数学高中数学解题思维与思想
高中数学解题思维方略

二 、 空 题 解 题 思 维方 略 填
填空题是 高考的一类 固定题型 , 它 与 选 择 题 一 起 成 为 标 准 化 考 试 的基 本 题 型 。从 形 式上 看 , 填空 题 是 将 一个 数 学 真
到 定 形 ( )定 性 ( )定 ( ) 、 位 状 、 质 、 数 量 定 ( ) 要 注 意 图形 中 的可 变 因 素 , 置 。 注意 图
是 : 出 一 定 的 题 设 ( 知 条 件 ) — 提 给 已 — 出一 定 的要 求 ( 达 到 的 目标 ) 要 。要 解 答
好 解 答 题应 把 握 好 以下 各个 方 面 :
( ) 析 法 : 选 择 项 出 发 , 个 判 2分 从 逐
() 1 审题 。 这是 解 题 的第 一 步 , 生 考
( ) 形结 合法 : 4数 根据题设条件 的几
何 意 义 , 出 问 题 的 辅 助 图形 , 用 图 形 画 利
是使解答 全面 、 科学 , 使答 案不 重复 、 不
遗漏。
() 3 设计有效的解题过程和步骤。每
个 步 骤 都要 做 到 推 理 严谨 , 达 得 当 , 表 言
的直观性 ,通 过对 图形 的分析使问题得
较大。
解 答 选 择 题 的 常 规 方 法 主 要 有 以下
几种 :
三 、 答 题 解 题 思 维 方 略 解
解 答题 是数学 高考 的主要题 型 , 且
点 数量 以及 函数 在实 际 中的应 用 等 问
题 : 利 用 函数 图 象讨 论 方 程根 的 个数 及 ③
分布情况 , 论不等式的取值情况 ; 讨 ④利
解决 .
() 2 寻求解题思路和方法 。 考生应从
高中数学解题技巧与方法

高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。
许多学生在面对数学题目时感到困扰,不知道如何下手。
本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。
一、理清思路在解题之前,首先要理清思路。
仔细阅读题目,分析题目的要求和条件。
可以在纸上做标记或者画图来帮助理解题目。
同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。
二、多角度思考在解题过程中,不要被固定的思维方式所限制。
尝试从不同的角度思考问题,寻找不同的解题思路。
这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。
三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。
因此,培养逻辑思维是解题的关键。
可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。
合理运用推理能力,可以更快地找到解题的方法。
四、归纳总结解题过程中,要善于归纳总结。
将解题的方法和思路记录下来,形成笔记或者思维导图。
这样有助于巩固所学知识,也方便在以后的学习中查阅。
通过总结,我们可以更好地掌握解题的技巧和方法。
五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。
可以选择一些专门的习题集或者题库进行练习。
在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。
六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。
可以向老师请教,或者与同学进行讨论。
他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。
总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。
掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。
加油吧!。
高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。
高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。
第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
高中数学解题思想方法-有限与无限思想

从感性到理性、从具体到抽象————谈谈有限与无限思想导语:有限与无限思想揭示了变量与常量,有限与无限的对立统一的关系。
借助有限与无限思想,人们可以从有限认识无限,从不变认识变,从量变认识质变,从近似认识精确。
在初等微积分的学习中应抓住基本概念,突出内在的联系,贯穿基本思想方法。
具体说来,以数列极限为基础,突出微分、积分及其内在联系。
极限、微分、积分概念、极限方法、运动辩证思想和数学观念的培养,贯穿了微积分的全部内容。
从进入高二阶段学习的学生的认知水平上来看,已开始摆脱具体事物的形式,进入抽象、概括、分析、综合、演绎、归纳等一般化理论思维阶段,开始向更高级的思维——辩证思维形式发展。
其本质问题是对无限的认识,让学生从感性材料中去感受和体验。
提炼和概括,逐步上升到理性认识,感受抽象思维的过程和辩证思维的体现。
《新课标》倡导数学课程“强调本质,注意适度形式化”。
高中数学课程的讲授应注意数学概念、法则、结论的发展过程和本质,由于极限概念本身牵涉到“无穷大”、“任意小”、“无限逼近”等数学术语,这些词语都比较抽象。
因此在极限的概念教学过程中,我们应该注意从实际问题引入将抽象具体化从而使学生更好地理解极限。
内容:微积分的很多方法在中学数学的很多问题上能够以简驭繁,尤其在证明不等式、恒等式及恒等变形;求极值;研究函数的变化上,可以使解法简化,并能使问题的研究更为深入全面。
以下重点阐述不等式的证明中有限与无限思想:在研究变化过程变量之间相互制约关系时,更多的是对不等式的研究,从某种意义上来说,不等式的证明方法多种多样,没有较为统一的方法,初等数学中经常通过恒等变形、数学归纳法、二次型等方法解决,或运用已有的基本不等式来证明,往往需要恒等变形,而运用微积分的知识和方法,如函数单调性、极值判定法,可以简化不等式的证明过程,降低技巧性。
例题已知函数1()ln 1x f x x+=-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求证:当(0,1)x ∈时,3()2()3x f x x >+; (Ⅲ)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值. 分析:本题主要考查对数函数的性质和导数公式,复合函数的求导法则,考查导数的几何意义,导数的正负和函数单调性的关系。
高中数学重要数学思想

