高中数学解题基本方法

高中数学解题基本方法
高中数学解题基本方法

高中数学解题基本方法

换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通

过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉

的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x

=sin2α,α∈[0,π

2

],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中

主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。

均值换元,如遇到x+y=S形式时,设x=S

2

+t,y=

S

2

-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例

中的t>0和α∈[0,π

2 ]。

Ⅰ、再现性题组:

1.y=sinx2cosx+sinx+cosx的最大值是_________。

2.设f(x2+1)=log

a

(4-x4) (a>1),则f(x)的值域是_______________。

3.已知数列{a

n }中,a

1

=-1,a

n+1

2a

n

=a

n+1

-a

n

,则数列通项a

n

=___________。

4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。

5.方程13

13

+

+

-x

x

=3的解是_______________。

6.不等式log

2(2x-1) 2log

2

(2x+1-2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx =t ∈[-

2,2],则y =

t

2

2

+t -

12

,对称轴t =-1,

当t =2,y m ax =

12

+2;

2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4]; 3小题:已知变形为

11a n +-

1a n

=-1,设b n =

1a n

,则b 1=-1,b n =-1+(n -1)(-1)

=-n ,所以a n =-

1n

4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1; 5小题:设3x =y ,则3y 2+2y -1=0,解得y =

13

,所以x =-1;

6小题:设log 2(2x -1)=y ,则y(y +1)<2,解得-2

,log 23)。

Ⅱ、示范性题组:

例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求1S m a

x

1S m in

的值。(93年全国高中数学联赛题)

【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设

x S y S ==

?????cos sin αα

代入①式求S m ax 和S min 的值。

【解】设x S y S =

=

??

???cos sin αα

代入①式得: 4S -5S 2sin αcos α=5

解得 S =

10852-sin α

∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴

1013

≤1085-sin α

≤103

∴ 1S m ax

+1S m in

=310

+1310

=1610

=85

此种解法后面求S 最大值和最小值,还可由sin2α=810

S S

-的有界性而求,即解不等

式:|

810S S

-|≤1。这种方法是求函数值域时经常用到的“有界法”。

【另解】 由S =x 2

+y 2

,设x 2

S 2

+t ,y 2

S 2

-t ,t ∈[-

S 2

S 2

],

则xy =±

S

t

2

2

4

-代入①式得:4S ±5

S

t

2

2

4

-=5,

移项平方整理得 100t 2+39S 2-160S +100=0 。 ∴ 39S 2-160S +100≤0 解得:

1013≤S ≤

103

∴ 1S m ax

+1S m in

=310

+1310

=1610

=85

【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2与三角公式cos 2α+sin 2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2而按照均值换元的思路,设x 2=S 2

+t 、y 2=S 2

-t ,减少了元的个数,问题且容易求解。另外,还用到了求值

域的几种方法:有界法、不等式性质法、分离参数法。

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b ,y =a -b ,这称为“和差换元法”,换元后有可能简化代数式。本题设x =a +b ,y =a -b ,代入①式整理得3a 2+13b 2=5 ,求得a 2∈[0,53

],所以S =(a -b)2+(a +b)2

=2(a 2+b 2)=

1013

2013

a 2∈[

1013

,

103

],再求

1S m ax

1S m in

的值。

例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B ,

1cos A

1cos C

=-

2cos B

求cos A C -2

的值。(96年全国理)

【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得

A C

B +=??

?12060°=°;由“A +C =120°”进行均值换元,则设A C =°α

=°-α

6060+??? ,再代入可求cos α即cos

A C -2

【解】由△ABC 中已知A +C =2B ,可得 A C B +=???

12060°

=°,

由A+C=120°,设

A

C

=°α

=°-α

60

60

+

?

?

?

,代入已知等式得:

1 cos A +

1

cos C

1

60

cos()

?+α

1

60

cos()

?-α

1

1

2

3

2

cos sin

αα

-

+1

1 2

3

2

cos sin

αα

+

cos

cos sin

α

αα

1

4

3

4

22

-

cos

cos

α

α

2

3

4

-

=-22,

解得:cosα=

2

2

,即:cos

A C

-

2

2

2

【另解】由A+C=2B,得A+C=120°,B=60°。所以

1

cos A

1

cos C

=-

2

cos B

=-22,设

1

cos A

=-2+m,

1

cos C

=-2-m ,

所以cosA

cosA+cosC

222

m-

cosA-cosC=-2sin A C

+

2

sin

A C

-

2

=-3sin

A C

-

2

2

2

2

m

m-

即:sin A C

-

2

=-

2

32

2

m

m

()

