的增大而减小,则m的取值范围是 ___.
计算题1:计算:(π - 3)^0 - 4sin 45° + | -2| + (1/3)^(-1).
计算题2:解方程组:{ 3x + y = 2, 4x - 3y = 15 }.
总结:2003年中考数学试卷指的是在2003年中考中使用的数学科目的试卷。

这份试卷旨在测试学生对数学基础知识的掌握程度和问题解决能力,通过选择题、填空题和计算题等多种题型进行考查。

考生需要通过系统的数学学习和复习,掌握基础知识和应试技巧,以提高自己的数学水平,应对这份试卷的挑战。

2003年全国中考数学压轴题精选及解答-

2003年全国中考数学压轴题精选及解答-

2003年全国中考数学压轴题精选11、(2003年安徽省) (本题满分14分)如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。

在研究“正度”时,应保证相似三角形的“正度”相等。

设等腰三角形的底和腰分别为a 、b ,底角和顶角分别为α、β。

要求“正度”的值是非负数。

同学甲认为:可用式子|a -b |来表示“正度”,|a -b |的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|α-β|来表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形。

探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可); (3)请再给出一种衡量“正度”的表达式β ααb b第24题图(2003年安徽省)附加题:(共两小题,每小题10分,共20分)报考理科实验班的学生必做,不考理科实验班的学生不做)1、要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额。

(1)试提出一种分配方案,使得分到相同名额的学校少于4所; (2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校。

如图12所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动。

动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点。

连结EP,设动点P与动直线EF同时出发,运动时间为t秒。

(1)当t=1秒时,求梯形OPFE的面积。

t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时.求线段PF的长;(3)设t的值分别取1t、2t时(1t≠2t),所对应的三角形分别为△AF1P1和△AF2P2。

试判断这两个三角形是否相似,请证明你的判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区2003年高级中等学校招生考试数学试题选择题:(本题共78分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。

1. -3的相反数是( )A. -13B. -3C. 3D. -||3 2. 计算()π-30的结果是( ) A. 0 B. 1 C. 3-π D. π-3 3. 若∠=︒α30,则∠α的补角为( )A. 30︒B. 60︒C. 120︒D. 150︒4. 羊年话“羊”,“羊”字象征着美好和吉祥,下列图案都与“羊”字有关,其中是轴对称图形的个数是( )A. 1B. 2C. 3D. 45. 函数y x =-3的自变量x 的取值范围是( ) A. x ≥3B. x >3C. x ≠3D. x ≤36. 2003年5月19日,国家邮政局特别发行“万众一心 抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为枚,用科学记数法表示正确的是( )A. 125105.⨯枚B. 125106.⨯枚 C. 125107.⨯枚 D. 125108.⨯枚 7. 如图,在∆ABC 中,D 、E 分别是AB 、AC 边上的中点,若DE =4,则BC 等于( ) A. 2 B. 4 C. 8 D. 128. 用换元法解方程()()x x x x+-+=2212,设y x x =+2,则原方程可化为( )A. y y 210--= B. y y 210++=C. y y 210+-=D. y y 210-+=9. 如图,直线c 与直线a 、b 相交,且a//b ,则下列结论:(1)∠=∠12;(2)∠=∠13;(3)∠=∠32中正确的个数为( ) A. 0 B. 1 C. 2 D. 310. 点P ()-23,关于x 轴对称的点的坐标为( )2A. ()-23,B. ()23,C. ()23,-D. ()--23,11. 下列各式中正确的是( )A. 242-=- B. ()33325= C. 12121-=+D. x x x 842÷=12. 若两圆相交,则这两圆的公切线( ) A. 只有一条 B. 有两条 C. 有三条 D. 有四条13. 如图,四边形ABCD 内接于⊙O ,E 在BC 延长线上,若∠=︒A 50,则∠DCE 等于( )A. 40︒B. 50︒C. 70︒D. 130︒14. 不等式组26053x x -<+>-⎧⎨⎩的解集是( )A. 23<<xB. -<<-83xC. -<<83xD. x <-8或x >315. 在下列二次根式中与2是同类二次根式的是( )A. 8B. 10C. 12D. 2716. 在∆ABC 中,∠=︒∠=∠C B A 902,,则cosA 等于( )A.32 B. 12 C. 3 D. 3317. 方程x x 220-+=根的情况是( )A. 只有一个实数根B. 有两个相等的实数根C.有两个不相等的实数根D. 没有实数根 18. 已知反比例函数y kx =的图象经过点(1,2),则函数y kx =-可确定为( ) A. y x =-2B. y x =-12C. y x =12D. y x =219. 如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( )A. <1>和<2>B. <2>和<3>C. <2>和<4>D. <1>和<4>20. 若y y x y 24410++++-=,则xy 的值等于( )A. -6B. -2C. 2D. 621. 如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( ) A. 102cmB. 102πcmC. 202cmD. 202πcm22. 二次函数y ax bx c =++2的图象如图所示,则下列结论正确的是( ) A. a b c ><>000,,B. a b c <<>000,,中考网 中考资料免费共享 知春路,世纪城 公主坟:3C. a bc <><000,, D. a b c <>>000,,23. 如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,若PA =6,BP =4,则⊙O 的半径为( ) A.54B.52C. 2D. 524. 某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结请你根据上述数据分析判断,水银柱的长度l (mm )与体温计的读数t (℃)()之间存在的函数关系是( )A. l t =-110662 B. l t =11370C. l t =-63072D. l t=39552 25. 如图,把∆ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠+∠12之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A. ∠=∠+∠A 12 B. 212∠=∠+∠A C. 3212∠=∠+∠A D. 3212∠=∠+∠A ()26. 甲、乙两同学约定游泳比赛规则:甲先游自由泳到泳道中点后改为蛙泳,而乙则是先游蛙泳到泳道中点后改为自由泳,两人同时从泳道起点出发,最后两人同时游到泳道终点。

