高中数学解题四大思想方法

合集下载

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法
数学解题涉及到多种基本思想和方法,以下是高考数学中常见的七大基本思想方法:
1. 分析思想:对问题进行分析,了解问题的背景和条件,理清问题的主要要求和关键点。

通过理性思考,找出问题的关键信息和解题的具体思路。

2. 归纳思想:在解题过程中,通过观察和分析一系列具体问题的特点和规律,总结出普遍规律和定理。

通过推理和归纳,用普遍的结论解决具体的问题。

3. 定义思想:利用定义和性质,将一个复杂的问题转化成一个或多个简单的问题,从而得到解题的线索和方法。

通过准确的定义和原理,避免解题过程中的模糊和混乱。

4. 逆向思维:通过逆向思考,将问题的推理过程倒转,从后往前寻找解题的线索和方法。

当直接求解困难时,可以通过反向思考,先假设结论成立,然后倒推出问题的可能解。

5. 近似思想:在实际解题中,可能遇到问题过于复杂或计算困难的情况。

可以通过近似思想,将问题简化成近似问题,从而得到解题的方法和结果。

通过适当的近似和简化,可以减少计算量和复杂度。

6. 映射思维:通过建立不同对象之间的映射关系,将原问题转化成已知问题或同类问题。

通过找出问题之间的联系和相似性,来解决具体的问题。

7. 模型思想:将实际问题抽象成数学模型,通过建立数学模型和方程式来求解问题。

通过对实际问题的抽象和建模,可以将问题转化成更容易解决的数学问题。

这些思想方法在解决高考数学问题中都很有用,需要根据具体问题的特点和要求选择合适的思想方法。

高中数学四大思想方法

高中数学四大思想方法

高中数学四大思想方法高中数学是数学学科的一部分,其主要涉及代数、几何、函数、概率和统计等内容。

在学习过程中,数学家们发展了许多思想方法,以解决和理解数学问题。

以下是高中数学中常见的四大思想方法。

1.抽象思维方法抽象思维方法是数学的核心思想之一、它通过剥离具体的数学问题中的不必要部分,从而将问题抽象化为更为一般的形式,并建立相应的模型。

例如,在代数中,我们可以将具体的算式和方程抽象为符号表示,以简化问题的描述和解决过程。

抽象思维方法能够提高学生的思维能力和数学抽象能力,培养学生的逻辑思维和推理能力。

2.归纳与演绎思维方法归纳与演绎思维方法是数学推理的重要方法。

归纳是通过观察事实和案例,找出普遍规律和规则。

例如,通过观察一系列数列,我们可以归纳出它们的通项公式。

演绎是通过已知条件和推理规则,从而推导出结论。

例如,通过已知两条平行线被一条横截线相交,我们可以演绎出对应角相等的结论。

归纳和演绎相辅相成,使学生能够更好地理解和应用数学定理和思想。

3.综合思维方法4.探究思维方法探究思维方法是数学学科中重要的思想方法之一、它强调学生通过实践探索和发现数学规律和定理。

例如,通过动手操作、观察和实验,学生可以发现一些几何定理或数学规律,并且对其原理和应用有更深入的理解。

探究思维方法能激发学生的学习兴趣,培养学生的发现问题和解决问题的能力。

同时,它也强调学生的自主学习和合作学习能力。

综上所述,高中数学中的四大思想方法包括抽象思维方法、归纳与演绎思维方法、综合思维方法和探究思维方法。

这些方法能够培养学生的数学思维和解决问题的能力,提高学生的数学水平和学习效果。

学生在学习和应用这些方法时,应结合实际问题进行思考和讨论,不断深化对数学的理解和应用。

“心有灵犀一点通”———浅析高中数学解题中常用的四大数学思想

“心有灵犀一点通”———浅析高中数学解题中常用的四大数学思想

