自适应滤波器的设计开题报告
自适应滤波器开题报告

自适应滤波器开题报告篇一:通信滤波器开题报告沈阳航空航天大学北方科技学院毕业设计开题报告论文题目:通信滤波器的设计与分析专业:电子信息工程班级: B941201学号: B941XX1学生姓名:张弛指导教师:赵婷婷一、立题依据1、选题目的我的毕业设计的课题是《于基于matlab的数字滤波器的设计与仿真》,其主要目的是通过此次课程设计进一步学习和巩固数字信号处理及其相关知识,并学会利用所学的知识能在设计过程中能综合运用所学习的知识内容,进一步熟悉和掌握matlab的使用方法;对数字滤波器的原理有较深的了解;为即将进入社会参加工作打下坚实的基础;掌握收集资料,消化资料和综合资料的能力等等。
2、选题的意义滤波器早被公认为各种电子产品的重要部件,其主要功能是作为各种电信号的提取、分隔、抑止干扰。
而传统的模拟滤波器在精度方面无法与数字滤波器相比,尤其在多阻带多通带滤波器设计方面,模拟滤波器更是无能为力,因此对数字滤波器的研究是十分必要且有应用价值的。
从事电子通信业而不能熟练操作使用matlab电子线路设计软件电子线路设计软件,在工作和学习中将是在工作和学习中将是在工作和学习中寸步难行的。
在数学、电子、金融等行业,使用matlab等计算机软件对产品进行设计、仿真在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在通信、电子等行业的产品设计质量与效率。
众所周知,实际过程中信号传输都要经过调制与解调这一过程,由于消息传过来的原始信号即调制信号具有频谱较低的频谱分量,这种信号在许多信道中不宜传输。
因而,在通信系统的发送端通常需要有调制过程在通信系统的发送端通常需要有调制过程,反之在接收端则需要有解调过程。
3、国内外研究现状数字滤波器的设计实现,常常需要同时满足多个技术指标或达到较高的精度,设计工作比较复杂,并且是只能逼近工程应用实际指,因此要提高滤波器的性能,设计过程中必须进行大量复杂的推倒和运算,运算量大。
自适应滤波器设计分析

自适应滤波器设计分析自适应滤波器是一种根据输入信号的特征自动调整滤波器参数的数字滤波器。
它可以根据输入信号的统计特性,动态地调整滤波器的频率响应,以实现对不同频率成分的有效过滤。
自适应滤波器被广泛应用于信号处理、通信系统、控制系统等领域。
1.自适应滤波器的基本结构:自适应滤波器一般由输入信号、期望输出信号、滤波器系数估计器和滤波器组成。
输入信号经过滤波器和滤波器系数估计器的处理后,输出信号与期望输出信号之间的误差作为反馈输入到滤波器系数估计器中,用于更新滤波器系数。
常用的自适应滤波器结构包括最小均方误差(LMS)滤波器和最小均方误差(RLS)滤波器等。
2.自适应滤波器的性能评价指标:自适应滤波器的性能主要通过均方误差(MSE)和收敛速度来评价。
均方误差反映了滤波器输出与期望输出之间的误差大小,收敛速度表示滤波器算法收敛到稳定状态所需的时间。
较低的均方误差和较快的收敛速度是自适应滤波器设计的目标。
3.自适应滤波器的优化算法:常用的自适应滤波器优化算法包括LMS算法、RLS算法、NLMS算法等。
LMS算法通过最小化均方误差来更新滤波器系数,是一种简单有效的算法,但收敛速度较慢;RLS算法通过最小化加权过去误差序列的均方和来更新滤波器系数,收敛速度较快但计算量大;NLMS算法在LMS算法的基础上进行改进,通过动态调整步长参数来加快收敛速度。
4.自适应滤波器的应用:自适应滤波器广泛应用于信号处理、通信系统、控制系统等领域。
在信号处理领域,自适应滤波器可以应用于降噪、滤波、谱估计等任务;在通信系统中,自适应滤波器可以用于信道均衡、自适应干扰消除等;在控制系统中,自适应滤波器可以用于系统辨识、参数估计、自适应控制等。
综上所述,自适应滤波器设计分析涉及到基本结构、性能评价指标、优化算法和应用等多个方面。
在实际应用中,需要根据具体任务的要求选择适当的自适应滤波器结构和优化算法,并通过性能评价指标来评估滤波器的性能。
自适应IIR滤波器及线性自适应逆的MRAC研究的开题报告

自适应IIR滤波器及线性自适应逆的MRAC研究的
开题报告
一、研究背景
1.1 自适应滤波器
随着数字信号处理技术的不断发展,自适应滤波器在很多领域得到了广泛的应用,如通讯、音频、视频等领域。
自适应滤波器根据输入信号和误差信号之间的关系来更新滤波器系数,从而实现对输入信号的滤波和处理。
1.2 MRAC
模型参考自适应控制(Model Reference Adaptive Control,简称MRAC)是一种在控制系统中使用自适应滤波器的方法。
它可以通过参考模型和误差信号之间的关系来适应系统的参数,以实现对系统的控制和调整。
