桥梁抗风概述(重庆大学)

合集下载

悬索桥抗风综述4700字

悬索桥抗风综述4700字

悬索桥抗风综述4700字摘要:本文以大跨径悬索桥的抗风为研究对象,总结阐述了抗风研究的历史过程,着重分析了桥梁抗风设计的方法:采用拉索系统提高扁平箱梁形式悬索桥颤振临界风速;通过改善桥梁断面的外形来减小气动力的空气动力学措施;在加劲梁上安装一些辅助装置来增大结构的阻尼,并减小作用在结构上的气动力,从而达到提高悬索桥气动稳定性的目的的机械措施。

文中还对超长跨径悬索桥建设的可行性进行了研究。

关键词:桥梁抗风,拉索系统,空气动力学,机械措施,阻尼器1. 塔科玛桥的倒塌1940年华盛顿州塔科玛市的海面上刮起了风速19m/s的强风,刚竣工的全新的塔科玛悬索桥在风的吹动下,诱发了扭转振动导致了可怕的跨桥事故。

设计塔科玛桥时充分考虑了风的静力作用,还委托华盛顿大学做了模型试验,并无任何疏忽与漏洞。

事故的原因并不是风的静力作用,而是随时间变化的风产生的作用力所致。

塔科玛桥的悲剧发生之后,美国采用的确保悬索桥抗风稳定性的方法主要是两种。

一种是采用桁架加劲梁和开敞式的桥面使涡旋分散的方法,另一种是由自重增加刚度的方法。

北美抗风对策的实质是桁架和重量。

2. 欧洲抗风方式的改进欧洲的技术人员开始注意到了一种新的途径,例如采用扁平的翼型断面(Airfoil or Aerofoil Section)以减小风的作用力或者抑制涡旋的产生。

加劲梁由桁架向翼型断面箱梁的转变使悬索桥变得更加轻,更加经济了。

箱梁的另一个优点是和桁架相比,风的抗力仅为1/3,由于塔顶主缆传来的水平反力是由桥面系70%的风力而产生的,风的抗力减少至1/3,无疑对塔的设计带来很大的影响”。

