物理化学实验报告
物理化学实验报告3

一、实验目的1、测定在常压下环己烷-乙醇系统的气液平衡数据,绘制系统的沸点-组成图2、确定系统的恒沸温度及恒沸混合物组成3、了解阿贝折射仪的测量原理,掌握阿贝折射仪的使用方法二、实验原理用沸点仪直接测定一系列不同组成液体混合物的气液平衡温度,并收集少量馏出物和馏出液,分别用阿贝折射仪测定折射率,利用折射率-组成工作曲线,查出对应于样品折射率的组成实验采用环己烷-乙醇系统,其沸点-组成图属于具有最低恒沸点的类型(如图所示)三、实验仪器、试剂仪器:沸点仪一套,NTY-2A型数字式温度计一套,YP-2B精密稳流电源一套,阿贝折射仪一套,HK-1D型恒温水槽一套试剂:无水乙醇(A,R),环己烷(A,R),不同组成环己烷-乙醇的混合物四、实验步骤1、开启恒温水槽,设定水温为30℃,供阿贝折射仪使用;2、加入试剂,盖好加料口塞子,使电热丝及温度传感器浸入液体中;3、开冷凝水,温度传感器连接NTY-2A数字式温度计,加热丝连接YP-2B精密稳流电源。
调节稳流电源电流,加热至沸腾。
液体沸腾后,蒸气逸出,经冷凝后流入球形小室。
最初在冷凝管下端球形小室的液体不能代表平衡时气相组成,为加速达到平衡可将球形小室内最初冷凝的液体倾回沸点仪内,反复2-3次,待温度读数恒定后记下沸点并停止加热4、长吸液管吸取气相冷凝管,迅速测其折光率;用短吸液管,吸取蒸馏液迅速测其折光率4、同法完成1、2、3、4、5、6、7、8,乙醇以及纯环己烷实验。
5、实验结束,关闭电源及水源。
五、数据记录与处理室温:21.7 ℃;大气压(实验前)101.45 kpa,大气压(实验后)101.45 kpa,大气压(平均值)101.45 kpa。
六、结果与讨论由图所示,得出,系统的最低恒沸点为63.5℃,最低恒沸混合物的组成为x B=0.4793.与书中所告诉我们的最低恒沸点为64.8,最低恒沸点混合物的组成(摩尔分数)为x B=0.55相比,相对偏小。
造成这种误差的可能原因:1、在给试剂加热的过程中,沸腾后,应将冷凝回流到球形小室的液体倾倒回沸点仪内,并反复3次,而在实验时,可能忘记倾倒或者少了几次,导致所测得气相和液相的折射率有少许误差。
物理化学实验实验报告九

界面移动法测定离子的迁移数一.实验目的1.掌握界面移动法测定离子迁移数的原理和方法 2.掌握图解积分测定电量的方法 二.实验原理离子迁移数是电解质溶液的一个重要传递性质。
电解质溶液的传递现象与一般系统所不同的是,在电势梯度或电场作用下离子的迁移,表现为能传导电流。
电流的传导由溶液中的正负离子共同承担。
离子迁移数的引入,衡量了正负离子的相对导电能力。
离子迁移数可以直接测定,方法有界面移动法、希托夫法和电动势法等。
本实验采用界面移动法测定H +的迁移数。
所谓离子迁移数,指的是某种离子传递的电量与总电量之比。
若正负离子在相反方向上迁移传递的电量分别为q +和q -,则溶液某个界面上通过的总电量为:Q= q ++q -,正、负离子的迁移数分别为:t += q +/Q t -= q -/Q t ++t -=1在包含数种正、负离子的混合电解质溶液中,一般增加某种离子的浓度, 则该种离子的传递电量的分数增加,其迁移数也增加。
对仅含一中电解质的溶液,浓度改变由于使离子间的相互作用力也发生了改变,难有普遍的规律。
温度改变,一般是温度升高,t +和t -的差别减小。
假定在溶液的垂直迁移管的下部某处存在一界面,在该界面以下没有H +存在,而是被其他的正离子所取代,则该界面将随着H +往上迁移而移动,界面的位置可通过界面上下性质的差异而测定。
例如利用pH 的不同指示剂显示颜色不同测出界面。