二、研究内容
本研究将分别研究自适应IIR滤波器和线性自适应逆的MRAC两个方面,具体内容如下:
2.1 自适应IIR滤波器的研究
自适应IIR滤波器是一种自适应数字滤波器,它基于反馈和前馈结构,能够处理实时信号。
本研究将研究自适应IIR滤波器的设计方法和实现技术,并通过实验验证其性能和有效性。
2.2 线性自适应逆的MRAC的研究
线性自适应逆是一种基于MRAC理论的控制方法,通过自适应滤波器对误差信号进行处理,从而实现对控制系统的调整。
本研究将探讨线
性自适应逆的MRAC的原理和实现技术,并通过仿真实验验证其控制效
果和稳定性。
三、研究意义
本研究的意义在于对自适应滤波器和MRAC控制方法进行深入的研
究和探索,为数字信号处理和控制系统的设计提供了新的思路和方法。
同时,本研究的成果也可应用于实际的工程领域,如通讯、音频、视频、航空、汽车等领域,具有广泛的应用价值和社会意义。
自适应滤波器课程设计

自适应滤波器课程设计一、课程目标知识目标:1. 理解自适应滤波器的基本概念,掌握其工作原理和应用领域;2. 学会推导自适应滤波器的算法,并能运用相关理论知识分析滤波性能;3. 了解自适应滤波器在信号处理、通信等领域的实际应用。
技能目标:1. 能够运用所学知识设计简单的自适应滤波器,完成特定信号的处理任务;2. 掌握使用编程软件(如MATLAB)进行自适应滤波器仿真实验,提高实际操作能力;3. 培养独立分析问题、解决问题的能力,提高团队协作和沟通表达能力。
情感态度价值观目标:1. 培养学生对信号处理领域的兴趣,激发学生主动探索科学问题的热情;2. 培养学生严谨、认真的学习态度,养成勤奋刻苦的学习习惯;3. 增强学生的国家使命感和社会责任感,使其认识到自适应滤波器在我国科技发展中的重要作用。
本课程针对高年级本科生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。
在教学过程中,注重理论与实践相结合,提高学生的实际操作能力,培养学生解决实际问题的能力。
通过本课程的学习,使学生能够掌握自适应滤波器的核心知识,为未来从事相关领域的研究和工作打下坚实基础。
二、教学内容1. 自适应滤波器基本概念:滤波器分类、自适应滤波器的定义及其与传统滤波器的区别;2. 自适应滤波器原理:线性最小均方(LMS)算法、递推最小均方(RLS)算法、归一化算法等;3. 自适应滤波器的应用:信号处理、通信、语音识别等领域;4. 自适应滤波器设计:基于MATLAB工具箱的滤波器设计流程及参数配置;5. 自适应滤波器性能分析:收敛性分析、计算复杂度分析、数值稳定性分析;6. 实践教学:设计并实现一个简单的自适应滤波器,完成特定信号处理任务。
教学内容按照以下进度安排:1. 第1周:自适应滤波器基本概念,教材第1章;2. 第2周:自适应滤波器原理,教材第2章;3. 第3周:自适应滤波器的应用,教材第3章;4. 第4周:自适应滤波器设计,教材第4章;5. 第5周:自适应滤波器性能分析,教材第5章;6. 第6周:实践教学,结合教材第4章和第5章内容进行。
自适应滤波器的设计开题报告

自适应滤波器的设计开题报告Title: Design of Adaptive Filters1. Introduction- Background: Adaptive filters are widely used in signal processing to enhance the quality of signals by reducing noise and interference.- Objectives: The objective of this project is to design an adaptive filter that can adjust its parameters based on the input signals to achieve optimal noise reduction.2. Literature Review- Overview of Adaptive Filters: Explain the concept of adaptive filters and their applications in various fields.- Filter Design Techniques: Discuss different filter design techniques, such as the least mean squares (LMS) algorithm, recursive least squares (RLS) algorithm, and the normalized least mean squares (NLMS) algorithm.