㊀㊀解题技巧与方法㊀㊀132数学学习与研究㊀2021 29心有灵犀一点通心有灵犀一点通 ㊀㊀㊀ 浅析高中数学解题中常用的四大数学思想Һ于㊀祥㊀(扬州大学附属中学,江苏㊀扬州㊀225000)㊀㊀ʌ摘要ɔ随着新课改的不断推进,在高中数学教学中渗透数学思想方法已经成为高中数学教师培养学生数学核心素养的根本方式.高中数学解题中需要借助科学的数学思想和方法才能达到最好的教学效果.其中,四大数学思想(函数与方程思想㊁分类讨论思想㊁数形结合思想㊁化归与转化思想)是最常用的数学思想,四者都有其特有的应用特点和范围,在问题的分析方法(思维逻辑分析)上也有自己的特点.据此,本文分析了在高中数学教学中应用四大数学思想的策略,以期能为高中数学教师提供教学帮助.ʌ关键词ɔ高中数学解题;四大数学思想;教学策略ʌ基金项目ɔ本文是江苏省教育科学 十三五 规划课题2016年度重点自筹课题 基于深度学习理念下的数学活动设计研究 阶段研究成果(课题编号:B-b/2016/02/41)笔者认为,高中数学中很多解题思想和方法只要稍稍变形,就能和常用的四大数学思想产生密切联系.在实际教学过程中,数学教师需要结合四大数学思想的定义㊁特点和作用,把数学解题思想和方法变形成为符合数学思想的相关内容,从而优化教学内容,降低教学难度.下面,笔者将以分类讨论㊁数形结合㊁函数与方程以及化归与转化数学思想方法为例进行分析,文中涉及的教学实例请参照人教版高中数学教材.一㊁四大数学思想对高中数学解题教学的作用(一)降低学生的解题难度对于高中生来说,有一些数学习题并不是自己努力想㊁努力做就能够做出来的,只有依靠数学思想才能解决,所以四大数学思想的应用实则是大幅度降低了学生的解题难度,使之在解题过程中能保证大致的思路是正确的,不会出现一些根本性的错误.(二)提高学生的解题能力高中数学练习题不同于初中,难度非常大,而且有特定的解题思路和方法,四大数学思想是基于高中数学题目所总结出来的解题利器,如果学生能充分理解并应用好这些数学思想,在解题时就能得心应手,久而久之就能大幅度提升自己的解题能力.二㊁高中数学解题教学中四大数学思想的应用基础(一)转变教学要求新课改要求学生要实现逻辑思维㊁逻辑分析能力上的有效突破,故现代高中数学教育除了要让学生学习硬知识外,还需要学习探究数学问题㊁总结数学规律的方法,而后者将比前者更加重要.所谓 一通百通 ,解题方法和规律总结能力的提升将使学生从容面对不同类型的问题,继而有效提高学习成绩和应试水平.因此,为实现高中数学教育 要成绩 要能力 的双重目标,教师在应用四大数学思想之前必须要主动转变教学要求,将数学思想的学习摆在首位,不要只注重学生的解题结果,而是注重其解题思路和方法.(二)把 要我学 转变为 我要学所谓 要我学 其实是一种 被动学 ,学生只能根据教师设定的教学计划去理解㊁分析㊁探究知识,知其然而不知其所以然,虽然能在短时间内积累大量知识,但其思维能力却没有任何长进和突破.反观 我要学 则完全不同,它是一种 主动学 ,学生根据教师设定的学习目标自主选择学习内容,根据自身的学习水平把握学习进度,同时还能够和他人交流以获得新知识和经验,虽然在短时间内无法积累大量知识,但却容易形成良好的学习思维和习惯,学习心态也会发生积极转变.三㊁高中数学解题教学中四大数学思想的实践应用(一)分类讨论思想1.何为分类讨论思想分类讨论思想简而言之就是先分类再讨论,这种方式可帮助学生理清思路,降低分析难度.以集合为例,按照集体元素的个数可分为有限集㊁无限集㊁空集三种,而按照集合之间的关系可分为子集㊁交并集㊁补集.利用分类讨论思想,学生就能更加全面地认识集合的特性.2.分类讨论的一般步骤研究对象指的是问题的核心,需要讨论研究的主体是什么,可不可以细分,每一部分有何特点等等.先将研究主体进行分类,然后集中讨论每一类中的问题.在实际教学中,教师可以引导学生按照先分类再讨论的方式进行分析,从易到难逐层深入,就能让学生掌握分类讨论的核心.3.