欲使界面保持清晰,必须使界面上下电解质不相混合,在本实验中Cd 2+能够满足这个要求,因为U (Cd 2+)〈U (H +)。
接通电极后,正极Cd 被氧化为Cd 2+,在电场的作用下,Cd 2+和H +离子从下向上运动,而Cl -从上向下运动,在管子的下部不断产生CdCl 2溶液,与指示剂作用产生一定的颜色来指示界面。
运动速度较低的Cd 2+离子永远也不会赶上H +离子,并且是紧紧地跟在H +离子的后面作为指示离子。
这样,对于本实验的原理就基本阐述完毕。
物理化学组合实验报告

物理化学组合实验报告篇一:溶解热的测定实验报告溶解热的测定实验报告姓名/学号:何一白/XX011908 班级:化22 同组实验者姓名:苏剑晓实验日期:XX年12月4日提交报告日期:XX年12月10日带实验的老师姓名:王溢磊1 引言(简明的实验目的/原理)1.1 实验目的1.测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
2.掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3.复习和掌握常用的测温技术。
1.2 实验原理物质溶于溶剂中,一般伴随有热效应的发生。
盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。
热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。
在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。
溶解热在恒温恒压下,溶质B溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用?solH表示。
摩尔积分溶解热在恒温恒压下,1mol溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用?solHm表示。
?solHm??solH(1) nB式中, nB为溶解于溶剂A中的溶质B的物质的量。
摩尔微分溶解热在恒温恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以(??solH??H)T,P,nA表示,简写为(sol)nA。
?nB?nB稀释热在恒温恒压下,一定量的溶剂A加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热在恒温恒压下,在含有1mol溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以?dilHm表示。
?dilHm??solHm2??solHm1(2)式中,?solHm2、?solHm1为两种浓度的摩尔积分溶解热。
摩尔微分稀释热在恒温恒压下,1mol溶剂加入到某一浓度无限量的溶液中所发生的热效应,以(??solH??H)T,P,nB表示,简写为(sol)nB。
物理化学实验报告

物理化学实验报告实验名称:分光光度法测定溶液中的铁离子浓度实验目的:通过本次实验,掌握使用分光光度法测定铁离子浓度的实验方法,了解分光光度计的使用原理,掌握实验数据的处理和结果分析方法。
实验原理:本实验采用分光光度法测定溶液中的铁离子浓度。
铁离子在酸性条件下与邻菲罗啉形成淡黄色络合物,该络合物在特定波长下(510nm)具有最大吸收值。
通过测定溶液的吸光度,并根据铁离子与邻菲罗啉的摩尔反应比,计算出样品中铁离子的浓度。
仪器与试剂:分光光度计、铁标准溶液、邻菲罗啉试剂、苯乙醇、氢氧化钠、硫酸、乙醇。