-

,=-

22

2

2

m-

,代入sin2

A C

-

2

+cos2

A C

-

2

=1整理

得:3m4-16m-12=0,解出m2=6,代入cos A C

-

2

22

2

2

m-

2

2

【注】本题两种解法由“A+C=120°”、“

1

cos A

1

cos C

=-22”分别进行均

值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由三角运算直接解出:由A

+C=2B,得A+C=120°,B=60°。所以

1

cos A

1

cos C

=-

2

cos B

=-22,即cosA

+cosC=-22cosAcosC,和积互化得:

2cos A C

+

2

cos

A C

-

2

=-2[cos(A+C)+cos(A-C),即cos

A C

-

2

2

2

-2cos(A-C)

2

2

-2(2cos2

A C

-

2

-1),整理得:42cos2

A C

-

2

+2cos

A C

-

2

-32=0,

解得:cos A C

-

2

2

2

例3. 设a>0,求f(x)=2a(sinx+cosx)-sinx2cosx-2a2的最大值和最小值。

【解】设sinx+cosx=t,则t∈[-2,2],由(sinx+cosx)2

=1+2sinx2cosx得:sinx2cosx=t21 2

-

∴f(x)=g(t)=-1

2

(t-2a)2+

1

2

(a>0),t∈[-2,2]

t=-2时,取最小值:-2a2-22a-1 2

当2a

≥t,取最大值:-2a2+

当1

2

∴f(x)的最小值为-2a2-22a-1

2

,最大值为

1

2

2

2

222

1

2

2

2

2

()

()

<<

-+-≥

?

?

?

?

?

?

?

a

a a a

【注】此题属于局部换元法,设sinx+cosx=t后,抓住sinx+cosx与sinx2cosx的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。

换元过程中一定要注意新的参数的范围(t∈[-2,2])与sinx+cosx对应,否则将会出

错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。

一般地,在遇到题目已知和未知中含有sinx与cosx的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx±cosx,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。

例4. 设对所于有实数x,不等式x2log

241

()

a

a

+

+2x log

2

2

1

a

a+

+log

2

()

a

a

+1

4

2

2

>0恒

成立,求a的取值范围。(87年全国理)y

【分析】不等式中log 2

41()

a a

+、 log 221

a a +、log 2

()a a

+142

2

三项有何联系?进行对

数式的有关变形后不难发现,再实施换元法。

【解】 设log 221a a +=t ,则log 241()a a +=log 2812()a a +=3+log 2a a +1

2=3-

log 2

21

a a +=3-t ,log 2

()a a

+142

2

=2log 2

a a

+12=-2t ,

代入后原不等式简化为(3-t )x 2+2tx -2t>0,它对一切实数x 恒成立,所以: 3048302

->=+-

t t t t ?(),解得t t t <<>???306或 ∴ t<0即log 221a

a +<0 0<

21

a a +<1,解得0

【注】应用局部换元法,起到了化繁为简、化难为易的作用。为什么会想到换元及如何设元,关键是发现已知不等式中log 2

41()

a a

+、 log 2

21

a a +、log 2

()a a

+142

2

三项之间的联

系。在解决不等式恒成立问题时,使用了“判别式法”。另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所

给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。

例5. 已知

sin θx =

cos θy ,且

c o s

2

2

θ

x

sin 2

2

θy

1032

2

()

x y + (②式),求

x y

的值。

【解】 设sin θx

cos θy

=k ,则sin θ=kx ,cos θ=ky ,且sin 2θ+cos 2θ=

k 2(x 2+y 2

)=1,代入②式得:

k y x

2

2

2

k x y

2

2

2

1032

2

()

x y +=

103

2

k 即:

y x

22

x y

22

103

x y

22

=t ,则t +1t =103

, 解得:t =3或13 ∴x y =±3或±3

3

【另解】 由

x y

sin cos θθ

=tg θ,将等式②两边同时除以

cos 2

2

θx

,再表示成含tg θ的

式子:1+tg 4θ=()()

11031122

+?

+

tg tg θθ

=103

tg 2θ,设tg 2θ=t ,则3t 2—10t +3=0,

∴t=3或1

3

,解得

x

y

=±3或±

3

3

【注】第一种解法由sinθ

x

cosθ

y

而进行等量代换,进行换元,减少了变量的个数。

第二种解法将已知变形为x

y

sin

cos

θ

θ

,不难发现进行结果为tgθ,再进行换元和变形。两

种解法要求代数变形比较熟练。在解高次方程时,都使用了换元法使方程次数降低。

例6. 实数x、y满足()

x-1

9

2

()

y+1

16

2

=1,若x+y-k>0恒成立,求k的范围。

【分析】由已知条件()

x-1

9

2

()

y+1

16

2

=1,可以发现它与a2+b2=1有相似之处,

于是实施三角换元。

【解】由()

x-1

9

2

()

y+1

16

2

=1,设

x-1

3

=cosθ,

y+1

4

=sinθ,

即:

x

y

=+

=-+

?