采用这种方式的赛文桥由于忽视了悬索桥的重量而造的太轻了,在风作用和车辆行驶作用下,成为极敏感的结构。

风洞试验的结果,虽然没有出现塔科玛桥那样的破坏振动,但却总是常常出现发出嘎啦嘎啦响声的振动。

3. 20世纪末的悬索桥20世纪才真正是长大悬索桥的发展时期,日本架设了跨度近2 000m的世界第一的明石海峡大桥。

桥梁设计中的抗风性能优化与评估研究

桥梁设计中的抗风性能优化与评估研究

桥梁设计中的抗风性能优化与评估研究在现代交通基础设施建设中,桥梁作为跨越江河湖海、山谷沟壑的重要建筑物,发挥着至关重要的作用。

然而,风对桥梁的影响不容忽视,强风可能导致桥梁结构的振动、失稳甚至破坏,严重威胁着桥梁的安全和正常使用。

因此,在桥梁设计中,抗风性能的优化与评估成为了一个关键的研究课题。

一、风对桥梁的作用及影响风对桥梁的作用主要包括静力作用和动力作用。

静力作用是指风对桥梁结构产生的稳定压力和吸力,如桥梁的主梁、桥墩等部位会受到风的压力和吸力,可能导致结构的变形和内力增加。

动力作用则更为复杂,包括颤振、抖振和涡振等。

颤振是一种自激振动,当风速超过一定临界值时,桥梁结构可能发生大幅的、不稳定的振动,甚至导致结构破坏。

抖振是由风的脉动成分引起的随机振动,虽然不会导致结构的立即破坏,但长期的抖振作用会使结构产生疲劳损伤。

涡振则是由于风绕流桥梁结构时产生的周期性漩涡脱落引起的结构振动,通常振幅较小,但在特定条件下也可能对桥梁的舒适性和安全性产生影响。

二、桥梁抗风性能的优化设计方法为了提高桥梁的抗风性能,在设计阶段可以采取多种优化方法。

1、合理的桥型选择不同的桥型在抗风性能上具有不同的特点。

例如,悬索桥和斜拉桥由于其柔性较大,对风的敏感性相对较高;而梁桥和拱桥则相对较为刚性,抗风性能较好。

在设计时,应根据桥梁的跨度、地形条件和使用要求等因素,选择合适的桥型。

2、优化桥梁的外形和截面桥梁的外形和截面形状对风的绕流特性有重要影响。

通过采用流线型的外形和合理的截面形状,可以减小风的阻力和漩涡脱落,从而降低风对桥梁的作用。

例如,在主梁设计中,可以采用箱梁截面代替传统的 T 型梁截面,以提高抗风性能。

3、增加结构的阻尼阻尼是结构消耗能量的能力,增加结构的阻尼可以有效地抑制风振响应。

常见的增加阻尼的方法包括使用阻尼器、在结构中设置耗能构件等。

4、加强结构的连接和整体性良好的结构连接和整体性可以提高桥梁在风作用下的稳定性。

桥梁抗风设计研究

桥梁抗风设计研究

桥梁抗风设计研究谷子(重庆大学土木工程学院,重庆400015)[摘要]桥梁结构在风的作用下的破坏现象是危害性巨大且对交通影响极为恶劣的现象。

本文通过对于旧塔科马大桥桥毁事故的回顾阐释了桥梁抗风设计的重要性,同时对桥梁在风作用下的静力作用和动力作用做出了说明Q另外,本文通过从桥梁的结构措施、气动措施、机械减震措施三个方面说明了当今桥梁抗风的主要方法。

[关键词]桥梁风方程;抗风设计;桥梁减震 文章编号:2095 -4085(2018)06 -0037 -021抗风设计的重要性[1,2]风对桥梁产生的不利作用是多方面的。

