理论力学例题
理论力学例题

1-1画出下列各图中物体A ,ABC 或构件AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
(b)(b1)2N 3N(c) (c1)B(e)(e1)Bq(f) (f1)(j) (j1)BF (k) (k1)1-2画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。
22N(a) (a1)2AxFAx(a2) (a3)3N(b) (b1)N3F ′ (b2) (b3)(h) (h1)2-3F F AxC(i) (i1) (i2)F (i3)(i4)如图2-5a 所示,刚架的点B 作用1水平力F ,刚架重量不计。
求支座A ,D 的约束力。
(a)(b)图2-5解 研究对象:刚架。
由三力平衡汇交定理,支座A 的约束力F A 必通过点C ,方向如图2-5b 所示。
取坐标系Cxy ,由平衡理论得052,0=×−=∑A x F F F(1)051,0=×−=∑A D y F F F(2)式(1)、(2)联立,解得F F F A 12.125==,FF D 5.0=2-6 在图示结构中,各构件的自重略去不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。
求支座A 的约束力。
解一、研究对象:BC ,受力如图(b)二、列平衡方程,求F B 、F C为构成约束力偶,有解2-8已知梁AB 上作用1力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图2-12a ,2-12b ,2-12c 三种情况下支座A 和B 的约束力。
BAF(a)BF(b)B(c)(c1)图2-12解(a )梁AB ,受力如图2-12a1所示。
B A F F ,组成力偶,故 BA F F =0=∑A M ,0=−M l F B , l M F B =,l M F A = (b )梁AB ,受力如图2-12b1所示。
0=∑A M , 0=−M l F B , l M F F A B ==(c )梁AB ,受力如图2-12c1所示。
理论力学考试题及答案详解

理论力学考试题及答案详解一、选择题(每题2分,共10分)1. 牛顿第一定律又称为惯性定律,它指出:A. 物体在受力时,会改变运动状态B. 物体在不受力时,会保持静止或匀速直线运动C. 物体在受力时,会做圆周运动D. 物体在受力时,会保持原运动状态答案:B2. 根据胡克定律,弹簧的弹力与弹簧的形变量成正比,比例系数称为:A. 弹性系数B. 刚度系数C. 硬度系数D. 柔度系数答案:A3. 在理论力学中,一个系统动量守恒的条件是:A. 系统外力为零B. 系统外力和内力都为零C. 系统外力和内力之和为零D. 系统外力和内力之差为零答案:C4. 一个物体做自由落体运动,其加速度为:A. 0B. g(重力加速度)C. -gD. 取决于物体的质量答案:B5. 刚体的转动惯量与以下哪个因素无关?A. 质量B. 质量分布C. 旋转轴的位置D. 物体的形状答案:A二、填空题(每空2分,共10分)6. 一个物体受到三个共点力平衡,如果撤去其中两个力,而保持第三个力不变,物体的加速度将________。
答案:等于撤去的两个力的合力除以物体质量7. 根据动能定理,一个物体的动能等于工作力与物体位移的________。
答案:标量乘积8. 在光滑水平面上,两个冰球相互碰撞后,它们的总动能将________。
答案:守恒9. 一个物体在水平面上做匀速圆周运动,其向心力的方向始终________。
答案:指向圆心10. 刚体的角速度与角动量的关系是________。
答案:成正比三、简答题(共20分)11. 什么是达朗贝尔原理?请简述其在解决动力学问题中的应用。
答案:达朗贝尔原理是分析动力学问题的一种方法,它基于牛顿第二定律,用于处理作用在静止或匀速直线运动的物体上的力系。
在应用达朗贝尔原理时,可以将物体视为受力平衡的状态,即使物体实际上是在加速运动。
通过引入惯性力的概念,可以将动力学问题转化为静力学问题来求解。
12. 描述一下什么是科里奥利力,并解释它在地球上的表现。
理论力学