?

?

13

14

cos

sin

θ

θ

代入不等式x+y-k>0得:

3cosθ+4sinθ-k>0,即k<3cosθ+4sinθ=5sin(θ+ψ)

所以k<-5时不等式恒成立。

【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。

本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式ax+by+c>0 (a>0)所表示的区域为直线ax+by+c=0所分平面成两部分中含x轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的

点始终位于平面上x+y-k>0的区域。即当直线x+y

-k=0在与椭圆下部相切的切线之下时。当直线与椭

圆相切时,方程组

16191144

22

()()

x y

x y k

-++=

+-=

?

?

?

有相

等的一组实数解,消元后由△=0可求得k=-3,所以k<-3时原不等式恒成立。

Ⅲ、巩固性题组:

1. 已知f(x3)=lgx (x>0),则f(4)的值为_____。

k 平面区域

A. 2lg2

B. 1

3lg2 C. 2

3

lg2 D. 2

3

lg4

2. 函数y=(x+1)4+2的单调增区间是______。

A. [-2,+∞)

B. [-1,+∞) D. (-∞,+∞)

C. (-∞,-1]

3. 设等差数列{a

n }的公差d=1

2

,且S

100

=145,则a

1

+a

3

+a

5

+……+a

99

的值为

_____。

A. 85

B. 72.5

C. 60

D. 52.5

4. 已知x2+4y2=4x,则x+y的范围是_________________。

5. 已知a≥0,b≥0,a+b=1,则a+1

2+b+1

2

的范围是____________。

6. 不等式x>ax+3

2

的解集是(4,b),则a=________,b=_______。

7. 函数y=2x+x+1的值域是________________。

8. 在等比数列{a

n }中,a

1

+a

2

+…+a

10

=2,a

11

+a

12

+…+a

30

=12,求a

31

+a

32

+…+a

60

9. 实数m在什么范围内取值,对任意实数x,

不等式sin2x+2mcosx+4m-1<0恒成立。

10. 已知矩形ABCD,顶点C(4,4),A点在曲

线x2+y2=2 (x>0,y>0)上移动,且AB

AD始终平行x轴、y轴,求矩形ABCD

最小面积

参数法

参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。

辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。

参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

Ⅰ、再现性题组:

1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。

2. (理)直线x t

y t

=--=+?????2232上与点A(-2,3)的距离等于2的点的坐标是________。

(文)若k<-1,则圆锥曲线x 2-ky 2=1的离心率是_________。

3. 点Z 的虚轴上移动,则复数C =z 2+1+2i在复平面上对应的轨迹图像为____________________。

4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。

5. 设函数f(x)对任意的x 、y ∈R ,都有f(x +y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R 上是______函数。(填“增”或“减”)

6. 椭圆

x

2

16

y

2

4

=1上的点到直线x +2y -2=0的最大距离是_____。

A. 3

B. 11

C. 10

D. 22

【简解】1小题:设2x =3y =5z =t ,分别取2、3、5为底的对数,解出x 、y 、z ,再用“比较法”比较2x 、3y 、5z ,得出3y<2x<5z ;

2小题:(理)A(-2,3)为t =0时,所求点为t =±2时,即(-4,5)或(0,1);(文)已知

曲线为椭圆,a =1,c

e

3小题:设z =b i,则C =1-b 2+2i,所以图像为:从(1,2)出发平行于x 轴向右的射线;

4小题:设三条侧棱x 、y 、z ,则

12

xy =6、

12

yz =4、

12

xz =3,所以xyz =24,体积为4。

5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减; 6小题:设x =4sin α、y =2cos α,再求d =|sin cos |

4425

αα+-

的最大值,选C 。

Ⅱ、示范性题组:

例1. 实数a 、b 、c 满足a +b +c =1,求a 2+b 2+c 2的最小值。

【分析】由a +b +c =1 想到“均值换元法”,于是引入了新的参数,即设a =13

+t 1,

b =

13

+t 2,c =

13

+t 3,代入a 2+b 2+c 2可求。

【解】由a +b +c =1,设a =

13

+t 1,b =

13

+t 2,c =

13

+t 3,其中t 1+t 2+t 3=0,

∴a2+b2+c2=(1

3

+t

1

)2+(

1

3

+t

2

)2+(

1

3

+t

3

)2=

1

3

2

3

(t

1

+t

2

+t

3

)+t

1

2

+t

22+t

3

2=

1

3

+t

1

2+t

2

2+t

3

2≥

1

3

所以a2+b2+c2的最小值是1

3

【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。

本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a2+b2+c2=

(a+b+c)2-2(ab+bc+ac)≥1-2(a2+b2+c2),即a2+b2+c2≥1

3

两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。

例2.椭圆x2

16

y2

4

=1上有两点P、Q,O为原点。连OP、OQ,若k

OP

2k

O Q

=-

1

4

①.求证:|OP|2+|OQ|2等于定值;②.求线段PQ中点M的轨迹方程。

【分析】由“换元法”引入新的参数,即设

x

y

=

=

?

?

?

4

2

cos

sin

θ

θ

(椭圆参数方程),参数θ

1、θ

2

为P、Q两点,先计算k

OP

2k

O Q

得出一个结论,再计算|OP|2+|OQ|2,并运用“参

数法”求中点M的坐标,消参而得。

【解】由x2

16

y2

4

=1,设

x

y

=

=

?

?

?

4

2

cos

sin

θ

θ

,P(4cosθ

1

,2sinθ

1

),Q(4cosθ

2

,2sinθ

2

),

则k

OP 2k

O Q

2

4

1

1

sin

cos

θ

θ

?

2

4

2

2

sin

cos

θ

θ

=-

1

4

,整理得到:

cosθ

1cosθ

2

+sinθ

1

sinθ

2

=0,即cos(θ

1

-θ

2

)=0。

∴|OP|2+|OQ|2=16cos2θ

1+4sin2θ

1

+16cos2θ

2

+4sin2θ

2

=8+12(cos2θ

1+cos2θ

2

)=20+6(cos2θ

1

+cos2θ

2

)=20+12cos(θ

1

+θ

2

)cos(θ

1

-θ

2

)=

20,

即|OP|2+|OQ|2等于定值20。

由中点坐标公式得到线段PQ的中点M的坐标为

x

y

M

M

=+

=+

?

?

?

2

12

12

(cos cos)

sin sin

θθ

θθ

所以有(x

2

)2+y2=2+2(cosθ

1

cosθ

2

+sinθ

1

sinθ

2

)=2,

即所求线段PQ 的中点M 的轨迹方程为x 28+y

2

2=1。

【注】由椭圆方程,联想到a 2+b 2=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M 点的坐标后,将所得方程组稍作变形,再平方相加,即(cos θ1+ cos θ

2

)2+(sin θ1+sin θ

2

)2,这是

求点M 轨迹方程“消参法”的关键一步。一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x 、y 坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。

本题的第一问,另一种思路是设直线斜率k ,解出P 、Q 两点坐标再求: 设直线OP 的斜率k ,则OQ 的斜率为-14k

,由椭圆与直线OP 、OQ 相交于PQ 两点

有:

x y y kx

224160

+-==??

?,消y 得(1+4k 2)x 2=16,即|x P |=4142

+k

x y y 224160

+-==-

???

?

?

||8k 所以|OP|2+|OQ|)2

2080142

2

++k k

=20。即|OP|2+|OQ|2等于定值20。

在此解法中,利用了直线上两点之间的距离公式|AB|=12

+k AB

?|x A -x B |求|OP|和

|OQ|的长。

例3.已知正四棱锥S —ABCD 的侧面与底面的夹角为β,相邻两侧面的夹角为α,求证:cos α=-cos 2β。

【分析】要证明cos α=-cos 2β,考虑求出α、β的余弦,则在α和β所在的三角形中利用有关定理求解。

【解】连AC 、BD 交于O ,连SO ;取BC 中点F ,连SF 、OF ;作BE ⊥SC 于E ,连DE 。则∠SFO =β,∠DEB =α。

设BC =a (为参数), 则SF =

O F cos β

a 2cos β

,

C A B

SC =SF F C 22+=(

cos )(

)a a 22

2

2

β

+

a 2cos β

12

+cos β

又 ∵BE =

SF BC SC

2=

a

2

2cos β

?

1212

a cos cos β

β

+=

a 12

+cos β

在△DEB 中,由余弦定理有:cos α=

2222

2

BE BD

BE

-=

2122122

2

2

2

?

+-?