分类讨论的实际案例在教学 随机事件的概率 时,有这样一道题: 一个袋子中有标号为1,2,3的三个大小相同的球,随机抽取三次,按抽取顺序组成123的概率是多少? 在计算概率的过程中,教师引导学生先分类后讨论.根据题目要求,实则是求1,2,3三个数组合成不同数的个数,其中三个数的组合就是整体研究对象,那么就可以分为个位㊁十位㊁百位三个研究部分.分类进行讨论就是对每一个研究部分进行分析,比如百位数是1,那么十位数和个位数就不能是1,而2,3两个数谁占十位㊁谁占个位则需要继续细分讨论.归纳整体结果就是在分类讨论的基础上把结果汇总出来,得出正确的答案.(二)数形结合思想1.何为数形结合思想数形结合 作为新时代数学教学的创新方式,分为 数 和 形 两部分,通过数形结合分析问题,可以将一些抽象性的㊁枯燥的数学文字转化为生动㊁直观的图形,最大限度地降低了学生学习数学的难度,也极大地提高了学生对数学的理解能力.数形结合思想的核心是 以形化数,以数代形 ,数学中 数 和 形 本就是密不可分的关系,数学中的图表㊁图形等都可以看成 形 ,而公式㊁定理等都可以看成 数 ,以计算空间几何体的表面积和体积为例,空间几. All Rights Reserved.㊀㊀㊀解题技巧与方法133㊀数学学习与研究㊀2021 29何体就是 形 ,而空间几何体的表面积和体积则为数,数形结合,能让学生更加直观地想象空间几何体的长㊁宽㊁高等属性,也能通过公式更容易解得空间几何体的表面积和体积.2.数形结合的两种方式以数助形 即以数代形,比如计算正方形的面积,我们用眼是看不出面积的,必须要借助公式进行计算. 以形助数 即以形代数,就是以图形直观展示抽象的数学逻辑关系.在高中阶段,最典型的就是用数轴㊁平面直角坐标系表示某个函数方程.3.数形结合的实际案例在学习 一元二次不等式(组) 时,教师为学生设置以下问题: 一元二次不等式(x-3)(x+1)<0是否有解?如果有,这个不等式有多少个正整数解? 从题目难度上分析,题目相对较简单,但是这里主要考查学生对 不等式解集的数轴表示 的理解,经过计算得到结果为-1<x<3,学生对于答案的范围没有直观的感受,这时教师可以让学生根据所学将答案在数轴上表示,学生在数轴上寻找到 -1 3 所表示的点,然后两者中间的部分即为不等式解的取值范围.(三)函数与方程思想1.何为函数与方程思想函数与方程思想作为四大数学思想中最重要也是最普遍的一类教学思想,几乎在每堂课中都能够用到.函数与方程思想是简化数学算法㊁反映数理逻辑的最好方式,因为在高中数学解题教学中的应用最为广泛,所以几乎能和所有的高中数学知识相结合.数学题目中有着非常多的未知数求解题,结果即为未知数x,通过未知数x构造合乎逻辑的数学方程,进而通过数学运算推导,这就是函数与方程思想的内核,所以以函数与方程思想求解未知数是数学教师常用的方法.2.函数与方程思想的应用范围函数与方程思想主要是让学生形成以 未知推导已知,已知求解未知 的数学解题思维,所以凡是涉及数理计算㊁函数求解等题型时都可以用到函数与方程思想.纵观高中数学知识,函数与方程思想最常用在三角函数㊁二次函数㊁幂函数的求解中,教师引导学生根据题目设未知数x,y,z,然后根据已知条件将未知数代入,以形成完整的求解方程.例如在解答三角形题目时,要计算出某个三角形的三边关系,则要设三边为x,y,z,将之带入sin,cos和tan三类三角函数中,就能通过已知条件(例如三角函数值和三角形的一条边)推导求得x,y,z,进而计算三边关系.3.函数与方程思想的实际案例在解答函数应用题时,题干如下: 某种名牌钢笔,每支进价为50元,当销售价格为每支x元,且50ɤxɤ80时,每天售出支数P=104(x-40)2,若想当天售出的钢笔获利最大,售价应定为每支多少元?