- Previous Works: Provide an overview of previous research on adaptive filter design, highlighting key findings and limitations.3. Methodology- Filter Structures: Discuss different filter structures, including Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters.- Parameter Estimation: Explain how the adaptive filter iteratively estimates the filter coefficients based on the input signals.4. Implementation- Simulations: Describe the simulation environment and the parameters used in the experiments.- Data Processing: Explain how the input signals are preprocessed to remove artifacts and prepare them for filtering.- Algorithm Implementation: Present the implementation details of the chosen adaptive filter algorithm.5. Results and Discussion- Present the results obtained from the simulations, including signal-to-noise ratio improvement and any trade-offs observed.- Address any challenges faced during the design and provide possible solutions for future improvements.6. Conclusion- Summarize the main findings of the project and discuss the achievements in designing an adaptive filter.- Reflect on the limitations and potential future research directions for further improvement.7. References- Cite the relevant literature and resources consulted throughout the report.Note: The word count provided in this outline is approximately 430 words. To achieve the required 1500+ word document, additional details, elaboration, and analysis should be included in each section. The report should follow a logical flow, and appropriate figures, tables, and equations can be included to support the content presented.。
(完整版)基于DSP的FIR滤波器的设计与实现开题报告

题系: 专毕业设计(论文)开题报告目: 基于DSP的FIR滤波器的设计和实现业:学生姓名: 学号: 指导教师:开题报告填写要求1.开题报告(含“文献综述” )作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。
此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效。
2.开题报告内容必须用黑墨水笔工整书写或按此电子文档标准格式(可从电气系网页或各教研室FTB上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。