由风引 起的不同程度的桥梁振动会产生各种各样的危害作 用。

当振动达到人可以感知的范围时会使使用者产 生不安全感。

剧烈的振动还可能造成桥梁毁坏并产 生人员伤亡和巨大的经济损失。

桥梁的抗风设计不 是自古就有的,而是在一^次又一^次的工程经验和工 程事故中总结得出来的。

其中比较有名的是美国旧 塔科马悬索桥的风毁事故(图1)。

图1被风摧毁的塔科马悬索桥旧塔科马大桥建于1940年,是一座悬索桥。

该 桥主跨为853m,宽为11.9m,加劲梁采用H型板梁,梁高2.45m。

该桥纤细的桥型也成为了其之后风毁 的根本原因。

在刚通车使用的时候,旧塔科马桥就表现出在 风的作用下产生强烈震动的情况,其振幅最大可达 1.5m。

4个月后,由于放置在跨中约束主缆和加劲 梁之间位移的斜拉索的断裂,旧塔科马桥的振型突 然发生了改变。

在秒速18m的风的作用下,其扭转 震动越来越强烈,主跨四分之一断面以±45°的幅度 反复翻转。

在震动持续数小时后桥梁终于断裂,大 部分加劲梁坠入河中。

后续科学家证明旧塔科马桥是由于发生了风致颤振导致了最后的破坏。

逐步研 究表明大跨度柔性桥梁存在这多种形式的振动,如 颤振、抖振、涡振、驰振等。

2风对结构的作用2.1静力作用结构保持静止或其振动不影响空气力,在稳定 的风作用下的定常反应称为风的静力作用。

桥梁抗风研究方法综述

桥梁抗风研究方法综述

4 结束语
通过上面的介绍 , 我们可以发现桥梁 风工程的几 种研究 方法各有优缺 点 , 互为补 充。在实 际运 用中 , 我们 根据 不同 需要选择不同 的方 法 , 以 求成 本最 低 , 效 果最 好。数值 模拟 技术还不够完善 , 准确 度还 不够高 , 现 在都 须结 合风洞 试验 使用。但随着计算流体动力学理论 的发展 , 数值模拟 技术会 得到更好的运用 , 并有可能取代风洞试验。
风洞内作简谐振 动。系统 的竖 向振动 频率 可以 通过改 变弹 簧的刚度和模型的重量来调整 , 系统的扭 转振动频 率可以通 过调节弹簧间的 距离 来调整。 通过位 移传 感器 组桥可 以分 离出系统竖向振 动和 扭转振 动的 位移信 号。该 方法是 通过 直接测定颤振自激 力 , 然后 再推 算颤振 导数 , 因 而可以 直接 研究颤振自激力本 身的 特性 , 除 此之外 , 该 模型 试验还 具有 试验稳定 , 数据重复性好 , 可测量的 折减风速 范围宽 , 交叉项 导数与对角项导数具 有同等精度等一系列优点。 2 1 3 自由振动节段模型试验 自由振动节 段模型 试验 主要用 于测 定颤 振导数。 采用 分状态测量系统的频 率和阻尼来获取非耦合气动导数 ; Scan lan 是在稳态振 动 ( 颤 振 ) 条 件 下 , 通过 测 量模 型系 统 的振 型、 频率、 相位差等 , 并利用求出的非耦合 气动导数 从运动方 程中求解耦合气动导 数 [ 3] 。 自由振动节段模 型试验测定颤振导数简 单方便 , 但在提 取交叉导数的过程中 , 很难做到模型的竖 向运动和 扭转运动 在所有的风速下都具有相同的 频率比和阻尼 比 , 同 时非耦合 导数的识别误差 将带 到耦合 导数 中。该模 型试 验适合 的风 速不大 , 对耦合颤振导数的测量工作量 大 , 模 型的涡激 振动、 支撑的振动等对试验的影响很 大 , 信 号受干扰严 重。由于自 由振动节段模型试验有这些缺 点 , 因而强 迫振动节 段模型试 验受到了重视。 厦漳跨海大桥 节段模 型就 采用了 该方 法来 识别桥 梁主 梁断面的气动导数 [ 4] 。 2 1 4 弹性悬挂节段模型试验 弹性悬挂节段 模型试 验用 于测定 桥梁 结构 的非定 常气 动力特性 ( 气动导数、 气动导纳 ) 和在非定常气动力作用下的 稳定性和振动响应 ( 颤振和涡 激共振 ), 以 及桥梁结构主梁断 面在非定常气动力 作用下的表 面压力分 布状态 , 分析不同时 刻的主梁断面压力分布变化情况。该模型试验既要求模型与 实桥之间满足几何外形相似 , 原则上又需满足动力相似律 , 即 模型与实桥之间满足弹性参数、 惯性参数、 阻力参数的一致。 ( 1) 弹性参数 : ( 2) 惯性参数 : U , bB U 或 tB

桥梁抗风概念设计

桥梁抗风概念设计

全桥颤振-tacoma桥
大幅度扭转振动
杆件颤振:拱桥板式钢吊杆的大攻角颤振
2006年8月,广东一拱桥 在24m/s风速下的振动录 像(田仲初摄)
连续振动13小时至吊杆的 翼板断裂
(2) Vortex shedding vibration 涡激共振
• 机理:气流绕过柱体时在尾部产生涡, 涡脱落时产生对柱体的作用力, 涡脱频率与柱体自振频率接近时发生共振
0 .0
5 .0
0 .0
-5 .0
-1 0 .0
-1 5 .0
-2 0 .0
-2 5 .0
-3 0 .0 0 .0
T h e o d o rs e n P B 1degree P B 2degree P B 3degree
5 .0
1 0 .0
1 5 .0
2 0 .0
2 5 .0
3 0 .0
U /fB
T h e o d o rs e n P B 1degree P B 2degree P B 3degree
5 .0
1 0 .0
1 5 .0
2 0 .0
2 5 .0
U /fB
*
H 2
*
H 4
3 .0 2 .5 2 .0 1 .5 1 .0 0 .5 0 .0 -0 .5 -1 .0
0 .0 0 .5 0 .0 -0 .5 -1 .0 -1 .5 -2 .0 -2 .5 -3 .0
0 .0
T h e o d o rs e n P B 1degree P B 2degree P B 3degree
5 .0
1 0 .0
1 5 .0
2 0 .0
2 5 .0
U /fB