+a

a

a

cos cos ββ

=-cos 2

β。

所以cos α=-cos 2β。

【注】 设参数a 而不求参数a ,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。

Ⅲ、巩固性题组:

1. 已知复数z 满足|z|≤1,则复数z +2i在复平面上表示的点的轨迹是________________。

2. 函数y =x +2+

142

--x x

的值域是________________。

3. 抛物线y =x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值为_____

A. 5

B. 10

C. 2

3

D. 3

4. 过点M(0,1)作直线L ,使它与两已知直线L 1:x -3y +10=0及L 2:2x +y -8=0所截得的线段被点P 平分,求直线L 方程。

5. 求半径为R 的球的内接圆锥的最大体积。

6. f(x)=(1-a 2

cos 2x)sinx ,x ∈[0,2π),求使f(x)≤1的实数a 的取值范围。

7. 若关于x 的方程2x 2

+xlg ()a a

23

3

18-+lg 2

(

a a

2

12-)+lg

21

2

a a

-=0有模为1的虚根,求实

数a 的值及方程的根。

8. 给定的抛物线y 2=2px (p>0),证明:在x 轴的正向上一定存在一点M ,使得对于抛物线的任意一条过点M 的弦PQ ,有12

||

M P +

12

||

M Q 为定值。

数学归纳法

归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n ≥n 0且n ∈N )结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。 运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 Ⅰ、再现性题组:

1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n

2122…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。

A. 2k +1

B. 2(2k +1)

C. 21

1k k ++ D. 23

1k k ++

2. 用数学归纳法证明1+1

2+1

3+…+1

21n

-1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。 A. 2

k -1

B. 2k -1

C. 2k

D. 2k

+1

3. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。现已知当n =5时该命题不成立,那么可推得______。 (94年上海高考) A.当n =6时该命题不成立 B.当n =6时该命题成立 C.当n =4时该命题不成立 D.当n =4时该命题成立

4. 数列{a n

}中,已知a 1=1,当n ≥2时a n =a n -1+2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是_____。

A. 3n -2

B. n 2

C. 3n -1

D. 4n -3

5. 用数学归纳法证明3

42

n ++5

21

n + (n ∈N)能被14整除,当n =k +1时对于式子3

412

()k +++

5

211

()k ++应变形为_______________________。

6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k)+_________。 【简解】1小题:n =k 时,左端的代数式是(k +1)(k +2)…(k +k),n =k +1时,左端的代数式

是(k +2)(k +3)…(2k +1)(2k +2),所以应乘的代数式为()()

21221

k k k +++,选B ;

2小题:(2

k +1

-1)-(2k -1)=2k

,选C ;

3小题:原命题与逆否命题等价,若n =k +1时命题不成立,则n =k 命题不成立,选C 。 4小题:计算出a 1=1、a 2=4、a 3=9、a 4=16再猜想a n ,选B ; 5小题:答案(3

42

k ++5

21

k +)3k +5

21

k +(52-34

);

6小题:答案k -1。 Ⅱ、示范性题组:

已知数列81

132

2

22,得,…,8212122

22n

n n ()()-+,…。S n 为其前n 项和,求S 1、S 2、

S 3、S 4,推测S n 公式,并用数学归纳法证明。 (93年全国理)

【解】 计算得S 1=8

9,S 2

4

猜测S n =()()

211

212

2

n n +-+ (n ∈N)。

当n =1时,等式显然成立;

假设当n =k 时等式成立,即:S k

()()

211

212

2

k k +-+,

当n =k +1时,S k +1=S k +81212322

22()

()()k k k +++

()()

211

212

2

k k +-++81212322

22()

()()k k k +++

()()()()

()()

2123238121232

2

2

22

k k k k k k +?+-+++++22

()()()

()()

21232121232

2

2

22

k k k k k +?+--++2=

()()

231

232

2

k k +-+,

由此可知,当n =k +1时等式也成立。

综上所述,等式对任何n ∈N 都成立。

【注】 把要证的等式S

k +1

()()

231

232

2

k k +-+作为目标,先通分使分母含有(2k +3)2

,再考虑

要约分,而将分子变形,并注意约分后得到(2k +3)2

-1。这样证题过程中简洁一些,有效地确定了证题的方向。本题的思路是从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是关于探索性问题的常见证法,在数列问题中经常见到。 假如猜想后不用数学归纳法证明,结论不一定正确,即使正确,解答过程也不严密。必须要进行三步:试值 → 猜想 → 证明。 【另解】 用裂项相消法求和:

由a n =821212

2

22n

n n ()()-+=1

212

()n --1

212

()n +得,

S n

=(1-1

32)+(132-1

52

)+……+1

212

()n --1

212

()n +=1-1

212

()n +

=()()