3.“文献综述” 应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15 篇(不包括辞典、手册),其中至少应包括1 篇外文资料;对于重要的参考文献应附原件复印件,作为附件装订在开题报告的最后。
4.统一用A4 纸,并装订单独成册,随《毕业设计说明书》等资料装入文件袋中。
毕业设计(论文)开题报告1.文献综述:结合毕业设计(论文)课题情况,根据所查阅的文献资料, 每人撰写2500字左右的文献综述,文后应列出所查阅的文献资料。
文献综述在信号处理过程中,所处理的信号往往混有噪声,从接收到的信号中消除和减弱噪声是信号传输和处理中十分重要的问题。
根据有用信号和噪声的不同特性,提取有用心好的过程成为滤波,实现滤波功能的系统成为滤波器。
在1960年到1970年十年中,高速数字计算机迅速发展,并被广泛地用来处理数字形式的电信号。
因而,在数字滤波器的设计中,就有可能采用傅立叶分析、波形抽样、Z变换等已有的基本理论概念。
数字滤波器精确度高,使用灵活,可靠性高,具有模拟设备没有的许多优点,已广泛地应用于各个科学技术领域,例如数字电视,语音,通信,雷达,声纳,遥感,图像,生物医学以及许多工程应用领域。
随着信息时代、数字时代的到来,数字滤波技术已成为一门极其重要的科学和技术领域。
以往滤波器采用模拟电路技术,但是模拟技术存在很多难以解决的问题,而采用数字则避免很多类似的难题,当然数字滤波器在其他方面也有很多突出的优点都是模拟技术所不能及的,所以采用数字滤波器对信号进行处理是目前的发展方向。
基于自适应格型滤波算法的柴油机振动主动控制技术研究的开题报告

基于自适应格型滤波算法的柴油机振动主动控制技术研究的开题报告一、选题背景及意义柴油机是常见的工业用发动机,其工作时会产生大量振动和噪声,严重影响其稳定性和舒适性。
为了提高柴油机的工作质量,降低噪声和振动,并满足环保要求,需要对柴油机进行振动控制技术研究。
现代振动控制技术采用主动控制的方法,即采用主动振动控制器对振动进行消除,形成反向激振力,控制振动的传播和发生。
二、研究内容和研究方法本文针对柴油机的振动主动控制技术进行研究,提出了一种基于自适应格型滤波算法的振动控制方法。
自适应格型滤波器具有较好的自适应性和实时性,在实际应用中能够快速适应各种复杂环境的振动控制。
该方法首先对柴油机振动信号进行采集和处理,然后设计自适应格型滤波器参数,对振动进行主动控制,实现振动的消除和控制。
三、预期研究成果通过本研究,预计能够实现对柴油机振动的主动控制,消除振动和噪声,提高柴油机的稳定性和舒适性。
首先,设计和实现自适应格型滤波算法,并通过实验验证其对振动的控制效果;其次,研究和分析所设计的自适应格型滤波算法在不同工况下的应用性能和稳定性;最后,提出改进方案和优化策略,完善柴油机振动主动控制技术。
四、进度及计划安排第一阶段:文献调研,了解主动振动控制技术及自适应格型滤波算法理论和应用现状,研究柴油机的振动控制问题;第二阶段:确定自适应格型滤波算法的设计方案,对柴油机振动信号进行采集和处理,并进行实验验证;第三阶段:分析算法的应用性能和稳定性,研究改进方案和优化策略;第四阶段:撰写论文和答辩准备。
五、研究的可能创新点和不确定性1.本研究提出的基于自适应格型滤波算法的振动控制方法,在实际控制中具有良好的实时性和自适应性,能够更好地满足柴油机振动控制的要求;2.算法的稳定性和控制性能需要进行充分的实验验证和分析,确定其在不同工况下的适用性。
自适应滤波器的设计

一、 实验题目自适应滤波器的设计二、 实验要求产生一个含有噪声的语音信号,使其通过一个自适应滤波器,观察其结果并分析此滤波器的性能。
三、 实验原理自适应滤波器主要由两部分组成,第一部分是一个FIR 滤波器,也称横向滤波器,其权系数可随时调整,完成滤波工作;第二部分是滤波器的权调整算法,也称学习算法。
图1 自适应滤波器原理图图中,()x n 表示输入信号,()y n 是输出信号,()d n 称为期望信号,或者称为参考信号、训练信号,()e n 是误差信号。
其中()()()e n d n y n =-。
自适应滤波器()H z 的系数根据误差信号,通过一定的自适应算法,不断进行改变,使输出信号()y n 最接近期望信号()d n 。
自适应滤波器工作过程,开始时,给FIR 滤波器赋予任意的初始权系数,在每个时刻,用当前权系数对输入信号进行滤波运算,产生输出信号,输出信号与期望响应的差定义为误差信号,由误差信号与输入信号矢量一起构造一个校正量,自适应地调整权矢量,使误差信号趋于降低的趋势,从而使滤波器逐渐达到或接近最优。
我们知道,自适应过程的最终目的是寻找最佳权系数,在本实验中采用的是最小均方算法(LMS), LMS 以集合平均为基础,属于统计分析的方法。