桥梁风致振动综述

桥梁风致振动综述

桥梁风致振动综述摘要:桥梁,作为一种连接构造物,从古至今扮演着跨越天堑、连接通达的重要角色。

从最开始的天然桥梁,到慢慢出现的石拱桥,到梁桥板桥,再到现代桥梁结构,桥梁的发展历史悠久,并且成果斐然。

但是在发展的过程中,不可避免的遇到了很多问题,这些问题有些被攻克解决了,还有一些仍未能被人类精确地理解和研究,仍在威胁着桥梁的安全。

本文主要讨论大跨度桥梁的风致振动问题与抗风设计方法。

关键词:桥梁风致振动,大跨度桥梁,桥梁抗风设计一、大跨径桥梁的轻柔化在了解风致振动、风工程之前,我们先要了解,风究竟是什么呢?风是大气边界层内空气流动现象, 并且其流动的速度和方向具有随时间和空间随机变化的特征。

在研究风对桥梁的作用时, 通常把风处理为在一定时距内不随时间变化的平均风和随时间随机变化的脉动风速两部分。

风作用于桥梁结构时, 由风的压力作用形成对结构的风荷载, 同时, 风还会引起桥梁的颤振、驰振、抖振和涡激振动等各种形式的振动。

20世纪,大跨径桥梁得到了发展,然而在这些发展初期,风致振动稳定并没有成为大跨径桥梁的重要控制因素。

直到1940年11月,位于美国华盛顿州、仅建城4个月的塔科马(Tacoma)大桥,在风速甚至不足20m/s的风下,发生了破坏。

这场破坏举世震惊,也第一次让工程师们认识到风对于大跨径桥梁的重要作用。

那么为什么,大跨径桥梁对风的敏感性这么高呢?这里我们要从大跨径桥梁的轻柔化说起。

为了减轻自重,增强跨越能力,比起传统混凝土桥梁,大跨径桥梁通常采用钢结构、钢混组合、结合结构等。

我们知道,钢材料的阻尼(damper)要小于混凝土,那么大跨径桥梁材料的基频也较小,通常为0.08Hz左右,而风的卓越频率在0.1Hz左右,二者比较相近,易产生共振;而相应的,地震卓越频率在1Hz左右,不易于大跨径桥梁产生共振。

这就解释了为什么大跨径桥梁对风作用敏感、对地震作用较不敏感,而小跨境桥梁恰恰与之相反。

二、风工程风工程(wind engineering)是指与自然风有关的生活或工业应用设施等主要涉及自然风的流体力学特性和设施的结构力学特性。

桥梁抗风设计规范

桥梁抗风设计规范
桥等。
风荷载计算: 根据风速、风 向、地形地貌 等因素,计算 桥梁所受的风 荷载,为结构 设计提供依据。
抗风措施设计: 根据桥梁结构 和风环境特点, 采取相应的抗 风措施,如加 装风屏障、调 整结构刚度等。
风洞试验:通 过风洞试验获 取桥梁模型在 各种风速下的 响应数据,验 证抗风措施的 有效性和安全
抗风设计的审查流程与要点
审查流程:初 步审查、详细 审查和最终审

审查要点:结 构稳定性、风 载作用下的响 应和疲劳性能

抗风设计评估与审查的实践经验与教训
评估指标:应综合 考虑结构、材料、 施工等因素,制定 合理的评估指标体 系。
审查要点:对桥梁 的抗风设计进行全 面审查,确保其满 足规范要求和安全 性能。
新型抗风设计方法与技术的应用
桥梁抗风设计的重要性 新型抗风设计方法的优势 新型抗风设计方法的应用案例 新型抗风设计方法的前景与展望
既有桥梁的抗风加固与改造
既有桥梁的抗风加 固:针对已建成桥 梁的风毁事故,采 取相应的加固措施, 提高其抗风能力。
既有桥梁的抗风改 造:对存在抗风性 能不足的既有桥梁, 进行全面的改造, 使其满足抗风设计 规范要求。
桥梁抗风设计规范
风,a click to unlimited possibilities
汇报人:风
目录
01 添 加 目 录 项 标 题
02 桥 梁 抗 风 设 计 的 重 要 性
03 桥 梁 抗 风 设 计 的 基 本 原 则 05 桥 梁 抗 风 设 计 的 规 范 要 求
04 桥 梁 抗 风 设 计 的 主 要 内 容
添加标题
创新技术应用: 未来桥梁抗风设 计需要不断探索 和应用新的技术 与方法,如大数 据、人工智能、 仿真模拟等,以 提高设计的科学 性和可靠性,降