一、高中数学重要数学思想一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。
1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。
2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。
这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。
因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。
3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。
4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。
”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。
高中数学解题技巧:提高数学思维与问题解决能力

高中数学解题技巧:提高数学思维与问题解决能力高中数学作为一门重要的学科,为培养学生的逻辑思维能力和问题解决能力起着重要作用。
然而,很多高中生对于数学常常感到头疼和困惑。
在这篇文章中,我将分享一些提高高中数学解题技巧的方法,帮助学生们提升数学思维和问题解决能力。
概述数学是一门需要理解和应用的学科。
它不仅仅是记忆公式和解题步骤,更重要的是培养逻辑思维和推理能力。
然而,很多高中生只关注于记忆公式和解题步骤,而忽视了数学的本质。
因此,我们在提高数学思维和问题解决能力方面需要有一些技巧和策略。
数学思维的培养1. 建立数学概念的清晰认知在学习数学的过程中,首先需要建立起对数学概念的清晰认知。
学生们应该明确理解数学中的各种概念,例如几何图形、代数方程、函数等。
这需要学生们对于每个概念的定义和特性有一个准确的理解,只有这样,才能够更好地应用这些概念解决问题。
2. 培养逻辑思维和推理能力逻辑思维和推理能力是解决数学问题的关键。
为了培养这方面的能力,学生们可以进行一些逻辑推理题目的练习,例如数列题目、证明题目等。
通过这些练习,学生们可以锻炼自己的逻辑思维能力和推理能力,提高解题的准确性和速度。
3. 注重数学应用能力的培养数学是一门实用的学科,学生们应该注重培养数学的应用能力。
在解决数学问题的过程中,学生们应该学会将数学知识应用到实际问题中,建立数学模型,并进行合理的推理和分析。
只有通过实际应用,学生们才能真正理解数学的意义和运用场景。
问题解决能力的提升1. 掌握问题解决的基本步骤在解决数学问题的过程中,掌握基本的问题解决步骤是十分重要的。
学生们应该学会分析问题,提炼问题的关键信息,建立数学模型,选择合适的解题方法,最后验证解答的正确性。
通过反复练习,学生们可以逐渐掌握这些步骤,提高问题解决的效率和准确性。
2. 善于归纳总结在解决问题的过程中,学生们应该善于归纳总结。
每次解完一个问题,都应该总结自己的解题方法,发现其中的规律和特点,并进行归纳。
高中数学几个思维

