高中数学解题方法与技巧.doc
高中数学解题技巧

高中数学解题技巧一、“构造法+函数法”的结合而且本题还可以从另一个思路进行解答,就是运用复数模的概念,将相联系的数据和看成一个模函数,仍然可以得到所求的结果。
二、转换法这种方法是体现学生的想象力及创新能力的方法,也是数学解题技巧中最富有挑战性的方法,能将复杂的题型辅以转换的功能,成为简单的、易被理解的题型。
比如,一个正方体平面为ABCB和A1B1C1D1,在正方体的棱长D1C1和C1B1分别设置两点E和F为中点,AC与BD相交于P点,A1C1于EF相交于Q点,求证:(1)点D、B、F、B在同一平面上;(2)如果线段A1C通过平面DBFE,交点到R点,那么P、R、Q三点共线?解题(1):由题可知:线段EF是△D1B1C1的中位线,所以,EF与B1D1平行,在正方体AC1中,线段B1D1与BD平行,相应得出:线段EF与线段BD相平行,由此得出线段EF和BD在一个平面,所以可以求得点D、B、F、E在同一个平面。
解题(2):假设平面A1ACC1为x,平面BDEF为y,由于Q点在平面AC,所以Q点也属于平面x,为x和y的交点,同属两个平面的点。
同理可得,点P也属x、y的公共点,而R点是平面A1C与平面y的交点,所以,可以得到P、Q、R 三点共线。
三、反证法任何事物的结果有时顺着程序去思考,往往不得要领,倘若从结果向事物开始的方向或用假设的反方向去推理,反倒会“一片洞天”。
数学解题技巧也是如此。
首先,假设命题结论相反的答案,顺理演绎地解答,得出假设的矛盾结果,从另一侧面论证了正确答案。
例如,苏教版教材必修1《函数》章节,已知函数f(x)是一项正负无限大范围内的增函数,a、b都为实数,求证:(1)假设:(a+b)≥0,则函数式表示为:f(a)+f(b)≥f(-a)+f(-b)成立;(2)求证(1)问中逆命题是否正确。
解题分析:(1)因为(a+b)≥0,移项后,可得:a≥-b,由于函数为单调递增函数,则:f(a)≥f(-b),又(a+b)≥0,移项后,可得:b≥-a,f(b)≥f(-a);两个方程相加,得:f(a)+f(b)≥f(-a)+f(-b),由此证明完毕。
高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学经典的解题技巧和方法(导数及其应用)

高中数学经典的解题技巧和方法(导数及其应用) 导数及其应用是高中数学考试的必考容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考容之一。
因此,针对这两个部分的容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。
好了,下面就请同学们跟我们一起来探讨下集合跟常用逻辑用语的经典解题技巧。
首先,解答导数及其应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1•导数概念及其几何意义(1)了解导数概念的实际背景。
(2 )理解导数的几何意义。
2 •导数的运算(1 )能根据导数定义求函数y C(C为常数),y x, y x2, y x3, y丄,y J X的导数。
x(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如f(ax b)的复合函数)的导数。
3 •导数在研究函数中的应用(1 )了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2 )了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)4 •生活中的优化问题会利用导数解决某些实际问题5 .定积分与微积分基本定理(1 )了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2 )了解微积分基本定理的含义。
好了,搞清楚了导数及其应用的基本容之后,下面我们就看下针对这两个容的具体的解题技巧。
一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线y f(x)的切线是导数的重要应用,为近几年各省市高考命题的热点。
2 .常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
高中数学50个解题小技巧

高中数学50个解题小技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学解题技巧与方法

高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。
许多学生在面对数学题目时感到困扰,不知道如何下手。
本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。
一、理清思路在解题之前,首先要理清思路。
仔细阅读题目,分析题目的要求和条件。
可以在纸上做标记或者画图来帮助理解题目。
同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。
二、多角度思考在解题过程中,不要被固定的思维方式所限制。
尝试从不同的角度思考问题,寻找不同的解题思路。
这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。
三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。
因此,培养逻辑思维是解题的关键。
可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。
合理运用推理能力,可以更快地找到解题的方法。
四、归纳总结解题过程中,要善于归纳总结。
将解题的方法和思路记录下来,形成笔记或者思维导图。
这样有助于巩固所学知识,也方便在以后的学习中查阅。
通过总结,我们可以更好地掌握解题的技巧和方法。
五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。
可以选择一些专门的习题集或者题库进行练习。
在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。
六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。
可以向老师请教,或者与同学进行讨论。
他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。
总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。
掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。
加油吧!。
高中数学解题思路方法与技巧分析

高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高中数学21种解题方法与技巧全汇总.doc

高中数学21种解题方法与技巧全汇总解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x 的方程ax+b=0有无数个解a=0且b=0。
高中数学解题基本方法:配方法.doc