1、运动分析。----说明机构中主要构件的运动形式。 2、作速度分析,需要画出相关速度,求一点速度或图形角
速度。(若要分析加速度,一般需要求图形的角速度)
画速度 (1)沿点的运动轨迹切线,与相关的角速度方向协调。
(2)要符合速度投影定理。
3、作加速度分析,需要画出相关加速度,求一点加速度 或图形角加速度。 画加速度
例8-10
如图所示,在椭圆规的机构中,曲柄OD以匀角速度ω绕O 轴转动。
OD=AD=BD=l。求:当 60 时,尺AB的角加速度和点A的加速度。
B ABC AB D
O O
O
A A
vD
O
aA
n a BA
a A B
aD
v A
aD
n a AD y’ a AD
n a AD l 2
n x’ a A cos aD cos 2 a AD
y’ n a A 0 aD sin aAD cos a AD sin
x’
若OD变速转动,有什么变化?
a A l
2
a 0 AD AD
a AD 0 AD
解:
(1)动点:OA上的A点
动系:摇杆O1B
(2)运动分析: 绝对运动: 圆周运动。 相对运动: 直线运动。 牵连运动: 摇杆转动。
(3)速度分析与计算
v a r
ve
O ω
va
B vr
A ω1
vr va cos
ve va sin
r 2 O1 1 2 2 O1 A l r ve
理论力学5平面任意力系

P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA
理论力学试题及答案

理论力学试题及答案一、选择题(每题2分,共20分)1. 牛顿第一定律描述的是:A. 物体在受力时的运动状态B. 物体在不受力时的运动状态C. 物体在受力时的加速度D. 物体在受力时的位移答案:B2. 根据牛顿第二定律,物体的加速度与作用力和物体质量的关系是:A. 加速度与作用力成正比,与质量成反比B. 加速度与作用力成反比,与质量成正比C. 加速度与作用力成正比,与质量成正比D. 加速度与作用力成反比,与质量成反比答案:A3. 以下哪个不是刚体的运动特性?A. 刚体的质心保持静止或匀速直线运动B. 刚体的各部分相对位置不变C. 刚体的各部分速度相同D. 刚体的各部分加速度相同答案:C4. 角动量守恒定律适用于:A. 只有重力作用的系统B. 只有内力作用的系统C. 外力矩为零的系统D. 外力为零的系统答案:C5. 以下哪个是能量守恒定律的表述?A. 一个封闭系统的总动能是恒定的B. 一个封闭系统的总势能是恒定的C. 一个封闭系统的总能量是恒定的D. 一个封闭系统的总动量是恒定的答案:C二、简答题(每题10分,共20分)6. 简述牛顿第三定律的内容及其在实际中的应用。
答案:牛顿第三定律,又称作用与反作用定律,表述为:对于两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
在实际应用中,例如在推门时,门对人的作用力和人对门的作用力大小相等,方向相反。
7. 描述什么是简谐振动,并给出一个生活中的例子。
答案:简谐振动是一种周期性振动,其回复力与位移成正比,且总是指向平衡位置。
生活中的例子包括弹簧振子,当弹簧被拉伸或压缩后释放,它会在原始平衡位置附近做周期性的往复运动。
三、计算题(每题15分,共30分)8. 一个质量为m的物体,从静止开始,沿着一个斜面下滑,斜面的倾角为θ。
如果斜面的摩擦系数为μ,求物体下滑的加速度。
答案:首先,物体受到重力mg的作用,分解为沿斜面方向的分力mg sinθ和垂直斜面方向的分力mg cosθ。
理论力学试题及答案

理论力学试题及答案一、选择题(每题2分,共10分)1. 一个物体在水平面上以速度v匀速直线运动,其动摩擦因数为μ,若物体所受的摩擦力为F,则F等于:A. μvB. μmgC. μND. μ(v^2)答案:B2. 根据牛顿第二定律,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
这一定律的数学表达式为:A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系为:A. h = gt^2B. h = 1/2gt^2C. h = 2gtD. h = gt答案:B4. 两个物体A和B用轻杆连接,A的质量为mA,B的质量为mB,系统在水平面上以共同速度v向右做匀速直线运动。
若杆的力为F,则F的方向是:A. 向左B. 向右C. 不确定D. 无法判断答案:B5. 一个物体在竖直平面内做圆周运动,当物体通过最高点时,其向心力的来源是:A. 重力B. 杆的支持力C. 绳子的张力D. 重力和杆的支持力的合力答案:D二、填空题(每空2分,共10分)1. 一个物体的质量为2kg,受到的合外力为10N,根据牛顿第二定律,其加速度为______ m/s²。
答案:52. 一个物体做匀加速直线运动,初速度为3m/s,加速度为2m/s²,经过4秒后的速度为______ m/s。
答案:153. 在光滑水平面上,一个物体受到一个大小为5N,方向向右的恒定力作用,物体的质量为1kg,其加速度为______ m/s²。
答案:54. 一个物体在竖直上抛运动中,当其上升的最大高度为20m时,其初速度为______ m/s。
答案:205. 根据动能定理,物体的动能变化等于合外力做的功,若一个物体的动能增加了30J,合外力做的功为______ J。
答案:30三、简答题(共20分)1. 解释什么是科里奥利力,并给出其表达式。
理论力学精选80题