最大利润是多少?解答过程就需要运用函数与方程思想,以已知和未知条件建立函数方程,针对此应用题,设售价定为每支x元,则每支利润为(x-50)元.设当天总利润为y元.则y=(x-50)㊃104(x-40)2,xɪ[50,80].变形得yx2-(80y+104)x+1600y+50ˑ104=0.因为关于x的一元二次方程有实数解,所以yʂ0,Δȡ0,{所以Δ=(80y+104)2-4y(1600y+50ˑ104)ȡ0,解得yɤ1034=250.当y=250时,x=60.所以每支定价为60元时,当天获利最大,最大利润为250元.(四)化归与转化思想 化繁为简,化难为易1.何为化归与转化思想化归与转化思想直白地说就是在解决数学问题时,如果很难直接求解的话,就需要把这个问题转化成已知问题进行求解.化归与转化思想说明了数学知识万变不离其宗,透过现象看本质,就能将未知问题转化成已知问题进行求解.因此在数学教学中,化归与转化思想常被用来分析和简化复杂的问题.例如学完了一元一次方程㊁因式分解等知识后,在学习一元二次方程的时候我们其实就是通过因式分解等方法,将它化归为一元一次方程来解的.再到高中特殊的一元高次方程求解时,又是将其化归为一元一次和一元二次方程来求解,更加直白地说,就是由1+1=2,我们可以推出1+2=3,通过化归与转化思想可将其转化为1+1+1=3这种最直接㊁最简单㊁最好理解的方式.2.化归与转化思想的实际案例在解答复杂的函数问题时,我们可以通过化归与转化思想由已知函数推导出新的函数方程,之后对新的函数方程进行分析解答,就能快速地得出答案.比如在解答题目: f(x)=ax2+ax+a-1,当f(x)<0的解集为R时,求a的取值范围. 这个题目的解答过程需要用到化归与转化思想,然后基于函数图像的基本性质确定a的取值范围.具体解答过程如下:解:当a=0时,函数f(x)=-1<0,此时符合题意,即对x属于R恒成立,故此时f(x)<0的解集为R.而当aʂ0时,由f(x)<0的解集为R恒成立,可推导a<0且Δ<0,即a<0且a2-4a(a-1)<0,即a<0且-3a2+4a<0,即a<0且3a2-4a>0,解得a<0.综上,知a的范围是aɤ0.在这个题目中,我们将复杂的函数问题转化成简单的 a<0且Δ<0 问题,直接列出不等式进行求解,这样就通过消元方式排除了 x 的干扰,以此求解a的取值范围就变得非常容易.结束语数学中的分类讨论思想㊁数形结合思想㊁函数与方程思想以及化归与转化思想都能让高中数学解题教学变得更有效率.只要教师能设计科学的应用策略和方法,把握好数学思想与数学知识的融合点,就能发挥其教学作用,成为提升课堂教学效率和教学质量的好帮手.综上,高中数学和初中㊁小学数学完全不同,高中数学讲究培养学生的数学思维,而非简单的理解公式㊁定理定义.故应用四大数学思想可在很大程度上优化学生的数学思维,在面对问题时懂得化繁为简㊁逐层深入,既能够面面俱到地解决问题,又能够节省时间和精力,应试教育背景下,高中生应当以提高学习成绩为重,数学思想可帮助学生快速掌握解题方法和技巧,也是一种非常重要的学习工具,值得推广学习.当然,上述分析只是笔者的浅见,不足之处还请各位读者朋友批评指正.ʌ参考文献ɔ[1]曹燕.浅析数形结合思想在高中数学解题中的应用[J].科学咨询(科技㊃管理),2016(8):82.[2]刘智娟.注重高中数学解题中的 四大法宝 [J].中学数学,2017(23):67-68.[3]黄多贵.浅谈分类讨论在高中数学中的教学[J].中国科教创新导刊,2018(9):168.[4]林海卫,王敏燕.浅谈数学思想在高中数学解题中的应用[J].数学教学通讯,2016(6):58-59.. All Rights Reserved.。