实验步骤:1. 标定分光光度计:分别用制备好的铁标准溶液和制备好的邻菲罗啉试剂进行标定,根据标定结果确定测量铁离子浓度时所需的吸收波长和检测范围。
2. 样品处理:待测样品含铁离子的溶液经适当稀释或稀释后,与邻菲罗啉试剂一并加入苯乙醇,混合均匀后,定容至刻度线。
3. 测定吸光度:将处理好的样品溶液倒入比色皿中,置于分光光度计中测定吸光度值。
根据标定时所选波长进行测量。
4. 计算结果:根据吸光度值,结合标定结果和反应计算规律,计算出待测样品中铁离子的浓度。
5. 结果分析:对实验数据进行统计分析,比较不同样品的铁离子浓度,评价实验结果的准确性和可靠性。
实验数据与结果:通过实验测定,得到待测样品A中铁离子浓度为0.023mol/L,样品B中铁离子浓度为0.028mol/L。
两次测定结果的相对偏差在5%以内,说明实验结果较为准确可靠。
实验结论:本实验采用分光光度法成功测定了溶液中铁离子的浓度,通过标定和样品处理等步骤,得出的结果较为准确。
实验通过实际操作,加深了对分光光度法的理解,提高了实验操作技能和数据处理能力。
实验注意事项:1. 操作时要仔细,避免试剂的飞溅和吸入。
2. 分光光度计的操作要规范,保证数据准确性。
3. 实验后及时清洗实验器具,保持实验环境整洁。
4. 结果分析要仔细,排除测量误差对结果的影响。
通过本次实验,我对分光光度法测定铁离子浓度有了更深入的理解,也提高了实验技能和数据处理能力。
物理化学实验报告

物理化学实验报告篇一:物理化学------各个实验实验报告参考1燃烧热的的测定一、实验目的1.通过萘和蔗糖的燃烧热的测定,掌握有关热化学实验的一般知识和测量技术。
了解氧弹式热计的原理、构造和使用方法。
2.了解恒压燃烧热与恒容燃烧热的差别和相互关系。
3.学会应用图解法校正温度改变值。
二、实验原理燃烧热是指1mol物质完全燃烧时所放出的热量,在恒容条件下测得的燃烧热为恒容燃烧热(QV),恒压条件下测得燃烧热为恒压燃烧热(Qp)。
若把参加反应的气体和生成气体视为理想气体,则Qp?QV??nRT。
若测得Qp或QV中的任一个,就可根据此式乘出另一个。
化学反应热效应(包括燃烧热)常用恒压热效应(Qp)表示。
在盛有定量水的容器中,放入装有一定量样品和样体的密闭氧弹,然后使样品完全燃烧,放出热量使水和仪器升温,若仪器中水量为W(g),仪器热容W?,燃烧前后温度为t0和tn,则m(g)物质燃烧热QV?(Cw?w’)t(n?t0。
若水的比热容)C =1。
摩尔质量为M的物质。
其摩尔燃烧热为QMV??m(W?W?)(tn?t0),热容W?可用已知燃烧热的标准物质(苯甲酸,QV=26.434J?g?1)来标定。
将其放入量热计中,燃烧测其始末速度,求W?。
一般因每次水量相同,可作为一个定量来处理。
QMV?m(tn?t0) 三.实验步骤1热容W?的测定1)检查压片用的钢模,用电子天平称约0.8g苯甲酸,倒入模具,讲样品压片,除去样品表面碎屑,取一段棉线,在精密天平上分别称量样品和棉线的质量,并记录。
2)拧开氧弹盖,擦净内壁及电极接线柱,用万用表检查两电极是了解燃烧热的定义,水当量的含义。
压片要压实,注意不要混用压片机。
否通路,将称好的棉线绕加热丝两圈后放入坩埚底部,并将样品片压,在棉线上旋紧弹盖,并再次检查电极是否通路,将氧弹放在充氧架上,拉动扳手充氧。
充毕,再次检查电极。
3)将氧弹放入热量计内桶,称取适量水,倒入量热计内桶,水量以没氧弹盖为宜,接好电极,盖上盖子,打开搅拌开关,开始微机操作。
物理化学实验报告_实验报告_