LMS(Least mean square)算法是Widrow 等人提出的,是用梯度的估计值代替梯度的精确值,算法简便易行,获得了广泛的应用。
但存在收敛速度慢,有额外误差等缺点。
1、LMS 算法的权值计算梯度估计值用一条样本曲线进行计算。
2222212,Tj j j j j j N de e e e e d ωωωω⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦∂∂∂∇=∇==∂∂∂⌒,…,因为T j j j e d w x =- 所以22212,Tj j j j N e e e x ωωω⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦∂∂∂=∂∂∂,…,222122,Tj j j j j N e e e e ωωω⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦∂∂∂∇=∂∂∂⌒,…,2j j j e x ∇=-⌒用j ∇⌒代替j ∇得 12j j j j w w e xμ+=+ FIR 滤波器中第i 个权系数的计算公式为,,1,2j i j j i j i w w e x μ+=+FIR 滤波器中第i 个权系数的控制电路如图图2 FIR 第i 个去路的控制电路2、LMS 算法加权矢量的过渡过程将误差公式T j j j e d w x =-代入,,1,2j i j j i j i w w e x μ+=+得,1,2T j i j j j j j j i w w x d x x w μ⎡⎤+⎢⎥⎣⎦=+-22T j j j j j I x x w x d μμ⎡⎤⎢⎥⎣⎦=-+ 假设j w 和j x 不相关,对,,1,2j i j j i j i w w e x μ+=+取统计平均得,*122xx xx j j E w I R E w R w μμ⎡⎤⎡⎤⎡⎤+⎢⎥+⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=- 类似于最陡下降法的推导,经坐标平移和旋转,变换到'v 坐标中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自适应滤波器的设计与应用
一、题目来源
来源于其他
二、研究目的和意义
滤波技术在当今信息处理领域中有着极其重要的应用。
滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。
滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过。
而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。
滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。
在数字信号处理中,数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。
在许多应用场合,由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用 FIR 和 IIR两种具有固定滤波系数的滤波器无法实现最优滤波。
在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。
自适应滤波器是利用前一时刻已获得的滤波器参数,自动地调节、更新现时刻的滤波器参数,以适应信号和噪声未知的统计特性,从而实现最优滤波。
当在未知统计特性的环境下处理观测信号时,利用自适应滤波器可以获得令人满意的效果,其性能远超过通用方法所设计的固定参数滤波器。
三、阅读的主要参考文献及资料名称
1、《数字信号处理》刘益成(第二版)西安电子科技出版社
2、《数字信号处理》张小虹(第二版)机械工业出版社
3、自适应信号处理[M].西安:西安电子科技大学出版社,2001.
4.邹理和,数字信号处理, 国防工业出版社,1985
5.丁玉美等, 数字信号处理,西安电子科技大学出版社,1999
6.程佩青, 数字信号处理,清华大学出版社,2001
7. The MathWorks Inc, Signal Processing Toolbox For Use with
MATLAB, Sept. 2000
8. vinay K.Ingle, John G.Proakis,数字信号处理及MATLAB实现,陈怀琛等译,电子工业出版社,1998.9
9、《MATLAB编程参考手册》
10、中国期刊网的相关文献
11、赫金,自适应滤波器原理第四版,西安工业出版社,2010-5-1