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

学习数学有什么好的方法及常见的数学四大思想,高中数学解题基本方法

学习数学有什么好的方法及常见的数学四大思想,高中数学解题基本方法

学习高中数学有什么好的方法1掌握好公式定理(如果这步不做,想学好数学就是在做白日梦,想一想没有武器的士兵如何去打战。

)不管学数学的目的是为考试,还是兴趣,都要掌握公式定理这个必备的武器,这样才能在题目的战场上施展拳脚。

学习数学时,对于公式定理一般要经历三个过程:○1认识;○2理解;○3应用○1认识:能认出,识别公式定理○2理解:能明白公式定理的内容及其推导方法,适用范围○3应用:懂得在题目中如何应用公式定理来解题,应用什么公式定理来解题所谓掌握是指是指达到应用水平,2按时完成作业(要按时认真完成学校定的配套,这是基本功,想一想没有训练的士兵如何上得了战场)适当的训练是培养考试能力必不可少的的途径(考试能力是指思维能力,做题技巧,得分技巧,做题速度,答题规范等)但切忌不要搞题海战术,因为这只对简单的题有效,稍微改变一下条件就可能蒙了。

(题海战术是指不停的做题,做大量的题,而不进行必要的总结思考,对错题只做修改而不查找原因)而且人的生命是有限的,没有无限的时间做题,只有总结规律才是王道(规律即答题的固定步骤,解题的方法等,这可避免想题时没有方向)3养成独立思考的习惯不懂时一定要先自己思考一下,实在不行时再问同学或老师,不能一遇到不懂的就立即问同学老师,这样会使大脑得不到锻炼,对他人产生依赖,成绩就会不升反降。

(不懂也不能放弃,如果不懂就放弃的话就永远学不好数学)4要总结自己的强项和弱项,及时查漏补缺(即知道考试时什么题目自己能做得又快又准,什么题目自己做的出来但较慢,什么题目自己做不出来,并进行有针对性的练习,这样考试才不会太紧张)中学数学的基本知识分三类:①是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、数列等;②是关于纯粹形的知识,如平面几何、立体几何等;③是关于数形结合的知识,主要体现是解析几何,函数等根据这三类来分类自己的强弱项。

形成一套属于自己的学习流程(学习流程即知道上课前,上课时,上课后该干什么,在学校,在家里该干什么)5合理安排考试时的时间考试时合理安排好答题时间,不要因一道小题而没做大题,也不要害怕答大题,往往大题的第一问都较容易,有时根据条件推出一些简单的结论也能得分(你可能不知道这些结论有什么用)掌握几个考试时放松的技巧,防止怯场平时可自己模拟考试场景练习一下6要肯脚踏实地的去努力不要因为一些同学学数学看起来很轻松就认为他们有秘籍或他们是天才,不用努力。

高中数学四种思想方法总结

高中数学四种思想方法总结

高中数学四种思想方法总结高中数学涵盖了许多不同的思想方法,其中最常用的有四种:抽象思维、演绎推理、归纳思维和模型思维。

这些思维方法不仅在数学领域有着重要的应用,也能在其他学科和日常生活中发挥作用。

下面将对这四种思维方法进行详细的总结。

抽象思维是高中数学中最基本的思维方法之一。

它强调将具体的问题抽象成一般性的数学问题,以便研究和解决。

在解决数学问题时,我们经常需要忽略问题的细节,着重分析问题的本质。

通过抽象思维,我们能够发现不同问题之间的共同点和规律,从而建立数学概念和定理。

抽象思维的应用包括代数中的符号运算和函数概念,几何中的图形变换和空间关系等。

演绎推理是数学中另一种重要的思维方法。

它基于逻辑推理,从已知的条件推出结论。

通过演绎推理,我们能够运用数学定理和公理,从已有的知识出发,逐步推导出更深入的结果。

演绎推理要求我们严密的思维和逻辑推理的能力,能够从简单的前提出发,得出复杂的结论。

它在解决数学问题时起到了重要的作用,并在其他学科中也有广泛的应用。

归纳思维是从具体到一般的思维方法。

通过归纳思维,我们能够从一组具体的实例中总结和归纳出一般性的规律和定理。

在解决数学问题时,我们经常从特殊情况出发,通过观察和推理,找到问题的普遍解决方法。

归纳思维要求我们具备辨别规律的能力和总结归纳的能力,能够从具体的问题中抽象出一般的概念或定理。

模型思维是一种将实际问题转化为数学模型,并用数学方法研究和解决的思维方法。

通过建立合适的数学模型,我们能够更好地理解和分析实际问题,并预测其发展趋势和结果。

模型思维要求我们具备实际问题到数学问题的转化能力和数学方法在实际问题中的应用能力。

它在数学中的应用非常广泛,既能解决实际问题,也能推动数学理论的发展。

这四种思维方法在高中数学教学中相辅相成,也相互联系。

抽象思维和归纳思维一起构建了数学的概念体系和定理体系。

演绎推理则是数学证明的基本方法,用于推导和验证数学定理。

而模型思维则能将这些概念、定理和证明应用于实际问题中,使数学具有实际意义。

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。

在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。

本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。

一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。

在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。

二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。

在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。

三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。

在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。

四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。

在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。

五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。

在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。

六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。

在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。

七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。

在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。

总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。

通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧在高中数学学习中,我们经常会遇到各种各样的数学难题,有些难题看起来很棘手,令人困惑。