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策摘要:随着我国桥梁工程的不断发展,迫切需要编制适合我国国情的《公路桥梁抗风设计规范》。

本文介绍了该规范编制中的几个主要问题,其中包括基本风速图和风压图、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等,此外,还讨论了大跨桥梁成桥和施工阶段的各种抗风对策。

关键词:桥梁抗风、设计规范0. 前言1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。

自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。

如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。

1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大路桥梁的抗风设计中。

在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。

这几个专题的内容以及通过多次修改形成的报批稿的目录如表1所示。

本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等二、全国基本风速图和风压图基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min 平均年最大风速。

本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。

鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求,致使风速记录明显受人为因素的影响而偏小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁风效应对比
塔科马大桥风毁原因
2、风洞法)
风洞实验


风洞试验模型最重要的三点要求: 弹性、质量、外形
风洞构造
风速边界层模拟方法
1、主动形成法:
调节控制风机
2、被动形成法:
风障、漩涡发生器、粗糙元
3、桥梁风振控制
驰振 绝对控制: 主梁风振失稳 颤振
主梁涡激振动 尽量控制:
拉索风雨激振
桥塔涡激振动
考虑控制:
主梁随机抖振
风振控制措施
颤振控制措施
驰振和涡振控制
驰振控制: 涡振控制: 提高结构阻尼比 施工时附加TMD、TLD或 TLCD阻尼器
4、港珠澳大桥抗风措施
Conclusion
That’s all. Thank you all very much!
作用机制
平均风的静风压产生的阻力、升 力、和力矩的作用 静(扭转)力矩作用 静阻力作用 紊流风作用 限幅振动 漩涡脱落引起的涡激力作用 自激力的气动负阻尼效应-阻尼 驱动 自激力的气动刚度驱动
静力不稳 定 抖振(紊流风响应) 涡振
扭转发散 横向屈曲
动力 作用
自 激 振 动
驰振 单自由度 扭转颤振 古典耦合振动 二自由度 发散 振动
桥梁抗风概述
塔科马大桥
目录
1
1、桥梁风效应
2、桥梁风洞实验 3、桥梁风振控制
4、港珠澳大桥抗风
1、桥梁风效应
桥梁结构风效应分类
风的静力作用
风的静力作用形式
风 扁平钢箱梁 L:升力
M:升力矩 风 扁平钢箱梁 D:阻力
风致静力失稳
静力扭转发散
如果在空气静力扭转力矩作用下,当风速达到临界值时, 悬吊桥梁主梁扭转变形的附加攻角所产生的空气力矩增量超 过了结构抵抗力矩的增量,而出现扭转角不断增大的静力失 稳现象。
静力横向屈曲
如果作用于桥梁主梁上的横向静风载超过主梁横向屈曲 的临界荷载时出现的静力失稳。
风的动力作用
颤振
振动的桥梁通过气流的反馈作用不断吸 取能量,当达到临界风速时使振幅逐步增大 直至最后使结构破坏的发散性振动,这种就 是颤振现象。
驰振
驰振则主要发生在一些非圆形也非扁平 的钝体结构,由于这种断面的升力曲线的负 斜率效应,微幅振动的结构将能够从来流中 不断吸取能量,当达到临界风速时,使振幅 逐步增大的发散弯曲振动。
风的动力作用
涡振
风绕流经钝体结构时可能发生旋涡的脱 落,出现两侧交替变化的涡激力,当旋涡脱 落频率接近结构的自振频率时,所激发出的 结构共振,这就是涡振现象。
抖振
抖振则是来流风中的紊流成份强迫结构 所激起的一种限幅振动,也称为紊流风响应。
桥梁风效应总结
分类 现象
静风载引起的内力和变形 静力 作用
相关文档
最新文档