又知甲游自由泳比乙游自由泳速度快,并且二人自由泳均比蛙泳速度快,若某人离开泳道起点的距离s 与所用时间t 的函数关系可用图象表示,则下列选项中正确的是( )A. 甲是图<1>,乙是图<2>B. 甲是图<3>,乙是图<2>C. 甲是图<1>,乙是图<4>D. 甲是图<3>,乙是图<4>4填空题:(本题共21分,每空3分) 27. 如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠=︒B 20,则∠=︒C28. 分解因式:a b a b 22-+-=_________29. 若三角形的两边长分别为6、7,则第三边长a 的取值范围是_______30. 今年5月海淀区教育网开通了网上教学,某校初三年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图。

已知从左至右各个小组的频率分别是0.15、0.25、0.35、0.20、0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119分钟之间的学生人数是_________人。

如果只用这40名学生这一天上网学习时间作为样本去推断该校初三年级全体学生该天上网学习时间,这样的推断是否合理?_______(填“合理”或“不合理”)31. 如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠=AEH 43,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为_______cm 2。

32. 已知二次函数y kx k x =+--2211()与x 轴交点的横坐标为x x x x 1212、()<,则对于下列结论:<1>当x =-2时,y =1;<2>当x x >2时,y >0;<3>方程kx k x 22110+--=()有两个不相等的实数根x x 12、;<4>x x 1211<->-,;<5>x x k k21214-=+,其中所有正确的结论是________(只需填写序号)解答题:(本题共21分,第33题5分,第34题7分,第35题9分)33. 某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?中考网 中考资料免费共享 知春路,世纪城 公主坟:5(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 34. 已知:以Rt ABC ∆的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,E 为BC 边上的中点,连结DE 。

(1)如图,求证:DE 是⊙O 的切线;(2)连结OE ,AE ,当∠CAB 为何值时,四边形AOED 是平行四边形,并在此条件下求sin ∠CAE 的值。

(第(2)问答题要求:不要求写出解题过程,只需将结果填写在答题卡相应题号的横线上。

)35. 已知:如图,点A 在y 轴上,⊙A 与x 轴交于B 、C 两点,与y 轴交于点D (0,3)和点E ()01,-(1)求经过B 、E 、C 三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A 于点P (s ,t ),与x 轴交于点M ,连结PA 并延长与⊙A 交于点Q ,设Q 点的纵坐标为y ,求y 关于t 的函数关系式,并观察图形写出自变量t 的取值范围;(3)在(2)的条件下,当y =0时,求切线PM 的解析式,并借助函数图象,求出(1)中抛物线在切线PM 下方的点的横坐标x 的取值范围。

参考答案选择题:(本题共78分,每小题3分) 1. C 2. B 3. D 4. B5. A6. C7. C8. A9. D 10. D11. C 12. B 13. B 14. C 15. A 16. A 17. D 18. A 19. A 20. A 21. D 22. D 23. B 24. C 25. B626. C 填空题:(本题共21分,每空3分) 27. 20 28. ()()a b a b -++129. 113<<a 30. 14,不合理 31. 192 32. <1><3><4> 解答题:(本题共21分,第33题5分,第34题7分,第35题9分) 33. 解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+=……1分解这个方程,得x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。

相关文档
最新文档