然而,只要我们掌握一些有效的思维技巧,就能够更轻松地解决这些难题。

本文将介绍数学解决高中数学难题的四大思维技巧,帮助我们在数学学习中取得更好的成绩。

一、问题分解法解决数学难题的第一个思维技巧就是问题分解法。

当我们面对一个复杂的数学问题时,首先要学会将其分解为几个简单的部分。

可以通过分析问题的结构和特点,将问题逐步分解为更小的子问题,然后逐个解决这些子问题,最终得到整个问题的解答。

通过问题分解法,我们可以将原来看起来复杂的数学难题变得更易于理解和解决。

二、模式识别法数学解决高中数学难题的第二个思维技巧是模式识别法。

在数学学习中,我们经常会遇到一些类似的问题或者模式。

通过观察和思考,我们可以将这些问题归纳为一般性的规律和模式。

当我们遇到类似的问题时,可以运用已经掌握的模式和规律,更加迅速地解决问题。

通过模式识别法,我们可以从大量例题中提取出数学问题的共性,培养出敏锐的观察力和抽象思维的能力。

三、逆向思维法逆向思维法是解决高中数学难题的第三个思维技巧。

有时候我们在正常的思维定势中很难找到问题的解决方法,这时可以尝试从相反的角度来思考。

通过逆向思维,我们可以从问题的解答出发,倒推回问题的出发点,找到其中的规律和关系。

逆向思维法可以帮助我们打破固有的思维模式,开阔思路,找到解决问题的新思路和方法。

四、实践反思法解决高中数学难题的第四个思维技巧是实践反思法。

数学学习需要不断的实践和反思。

当我们解决一个数学难题时,即使我们得到了正确的答案,也要对解题过程进行仔细的反思。

我们可以思考自己使用了哪些方法和规律,是否可以运用其他方法来解决,当中是否存在简化计算的技巧等等。

通过实践反思,我们可以不断总结经验,积累解题技巧,提高解决数学难题的能力。

结语数学解决高中数学难题并不是一件容易的事情,但通过掌握一些有效的思维技巧,我们可以更加轻松地应对各种难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思想方法一、函数与方程思想 姓名:
方法1 构造函数关系,利用函数性质解题 班别:
根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。

通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。

例1 (10安徽)设232555322(),(),(),555
a b c ===则,,a b c 的大小关系是( ) ....A a c b
B a b c
C c a b
D b c a >>>>>>>>
例2 已知函数21()(1)ln , 1.2
f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性;
(2) 证明:若5,a <则对任意12121212
()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有
方法2 选择主从变量,揭示函数关系
含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。

例3 对于满足04p ≤≤的实数p ,使2
43x px x p +>+-恒成立的x 的取值范围是 .
方法3 变函数为方程,求解函数性质
实际问题→数学问题→代数问题→方程问题。

宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。

列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

例4
函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ⎡⎤⎡⎤⎡⎤⎡⎤----⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
⎣⎦⎣⎦⎣⎦
方法1 函数与不等式问题中的数形结合
研究函数的性质能够借助于函数的图像,从函数图像上能直观地观察单调性、周期性、对称性等性质。

不等式问题与函数的图像也有密切的联系,比如应用二次函数的图像解决一元二次不等式,就体现了数形结合的思想方法。

所以,解决不等式问题要常联系对应的函数图像,利用函数图像,直观地得到不等式的解集,避免复杂的运算。

例1 (10新课标全国卷)已知函数lg ,010,()16,10.2
x x f x x x ⎧<≤⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是( )
.(1,10).(5,6).(10,12).(20,24)A B C D
变式:函数236,2,()2, 2.
x x f x x x x +≥-⎧=⎨+-<-⎩若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 . 方法2 解析几何中的数形结合
解析几何是用方程研究曲线的问题,蕴含着丰富的数形结合思想,往往要先把题目中的几何语言转化为几何图形,然后再结合这种图形(一般为曲线)的几何特征,用代数语言即方程表现出来,从而用代数的方法解决几何问题。

例 2 已知双曲线22221(0,0)x y a b a b
-=>>的右焦点为F ,若过点F 且倾斜角为060的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
.(1,2].(1,2).[2,).(2,)A B C D +∞+∞
例3 已知P 为抛物线214
y x =上的动点,点P 在x 轴上的射影为M ,点A 的坐标为(2,0),则PA PM +的最小值是 .
方法3 参数范围问题中的数形结合 如果参数具有明显的几何意义,那么能够考虑应用数形结合思想解决问题。