物理化学实验报告不少朋友都会做实验但是不知道如何写实验报告,那么,今天,小编给大家介绍的是物理化学实验报告,供大家阅读参考。
物理化学实验报告格式一、实验目的内容宋体小四号行距:固定值20磅(下同)二、实验原理原理简明扼要(必须的计算公式和原理图不能少)三、实验仪器、试剂仪器:试剂:四、实验步骤步骤简明扼要(包括操作关键)五、实验记录与处理实验记录尽可能用表格形式六、结果与讨论物理化学实验报告范文一:目的要求绘制在p下环已烷-乙醇双液系的气----液平衡图,了解相图和相率的基本概念掌握测定双组分液系的沸点的方法掌握用折光率确定二元液体组成的方法二:仪器试剂实验讨论。
在测定沸点时,溶液过热或出现分馏现象,将使绘出的相图图形发生变化?答:当溶液出现过热或出现分馏现象,会使测沸点偏高,所以绘出的相图图形向上偏移。
讨论本实验的主要误差来源。
答:本实验的主要来源是在于,给双液体系加热而产生的液相的组成并不固定,而是视加热的时间长短而定因此而使测定的折光率产生误差。
三,被测体系的选择本实验所选体系,沸点范围较为合适。
由相图可知,该体系与乌拉尔定律比较存在严重偏差。
作为有最小值得相图,该体系有一定的典型义意。
但相图的液相较为平坦,再有限的学时内不可能将整个相图精确绘出。
四,沸点测定仪仪器的设计必须方便与沸点和气液两相组成的测定。
蒸汽冷凝部分的设计是关键之一。
若收集冷凝液的凹形半球容积过大,在客观上即造成溶液得分馏;而过小则回因取太少而给测定带来一定困难。
连接冷凝和圆底烧瓶之间的连接管过短或位置过低,沸腾的液体就有可能溅入小球内;相反,则易导致沸点较高的组分先被冷凝下来,这样一来,气相样品组成将有偏差。
在华工实验中,可用罗斯平衡釜测的平衡、测得温度及气液相组成数据,效果较好。
五,组成测定可用相对密度或其他方法测定,但折光率的测定快速简单,特别是需要样品少,但为了减少误差,通常重复测定三次。
当样品的折光率随组分变化率较小,此法测量误差较大。
物理化学实验报告 比表面积

物理化学实验报告溶液吸附法测量固体物质的比表面积一、实验目的1) 了解溶液吸附法测定固体比表面的原理和方法。
2) 用溶液吸附法测定活性炭的比表面。
3) 掌握分光光度计工作原理及操作方法。
二、实验原理本实验采用溶液吸附法测定固体物质的比表面。
在一定温度下,固体在某些溶液中吸附溶质的情况与固体对气体的吸附很相似Langmuir 单分子层吸附方程来处理。
其方程为KcKcm+Γ=Γ1式中,Γ为平衡吸附量,单位质量吸附剂达吸附平衡时,吸附溶质的物质的量,mol*g −1;Γm 为饱和吸附量,单位质量吸附剂的表面上吸满一层吸附质分子时所能吸附的最大量,mol*g −1;c 为达到吸附平衡时,吸附质在溶液本体中的平衡浓度,mol*g −1;K 为经验常数,与溶质(吸附质)、吸附剂性质有关。
若能求得Γm ,则可由下式求得吸附剂比表面S 比:S 比=Γm LA式中:L 是阿伏加德罗常数;A 是每个吸附质分子在吸附剂表面占据的面积。
将上式改写为:c Γ=1Γm c +1Γm K配制不同吸附质浓度c 0的样品溶液,测量达吸附平衡后吸附质的浓度c ,用下式计算各份样品中吸附剂的吸附量:mVc c )(0-=Γ 式中:c 0是吸附前吸附质浓度(mol ·dm −3);c 是达吸附平衡时吸附质浓度(mol ·dm −3);V 是溶液体积(dm 3);m 是吸附剂质量(g )。
根据改写的Langmuir 单分子层吸附方程,作cΓ−c 图,为直线,由直线斜率可求得Γm 。
亚甲基蓝的摩尔质量为373.9g ·mol -1。
假设吸附质分子在表面是直立的,A 值取为1.52×10−18m 2。
研究表明,在一定浓度范围内,大多数固体对亚甲基蓝的吸附是单分子层吸附。