211

212

2

n n +-+。

此种解法与用试值猜想证明相比,过程十分简单,但要求发现=

1

212

()n --1

212

()n +的裂项公式。可以说,用试值猜想证明三步解题,具有一般性。

例2. 设a n =123+233+…+n n ()

+1 (n ∈N),证明:1

2n(n +1)

2 (n +

1)2

【分析】与自然数n 有关,考虑用数学归纳法证明。n =1时容易证得,n =k +1时,因为a

k +1

=a

k

()()

k k ++12,所以在假设n =k 成立得到的不等式中同时加上

()()

k k ++12,再与目标比较而进行适当的放缩求解。

【解】 当n =1时,a n =2,1

2n(n+1)=1

2,1

2 (n+1)2

=2 ,

∴ n =1时不等式成立。

假设当n =k 时不等式成立,即:1

2k(k +1)

2 (k +1)2

当n =k +1时,1

2k(k +1)+

()()

k k ++12

2(k +1)2

()()

k k ++12,

1

2k(k +1)+()()k k ++12>1

2k(k +1)+(k +1)=1

2(k +1)(k +3)>1

2(k +1)(k +2), 1

2(k +1)2+

()()

k k ++12=1

2(k +1)2+k k 232++<1

2(k +1)2

+(k +3

2)=1

2(k +

2)2

所以1

2(k +1)(k +2)

2(k +2)2

,即n =k +1时不等式也成立。

综上所述,对所有的n ∈N ,不等式12n(n +1)

2(n +1)2

恒成立。

【注】 用数学归纳法解决与自然数有关的不等式问题,注意适当选用放缩法。本题中分别

()()

k k ++12缩小成(k +1)、将

()()

k k ++12放大成(k +3

2)的两步放缩是证n =k +

1时不等式成立的关键。为什么这样放缩,而不放大成(k +2),这是与目标比较后的要求,也是遵循放缩要适当的原则。

目标比较后,进行适当的放大和缩小。解法如下:由

n n ()

+1>n 可得,a n >1+2+3+…

+n =1

2n(n +1);由n n ()

+1

2可得,a n <1+2+3+…+n +1

23n =1

2n(n +1)+1

2n

=1

2(n 2+2n)<1

2(n +1)2。所以1

2n(n +1)

2(n +1)2

例3. 设数列{a n }的前n 项和为S n ,若对于所有的自然数n ,都有S n =n a a n ()

12

+,证明

{a n }是等差数列。 (94年全国文)

【分析】 要证明{a n }是等差数列,可以证明其通项符合等差数列的通项公式的形式,即证:a n =a 1+(n -1)d 。命题与n 有关,考虑是否可以用数学归纳法进行证明。 【解】 设a 2-a 1=d ,猜测a n =a 1+(n -1)d

当n =1时,a n =a 1, ∴ 当n =1时猜测正确。

当n =2时,a 1+(2-1)d =a 1+d =a 2, ∴当n =2时猜测正确。 假设当n =k (k ≥2)时,猜测正确,即:a k =a 1+(k -1)d ,

当n =k +1时,a k +1=S k +1-S k =

()()

k a a k +++12

11-

k a a k ()

12

+,

将a k =a 1+(k -1)d 代入上式, 得到2a k +1=(k +1)(a 1+a k +1)-2ka 1-k(k -1)d , 整理得(k -1)a k +1=(k -1)a 1+k(k -1)d ,

因为k ≥2,所以a k +1=a 1+kd ,即n =k +1时猜测正确。

综上所述,对所有的自然数n ,都有a n =a 1+(n -1)d ,从而{a n }是等差数列。

【注】 将证明等差数列的问题转化成证明数学恒等式关于自然数n 成立的问题。在证明过

程中a k +1的得出是本题解答的关键,利用了已知的等式S n =

n a a n ()

12

+、数列中通项与前

n 项和的关系a k +1=S k +1-S k 建立含a k +1的方程,代入假设成立的式子a k =a 1+(k -1)d 解出来a k +1。另外本题注意的一点是不能忽视验证n =1、n =2的正确性,用数学归纳法证明时递推的基础是n =2时等式成立,因为由(k -1)a k +1=(k -1)a 1+k(k -1)d 得到a k +1=a 1+kd 的条件是k ≥2。

【另解】 可证a n +1 -a n = a n - a n -1对于任意n ≥2都成立:当n ≥2时,a n =S n -S n -1

n a a n ()

12

+-

()()

n a a n -+-12

11;同理有a n +1=S n +1-S n =

()()

n a a n +++12

11-

n a a n ()