四、国内外现状和发展趋势与主攻方向
自适应滤波器的理论与技术是50年代末和60年代初发展起来的。
它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。
自适应滤波器在数字滤波器中试属于随机数字信号处理的范畴。
对于随机数字信号的滤波处理,通常有维纳滤波,卡尔曼滤波和自适应滤波,维纳滤波的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号中。
但是,只有在对信号和噪声的统计特性先验
已知的情况下,这两种滤波器才能获得最优滤波。
但在实际应用中,常常无法得到这些统计特性的先验知识,或者统计特性是随时间变化的。
阴齿,在许多情况下,用维纳滤波器或卡尔曼滤波器实现不了最优滤波,而自适应滤波却能够提供卓越的滤波性能。
传统的自适应滤波器主要在时域中实现, 采用抽头延迟线( tapped de lay li ne)结构及W IDROW - HOFF自适应LMS算法。
这种方法算法简单, 稳健性也比较好,因而被广泛应用。
但是滤波器的阶数可能会很高,步长系数可能会很小,收敛性能不理想, 对输入信号的自相关矩阵有很强的依赖性, 因而不具有高自适应率。
当输入信号的自相关矩阵的特征值分布发散度很大时, 算法的收敛速度很慢,跟踪性能不好。
许多学者对LMS算法进行了研究, 对传统LMS算法提出了许多有效的改进措施,如采用变步长LMS算法、变换域LMS 算法, 以及QR分解LMS算法等, 有效地克服了其性能局限性。
五、主要研究内容,需重点研究的关键问题及解决思路
5.1 研究内容:
1、自适应滤波算法的原理。
2、自适应滤波经典的算法。
3、MATLAB编程实现自适应滤波经典方法。
4、提出改进的自适应滤波的设计方法并编程实现,并与经典的
算法进行优缺点的比较。
5.2 研究的关键问题:
1、自适应滤波器的结构:
自适应滤波器的结构有 F I R和 II R 两种。
由于 II R滤波器存在稳定性的问题,因此一般采用FIR滤波器。
由于 FIR滤波器横向结构的算法具有容易实现和计算量少等优点, 在对线性相位要求不严格、收敛速度不是很快的场合,多采用 FI R作为自适应滤波器结构。
2、LMS算法的选取:
LMS算法使用的准则是使滤波器的期望输出值和实际输出值之间的均方误差最小化的准则,即使用均方误差来做性能指标.
3、LMS算法的分析:
步长μ:μ越大,自适应时间越短,自适应过程越快, 但它引起的失调也越大。
失调越小,但自适应过程也相应加长。
步长的选择应从整个系统要求出发, 在满足精度要求的前提下,尽量减少自适应时间。
阶数N:当阶数 N取值大时,迭代次数增加,收敛速度变快.但当阶数 N大到一定程度,收敛速度变化不明显,且可能引起系数迭代过程不收敛。
5.3解决思路:
图一为自适应滤波器结构的一般形式,图中x(n)为输入信号,通过参数可调的数字滤波器后产生输出信号y(n),将输出信号y(n)与标准信号(或者为期望信号)d(n)进行比较,得到误差信号e(n) 。
e(n)和x(n)通过自适应算法对滤波器的参数进行调整,调整的目的使得误差信号e(n)的均方值最小。
参数可调滤波器一般选择FIR(有限冲击响应滤波器)滤波器,因其具有稳定性和线性相位两大优点
自适应算法选择LMS(最小均方误差)算法,LMS是一种以期望响应和滤波器输出信号之间误差的均方值最小为准则,其显著特点是简单、计算量小、易于实现。
但LMS的参数对其性能有一定的影响,尤其是步长的选取。
另一方面,梯度算法只有一个调整参数用来控制收敛速率,收敛慢正是由于这个基本的限制,为了避免滤波
器出现不稳定,步长可以由输入功率进行控制。
最后用 Matlab中的Simuli nk工具对设计的自适应滤波器进行模拟仿真。
六.完成毕业设计所必须具备的工作条件及解决的办法
1 、通过上网查找相关的资料、文献,了解相关技术的最新的发展方向和成果。
2 、图书馆查找相关基础知识的书面资料。
3 、向老师请教设计过程中所遇到的问题。
4 、通过电脑软件MATLAB进行程序设计及调试。
七、工作的主要阶段,进度与时间安排
2.21—
3.7日:联系指导教师,领取任务书并,完成开题报告和开题答辩。
3.8 —3.20日:文献调研初步工作,翻译相关的外文文献,。
3.21—
4.7 日:学习理论知识,复习及掌握MATLAB软件。
4.8 —
5.10:上网查阅相关文献资料及相关的程序块,仔细研究,与老师密切联系,。
5.20—
6.2日:写出论文初稿,交给指导老师评审。
6.5—6.9日:论文定稿、打印、装订,最终版本交指导老师;制作PPT文稿,准备答辩。
6.10日:完成答辩。
八、指导教师审查意见
签字:
年月日。