高中数学几个思维
1.抽象思维
高中数学中有很多抽象的概念和问题,如函数、向量、数列等等。
因此,学生需要具备抽象思维的能力,能够将实际问题转化为数学问题,并能够运用数学模型解决问题。
2.逻辑思维
高中数学中有很多证明和推理的问题,需要学生具备一定的逻辑思维。
学生需要学会如何运用已知的知识和条件,通过逻辑推理得出结论。
3.图像思维
高中数学中有很多几何和图形的问题,需要学生具备一定的图像思维。
学生需要能够通过图像描述和理解问题,同时也需要能够通过图像解决问题。
4.函数思维
函数是高中数学中的一个重要概念,也是解决很多问题的基础。
学生需要掌握函数的概念和性质,能够运用函数解决实际问题。
5.创新思维
高中数学中有很多问题需要学生具备一定的创新思维,能够从不同的角度思考问题,并能够提出新的解决方案。
总之,学习高中数学需要具备多种数学思维,这些思维能够帮助学生更好地理解和解决数学问题。
因此,学生在学习数学时应该注重培养自己的思维能力,提高自己的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高中数学解题思维与思想》导读数学家G . 波利亚在《怎样解题》中说过:数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:一、数学思维的变通性根据题设的相关知识,提出灵活设想和解题方案二、数学思维的反思性提出独特见解,检查思维过程,不盲从、不轻信。
三、数学思维的严密性考察问题严格、准确,运算和推理精确无误。
四、数学思维的开拓性对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。
什么”转变,从而培养他们的思维能力。
《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了全面验证。
一、高中数学解题思维策略第一讲 数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。
根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:(1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。
观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。
要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。
例如,求和)1(1431321211+++⋅+⋅+⋅n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。
(2)善于联想联想是问题转化的桥梁。
稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。
因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。
例如,解方程组⎩⎨⎧-==+32xy y x . 这个方程指明两个数的和为2,这两个数的积为3-。
由此联想到韦达定理,x 、y 是一元二次方程 0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。
(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。
可见,解题过程是通过问题的转化才能完成的。
转化是解数学题的一种十分重要的思维方法。
那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。
在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。
例如,已知cb ac b a ++=++1111,)0,0(≠++≠c b a abc , 求证a 、b 、c 三数中必有两个互为相反数。
恰当的转化使问题变得熟悉、简单。
要证的结论,可以转化为:0))()((=+++a c c b b a思维变通性的对立面是思维的保守性,即思维定势。
思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。
它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。
综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。
要想提高思维变通性,必须作相应的思维训练。
二、思维训练实例(1) 观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物部规律的基础。
所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。
例1 已知d c b a ,,,都是实数,求证.)()(222222d b c a d c b a -+-≥+++思路分析 从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而左端可看作是点到原点的距离公式。
根据其特点,证明 不妨设),(),,(d c B b a A 如图1-2-1所示,则.)()(22d b c a AB -+-= ,,2222d c OB b a OA +=+=在OAB ∆中,由三角形三边之间的关系知:AB OB OA ≥+ 当且仅当O 在AB 上时,等号成立。
因此,.)()(222222d b c a d c b a -+-≥+++思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。
学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。
因此,平时应多注意数学公式、定理的运用练习。
例2 已知x y x 62322=+,试求22y x +的最大值。
解 由 x y x 62322=+得 .20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y 又,29)3(2132322222+--=+-=+x x x x y x ∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+-- 思路分析 要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值。
上述解法观察到了隐蔽条件,体现了思维的变通性。
思维障碍 大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-= ,29)3(2132322222+--=+-=+∴x x x x y x∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误。
因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,这样,才能正确地解题,提高思维的变通性。
有些问题的观察要从相应的图像着手。
例3 已知二次函数),0(0)(2>=++=a c bx ax x f 满足关系)2()2(x f x f -=+,试比较)5.0(f 与)(πf 的大小。
思路分析 由已知条件)2()2(x f x f -=+可知,在与2=x 左右等距离的点的函数值相等,说明该函数的图像关于直线2=x 对称,又由已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。
解 (如图1-2-2)由)2()2(x f x f -=+,知)(x f 是以直线2=x 为对称轴,开口向上的抛物线它与2=x 距离越近的点,函数值越小。
)()5.0(25.02ππf f >∴->-思维障碍 有些同学对比较)5.0(f 与)(πf 的大小,只想到求出它们的值。
而此题函数)(x f 的表达式不确定无法代值,所以无法比较。
出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。
提高思维的变通性。
(2) 联想能力的训练例4 在ABC ∆中,若C ∠为钝角,则tgB tgA ⋅的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定思路分析 此题是在ABC ∆中确定三角函数tgB tgA ⋅的值。
因此,联想到三角函数正切的两角和公式tgBtgA tgB tgA B A tg ⋅-+=+1)(可得下面解法。
解 C ∠ 为钝角,0<∴tgC .在ABC ∆中)(B A C C B A +-=∴=++ππ且均为锐角,、B A[].1.01,0,0.01)()(<⋅>⋅-∴>><⋅-+-=+-=+-=∴tgB tgA tgB tgA tgB tgA tgB tgA tgB tgA B A tg B A tg tgC 即 π故应选择(B )思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。
例5 若.2,0))((4)(2z x y z y y x x z +==----证明:思路分析 此题一般是通过因式分解来证。
但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。
于是,我们联想到借助一元二次方程的知识来证题。
证明 当0≠-y x 时,等式 0))((4)(2=----z y y x x z可看作是关于t 的一元二次方程0)()()(2=-+-+-z y t x z t y x 有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有:1=--yx z y 即 z x y +=2 若0=-y x ,由已知条件易得 ,0=-x z 即z y x ==,显然也有z x y +=2.例6 已知c b a 、、均为正实数,满足关系式222c b a =+,又n 为不小于3的自然数,求证:.n n n c b a <+思路分析 由条件222c b a =+联想到勾股定理,c b a 、、可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。
证明 设c b a 、、所对的角分别为A 、B 、.C 则C 是直角,A 为锐角,于是,cos ,sin cb Ac a A ==且,1cos 0,1sin 0<<<<A A 当3≥n 时,有A A A A n n 22cos cos ,sin sin <<于是有1cos sin cos sin 22=+<+A A A A n n即 ,1)()(<+n n cb c a 从而就有 .n n n c b a <+思维阻碍 由于这是一个关于自然数n 的命题,一些学生都会想到用数学归纳法来证明,难以进行数与形的联想,原因是平时不注意代数与几何之间的联系,单纯学代数,学几何,因而不能将题目条件的数字或式子特征与直观图形联想起来。
(3) 问题转化的训练我们所遇见的数学题大都是生疏的、复杂的。
在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。
恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。
○1 转化成容易解决的明显题目 例11 已知,1111=++=++cb ac b a 求证a 、b 、c 中至少有一个等于1。
思路分析 结论没有用数学式子表示,很难直接证明。
首先将结论用数学式子表示,转化成我们熟悉的形式。