一般地,常见的对应关系有:
(1)y kx b =+中的k 表示直线的 ,b 表示直线在 轴上的 ;
(2)b n a m
--表示连接(,)a b 和(,)m n 两点直线的 ; (3
(,)a b 和(,)m n 之间的 ;
(4)导数'0()f x 表示曲线在点00(,())x f x 处的 。

利用这些对应关系,由数想形,能够巧妙的利用几何法解决。

例4 若直线1y kx =+与圆221x y +=交于P Q 、两点,且0
120POQ ∠=(其中O 为原点),则k 的值为( )
....A B C D -
变式:直线3y kx =+与圆2239()(3)24x y -+-=交于M N 、
两点,若MN ,则k 的取值范围值是( )
32.,0...,043A B C D ⎡⎡⎤⎡⎤⎡--⎢⎢⎥⎢⎥⎣⎣⎦⎣⎦⎣⎦
方法1 概念分类型
有很多核心的数学概念是分类的,比如:直线的斜率、指数函数、对数函数等,与这样的数学概念相关的问题往往需要根据数学概念实行分类,从而全面完整得解决问题。

例1 若函数()(01)x
f x a x a a a =-->≠且有两个零点,则实数a 的取值范围是
方法2 运算需要型
分类讨论的很多问题是由运算的需要引发的,比如:除法运算中分母是否为0;解方程、不等式中的恒等变形;用导数求函数单调性时导数正负的讨论;对数运算中底数是否大于1;数列运算中对公差、公比限制条件的讨论等,如果运算需要对不同情况作出解释,就要实行分类讨论.
例2 设函数329()62f x x x x a =-
+-. (1) 对于任意实数',()x f x m ≥恒成立,求m 的最大值.
(2) 若方程()0f x =有且仅有一个实数,求a 的取值范围.
方法3 参数变化型
很多问题中参数的不同取值会对结果产生影响,所以,需要对参数的取值实行分类,常见的问题有:含参不等式的求解;解析式中含有参数的函数的性质问题;含参二元二次方程表示的曲线类型;参数的几何意义等.
例3 已知函数22()+23(),.x
f x x ax a a e x R a R =
-+∈∈()其中 (1) 当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;
(2) 讨论函数()f x 的单调性.
思想方法四、转化与化归思想
方法1 抽象问题与具体问题化归
具体化原则,就是把一些抽象问题化归为具体问题,从而解决问题.一般地,对于抽象函数、抽象数列等问题,能够借助于熟悉的具体函数、数列等知识,探寻抽象问题的规律,找到解决问题的突破口和方法. 例 1 若定义在R 上的函数()f x 满足:对任意12,x x R ∈有1212()()()1f x x f x f x +=++,则下列说法一定准确的是( )
.().().()+1.()+1A f x B f x C f x D f x 为奇函数为偶函数为奇函数为偶函数
方法2 一般问题与特殊问题化归
数学题目有的具有一般性,有的具有特殊性.解题时,有时需要把一般问题化归为特殊问题,有时需要把特殊问题化归为一般问题.其解题模式是:首先设法使问题特殊(或一般)化,降低难度,然后解这个特殊(或一般)性的问题,从而使原问题获解.
例2 456
,,162536
e e e (其中e 为自然常数)的大小关系是( ) 456
654546645....162536362516251636361625e e e e e e e e e e e e A B C D <<<<<<<<
方法3 正向思维与逆向思维化归
逆向思维水平是指从正向思维序列到逆向思维序列的转换水平.如果经常注意对问题的逆向思考,不但能够加深对可逆仅仅的理解,而且能够提升思维的灵活性.
例3 已知集合{}{}2222(1)(1)0,680A y y a a y a a A y y y =-++++>=-+≤,若0A
B ≠,则实数a 的
取值范围为 .
方法4 命题与等价命题化归
有的命题若直接考虑,则显得无从下手,若把命题化归为他的等价命题,往往柳暗花明.解题时要注意命题与等价命题的转化,尤其是原命题与逆否命题的转化.
例4 设函数32
()33f x x bx cx =++有两个极值点[][]1212,1,0,1,2.x x x x ∈-∈、且 (1)求,b c 满足的约束条件; (2)证明:21
10().2f x -≤≤-。

相关文档
最新文档