高考第二轮复习第一章 高中数学解题基本方法:配方法一、(课时9)一、知识提要配方法主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题.常见配方形式,如:ab b a ab b a b a 2)(2)(2222+-=-+=+;222222)23()2(3)()(b b a ab b a ab b a b ab a ++=+-=-+=++; ])()()[(21222222a c c b b a ca bc ab c b a +++++=+++++. 2)cos (sin 2sin 1ααα+=+;2)1(2)1(12222+-=-+=+x x x x xx ;…… 等等. 二、例题讲解例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____. A. 23 B. 14 C. 5 D. 6解:设长方体长宽高分别为z y x ,,,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211424()()xy yz xz x y z ++=++=⎧⎨⎩. 长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=6112-=5,所以选B.例2. 设方程022=++kx x 的两实根为p 、q ,若(p q )+(q p)≤7成立,求实数k 的取值范围.解:方程022=++kx x 的两实根为p 、q ,由韦达定理得:2,=-=+pq k q p , (p q )+(q p )=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222 =()k 22484--≤7, 解得10-≤k 或10≥k . 又 ∵p 、q 为方程022=++kx x 的两实根, ∴ 082≥-=∆k即22≥k 或22-≤k ,综上可得,k 的取值范围是:-2210-≤≤k 或≤≤k 2210.例3.设二次函数c bx ax x f ++=2)(,给定m 、n )(n m <,且满足 0])([2])[(222222=++-++++c b cmn n m b a n m n m a ,(1)解不等式0)(>x f ;(2)是否存在一个实数t ,使当),(t n t m x -+∈时,0)(<x f ?若不存在,说出理由;若存在,指出t 的取值范围.解:(1)由已知得,0≠a 且0)(])([22=-+++c amn b n m a , ∴ac mn a b n m =-=+,即m 、n 是方程02=++c bx ax 的两根,且n m <,所以, 当0>a 时,0)(>x f 的解集为n x x >|{或}m x <;当0<a 时, 0)(>x f 的解集为}|{n x m x <<,(2)当0>a 时,0)(<x f 的解集为}|{n x m x <<, 若20m n t -<≤,则),(),(n m t n t m ⊆-+,即),(t n t m x -+∈时,0)(<x f ; 若0<t ,则),(),(n m t n t m ⊆-+,不满足对所有的),(t n t m x -+∈,0)(<x f .当0<a 时,0)(<x f 的解集为n x x >|{或}m x <,不存在t 使得),(t n t m x -+∈ 时,0)(<x f 成立.综上可得,当0>a 时,存在t 满足),(t n t m x -+∈时,0)(<x f ,此时t 的取值范围为20m n t -<≤;当0<a 时不存在t 使得),(t n t m x -+∈时,0)(<x f 成立.三、同步练习1.在正项等比数列}{n a 中,252735351=⋅+⋅+⋅a a a a a a ,则53a a +=___5___.2.方程052422=+--+k y kx y x 表示圆的充要条件是___411<>k k 或____. 3.函数)352(log 221++-=x x y 的单调递增区间是( D ) A. )45,(-∞ B.),45[+∞ C.]45,21(- D.)3,45[4.已知方程01)2(2=-+-+a x a x 的两根1x 、2x ,且点P (1x ,2x )在圆x +y =4上,则实数a =___73±__. 5.函数22)()(b x a x y -+-=(a 、b 为常数)的最小值为( B ) A.8 B.()a b -22 C.a b 222+ D.最小值不存在 6.设1F 和2F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,则△21PF F 的面积是___1___.7.椭圆0632222=-++-a y ax x 的一个焦点在直线04=++y x 上,则=a ( C )A.2B.-6C. -2或-6D. 2或68. 设R m t s ∈>>,1,1,)log (log log log ,log log 2244s t m s t y s t x t s t s t s +++=+=,(1)将y 表示为x 的函数)(x f y =,并求出)(x f 的定义域;(2)若关于x 的方程0)(=x f 有且仅有一个实根,求m 的取值范围.解:(1))2(2)2()2()(222≥--+-=x x m x x f(2)1-<m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题方法与技巧
高中数学解题方法与技巧
一、答题和时间的关系
整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。
往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很亏。
高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。
因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。
二、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。
只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。
如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。
适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
三、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。
只有耐心仔细地审题,准确地把握题目中的关键词与量(如至少,a 0,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。
四、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的情况,考生自己的估分与实际得分差之甚远。
如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很巧妙,但是由于不善于把图形语言准确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,许多考生心中有数却说不清楚,扣分者也不在少数。
只有重视解题过程的语言表述,会做的题才能得分。
五、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。
近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打持久战,那样既耗费时间又拿不到分,会做的题又被耽误了。
这几年,数学试题已从一题把关转为多题把关,因此解答题都设置了层次分明的台阶,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有咬手的关卡,看似难做的题也有可得分之处。
所以考试中看到容易题不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
有关高中数学学习的注意事项的推荐
1、注意化归转化思想学习。
人们学习过程就是用掌握的知识去理解、解决未知知识。
数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。
初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。
可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。
2、学会数学教材的数学思想方法。
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。
概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。
实施这两步的措施可在课堂的听讲和课外的自学中进行。
课堂学习是数学学习的主战场。
课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。
如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。
(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。
④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。
望同学们把握好课堂这个学习的主战场。