12

+;从而a n +1-a n =

()()

n a a n +++12

11-n(a 1+a n )+

()()

n a a n -+-12

11,整理

得a n +1 -a n = a n - a n -1,从而{a n }是等差数列。

一般地,在数列问题中含有a n 与S n 时,我们可以考虑运用a n =S n -S n -1的关系,并注意只对n ≥2时关系成立,象已知数列的S n 求a n 一类型题应用此关系最多。 Ⅲ、巩固性题组: 用数学归纳法证明:6

21

n -+1 (n ∈N)能被7整除。

用数学归纳法证明:134+237+3310+…+n(3n+1)=n(n+1)2(n∈N)。n∈N,试比较2n与(n+1)2的大小,并用证明你的结论。

用数学归纳法证明等式:cos x

22cos

x

222cos

x

232…2cos

x

n

2=

sin

sin

x

x

n

n

2

2

2

(81年全国高考)

用数学归纳法证明:|sinnx|≤n|sinx| (n∈N)。(85年广东高考)

6. 数列{a n}的通项公式a n=

1

12

()

n+(n∈N),设f(n)=(1-a1)(1-a2)…(1-a n),试求f(1)、

f(2)、f(3)的值,推测出f(n)的值,并用数学归纳法加以证明。

已知数列{a n}满足a1=1,a n=a n-1cosx+cos[(n-1)x],(x≠kπ,n≥2且n∈N)。

①.求a2和a3;②.猜测a n,并用数学归纳法证明你的猜测。

8. 设f(log a x)=a x

x a

()

()

2

2

1

1

-

-, ①.求f(x)的定义域;②.在y=f(x)的图像上是否存在两个不同

点,使经过这两点的直线与x轴平行?证明你的结论。③.求证:f(n)>n (n>1且n∈N)

待定系数法

要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

使用待定系数法,它解题的基本步骤是:

第一步,确定所求问题含有待定系数的解析式;

第二步,根据恒等的条件,列出一组含待定系数的方程;

第三步,解方程组或者消去待定系数,从而使问题得到解决。

如何列出一组含待定系数的方程,主要从以下几方面着手分析:

①利用对应系数相等列方程;

②由恒等的概念用数值代入法列方程;

③利用定义本身的属性列方程;

④利用几何条件列方程。

比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

Ⅰ、再现性题组: 1. 设f(x)=x 2

+m ,f(x)的反函数f -1(x)=nx -5,那么m 、n 的值依次为_____。

A.

52

, -2 B. -52

, 2 C.

52

, 2 D. -

52

,-2

2. 二次不等式ax 2+bx +2>0的解集是(-12

,

13

),则a +b 的值是_____。

A. 10

B. -10

C. 14

D. -14 3. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____。 A. -297 B.-252 C. 297 D. 207 4. 函数y =a -bcos3x (b<0)的最大值为32

,最小值为-

12

,则y =-4asin3bx 的最小

正周期是_____。

5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________。

6. 与双曲线x

2

y

2

4

=1有共同的渐近线,且过点(2,2)的双曲线的方程是

____________。 【简解】1小题:由f(x)=x 2

+m 求出f -1(x)=2x -2m ,比较系数易求,选C ;

2小题:由不等式解集(-

ax 2+bx +2=0的两根,代入

两根,列出关于系数a 、b 的方程组,易求得3小题:分析x 5的系数由C 105与(-1)C 102

两项组成,相加后得x 5的系数,选D ;

4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案

23

π;

5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0; 6小题:设双曲线方程x 2

-y

2

4

=λ,点(2,2)代入求得λ=3,即得方程

x

2

3

y

2

12

=1。

Ⅱ、示范性题组: 例1. 已知函数y =

m x x n

x 2

2431

+++的最大值为7,最小值为-1,求此函数式。

【分析】求函数的表达式,实际上就是确定系数m 、n 的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。

【解】 函数式变形为: (y -m)x 2-43x +(y -n)=0, x ∈R, 由已知得y -m ≠0 ∴ △=(-43)2-4(y -m)(y -n)≥0 即: y 2-(m +n)y +(mn -12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y 2

-(m +n)y +(mn -12)=0的两根,

代入两根得:

1120

497120

+++-=

-++-=

?

?

?

()

()

m n m n

m n m n

解得:

m

n

=

=

?

?

?

5

1

m

n

=

=

?

?

?

1

5

∴ y=5431

1

2

2

x x

x

++

+

或者y=

x x

x

2

2

435

1

++

+

此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y2-6y-7≤0,然后与不等式①比较

系数而得:

m n

m n

+=

-=-

?

?

?