本实验使用活性炭为吸附剂,亚甲基蓝为吸附质,溶剂为水。
如果溶液浓度过高时,可能出现多分子层吸附,实验中要选择合适的吸附剂用量及吸附质原始浓度。
物理化学实验报告-凝固点法

物理化学实验报告凝固点降低法测定摩尔质量1.实验目的(1)用凝固点降低法测定萘的摩尔质量。
(2)掌握精密电子温差仪的使用方法。
2.实验原理非挥发性的二组分溶液,其稀溶液具有依数性,凝固点降低就是依数性的一种表现。
根据凝固点降低的数值,可以求溶质的摩尔质量。
对于稀溶液,如果溶质和溶液不生成固溶体,固体是纯的溶剂,在一定压力下,固体溶剂与溶液成平衡的温度叫做溶液的凝固点。
溶剂中加入溶质后,溶液的凝固点比纯溶剂的凝固点要低,其凝固点降低值∆T f与溶质质量摩尔浓度b成正比。
∆T f=T f0−T f=K f b式中T f0为纯溶剂的凝固点;T f为浓度为b的溶液的凝固点;K f为溶剂凝固点降低常数。
若已知某种溶剂的凝固点降低常数K f,并测得溶剂和溶质的质量分别为m a,m b的稀溶液的凝固点降低值∆T f,则可通过下式计算溶质的摩尔质量M BM B=K f m b ∆T f m A式中,K f的单位是K*kg*mol−1。
凝固点降低值得大小,直接反映了溶液中溶质有效质点的数目。
如果溶质在溶液中有离解,缔合,溶剂化和配合物生成等情况,这些均影响溶质在溶剂中的表观相对分子量。
因此凝固点降低法也可用来研究溶液的一些性质,例如电解质的电离度,溶质的缔合度,活度和活度系数等。
纯溶剂的凝固点为其液相和固相共存的平衡温度。
若将液态的纯溶剂逐步冷却,在未凝固前温度将随时间均匀下降,开始凝固后因放出凝固热而补偿了热损失,体系将保持液固两相共存的平衡温度不变,直至全部凝固,温度再继续下降。
但在实际过程中,当液体达到或稍低于凝固点时,晶体并不析出,这就是所谓的过冷现象。
此时加入搅拌或加入晶种,促使晶格形成,则大量晶体会迅速形成,并释放出凝固热,使体系温度回升到稳定的平衡温度;待液体全部凝固后温度再逐步下降。
溶液的凝固点是该溶液与溶剂共存的平衡温度,其冷却曲线与纯溶剂不同。
当有溶剂凝固析出时,剩余溶液的浓度逐渐增大,因而溶液的凝固点也逐渐下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国石油大学(华东)现代远程教育
实验报告
课程名称:物理化学
实验名称:恒温槽调节及影响恒温槽灵敏度
因素考察
实验形式:在线模拟+现场实践
提交形式:在线提交实验报告
学生姓名:学号:
年级专业层次:
学习中心:
提交时间:年月日
1.恒温槽
2.热敏电阻
3.不平衡电桥
4.记录仪
5.变压器
6.变阻箱
7.电子继电器。
四、操作步骤
1,先选择实验仪器,恒温槽体、电子继电器、加热圈、接触点温度计、精密温度计、电动搅拌器、搅拌杆。
2. 安装实验器件,先将接触点温度计和精密温度计放入槽体,将接触点电子温度计连接上电子继电器,将加热圈放入槽体并连接电子继电器,将电动搅拌器和搅拌杆安装好,最后将电子继电器和电动搅拌器接通电源。
,
3 .先调接触温度计到28℃,接近30℃时,再微调升温
当前室温25.0℃;先固定各螺丝,调好接触温度计后打开搅拌器开关,再打开继电器进行加热。
松开固定螺丝,调节接触点温度计旋钮磁铁,让温度接近于30度,等温度接近于30度是进行微调,到30度时固定接触温度计螺丝。
五、实验数据处理
图1 加热功率及搅拌速率对恒温槽温度波动的影响
表1 加热功率及搅拌速率对恒温槽灵敏度的影响
220V,正常搅拌80V,正常搅拌220V,慢速搅拌
峰Ⅰ格数/个41.5 10.2 55.5。