6

127

,解出m、n而求得函数式y。

【注】在所求函数式中有两个系数m、n需要确定,首先用“判别式法”处理函数值域问题,得到了含参数m、n的关于y的一元二次不等式,且知道了它的解集,求参数m、n。两种方法可以求解,一是视为方程两根,代入后列出m、n的方程求解;二是由已知解集写出不等式,比较含参数的不等式而列出m、n的方程组求解。本题要求对一元二次不等式的解集概念理解透彻,也要求理解求函数值域的“判别式法”:将y视为参数,函数式化成含参数y的关于x的一元二次方程,可知其有解,利用△≥0,建立了关于参数y的不等式,解出y的范围就是值域,使用“判别式法”的关键是否可以将函数化成一个一元二次方程。

例2. 设椭圆中心在(2,-1),它的一个焦点与短轴两端连线互相垂直,且此焦点与长轴较近的端点距离是10-5,求椭圆的方程。

【分析】求椭圆方程,根据所给条件,确定几何数据a、b、c之值,问题就全部解决了。设a、b、c后,由已知垂直关系而联想到勾股定理建立

一个方程,再将焦点与长轴较近端点的距离转化为a-c

的值后列出第二个方程。

【解】设椭圆长轴2a、短轴2b、焦距2c,则|BF’|

=a

a b c

a a b

a c

222

222

2

105

=+

+=

-=-

?

?

?

?

?

()解得:

a

b

=

=

?

?

?

??

10

5

∴所求椭圆方程是:x2

10

y2

5

=1

也可有垂直关系推证出等腰Rt△BB’F’后,由其性质推证出等腰Rt△B’O’F’,再进行如

下列式:

b c

a c

a b c

=

-=-

=+

?

?

?

?

?

105

222

,更容易求出a、b的值。

【注】圆锥曲线中,参数(a、b、c、e、p)的确定,是待定系数法的生动体现;如何确定,要抓住已知条件,将其转换成表达式。在曲线的平移中,几何数据(a、b、c、e)不变,本题就利用了这一特征,列出关于a-c的等式。

一般地,解析几何中求曲线方程的问题,大部分用待定系数法,基本步骤是:设方程(或几何数据)→几何条件转换成方程→求解→已知系数代入。

y B’

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学九大解题技巧

高中数学九大解题技巧 1、配法 通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的 恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常 用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、 几何、三角等的解题中起着重要的作用。因式分解的方法有许多, 除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相 乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数 学式子中,用新的变元去代替原式的一个部分或改造原来的式子, 使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别, △=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代 数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算 中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个 数的和与积,求这两个数等简单应用外,还可以求根的对称函数,

计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线 的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学 中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从 而使问题得以解决,这种解题的数学方法,我们称为构造法。运用 构造法解题,可以使代数、三角、几何等各种数学知识互相渗透, 有利于问题的解决。 7、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有 时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题 的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到 求证的结果。所以用面积法来解几何题,几何元素之间关系变成数 量之间的关系,只需要计算,有时可以不添置补助线,即使需要添 置辅助线,也很容易考虑到。 8、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集 合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高中数学解题的21个典型方法和技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ①零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ①两边平方法:适用于两边非负的方程或不等式。 ①几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2 222a ab b a b ±+=± ①()2 222222a b c ab bc ca a b c +++++=++ ①()()()22222212 a b c ab bc ca a b b c c a ??+++++=+++++?? ①222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设①列①解①写

6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ①配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ①求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8的基本思路:把m 化成完全平方式。 即 2 m a a a =???=??????→按的情况分类讨论结果 9()2 a x y ±=±其中220xy x y a x y =+=>>且。 10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。 11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。 12、恒等成立的条件: ①0ax b +=对于任意x 都成立?关于x 的方程0ax b +=有无数个解?00a b ==且。 ①20ax bx c ++=对于任意x 都成立?关于x 的方程20ax bx c ++=有无数个解?

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

【高二数学的解题的方法介绍】高二数学题库

高二网权威发布高二数学的解题的方法介绍,更多高二数学的解题的方法介绍相关信息请访问高二网。 【导语】掌握正确有效的解题方法会让学生在解题的时候可以节省很多的时间,下面大范文网将为大家带来高中数学的解题的方法介绍,希望能够帮助到大家。 高中数学的解题的方法 确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。 面对难题,讲究方法,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 缺步解答。 对一个疑难问题,确实啃不动时,一个明智的解题方法是将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 跳步解答。 解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方

高中数学解题方法与技巧.doc

高中数学解题方法与技巧 高中数学解题方法与技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a 0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,会做的题才能得分。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 有关高中数学学习的注意事项的推荐 1、注意化归转化思想学习。 人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。 2、学会数学教材的数学思想方法。 数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

相关文档
最新文档