图示机构由四根杆组成,已知:各杆重均为P,长均为L,弹簧原长为L。,弹性系数为K,B端在光滑水平面上。没弹簧受压时不会失隐,试用虚位移原理求系统的平衡位置θ。
计算题
图示结构由AC、CE、ED三个刚杆组成,已知:P=3KN,M=1KN·m,L=1m,用虚位面刚架中,自重不计,已知:q1=10KN,m,q2=20KN/m,P=16KN。试求:支座A、B、E的反力。
计算题:
计算题
构架由AC、CD、DB三根杆用铰链C和D连接,其他支承和载荷如图所示。在杆DB的中点E作用集中力F=8kN,均布载荷集度q=4kN/m,力偶矩M=10kN•m,尺寸a=1m。如果不计杆件重,求固定端A的约束力。
理论力学精选80题
北京科技大学理论力学课程组编
计算题
平面结构如图,A、B为固定铰支座,已知:а=1m,α=30o,在铰链D处作用一铅直载荷Q=1KN,在AC杆的中点作用一水平载荷P=0.4KN,各构件自重不计,试求支座A、B的反力及杆CB,杆CD的内力。
计算题
构架如图,在水平杆AD的中点E和D点,各铰接一直杆EG及DG,此二杆在G点与GH杆铰接,GH杆为铅直方向,其在H点又与水平直杆BH及直角弯杆CH铰接,在D、G铰上各装一个定滑轮Ⅰ及Ⅱ,半径相同,一无重绳跨过此二滑轮,其一端固于BH杆的K点,另一端挂一重为P的重物,细绳LK与BH垂直,已知:P=100N,q=200N/m,R=0.4m,a=1m,b=0.6m,滑轮及各杆重不计,求固定铰支座A、B、C的反力。
计算题
在平面机构中,已知:AB=CD=EH=r,AC=BD= r, K、E分别是AC、BD的中点,图示瞬时,D点正好在KH的连线上,且DH= r,不计自重及摩擦。已知 ,用虚位移原理求平衡时力偶M的大小。
理论力学练习题

理论力学练习题一、选择题1. 质点系的动量守恒定律适用于以下哪种情况?A. 质点系内部作用力远大于外力B. 质点系内部作用力远小于外力C. 质点系内部作用力与外力相等D. 质点系内部作用力与外力都为零2. 以下哪项不是牛顿运动定律的内容?A. 物体的加速度与作用力成正比B. 物体的加速度与物体质量成反比C. 物体的加速度方向与作用力方向相反D. 物体的加速度方向与作用力方向相同3. 根据角动量守恒定律,以下说法正确的是:A. 角动量守恒定律只适用于刚体B. 角动量守恒定律只适用于质点C. 角动量守恒定律适用于所有物体D. 角动量守恒定律不适用于任何物体二、计算题1. 一个质量为m的物体在水平面上以速度v做匀速直线运动,求其动量大小。
2. 一个质量为m的物体在竖直方向上受到大小为F的力作用,物体的加速度为a。
如果物体从静止开始运动,求物体在t秒后的速度。
3. 一个质量为m的物体在光滑水平面上以角速度ω绕一个固定点做匀速圆周运动,求其向心力大小。
三、简答题1. 描述牛顿第三定律的内容,并举例说明。
2. 简述动量守恒定律的条件和应用。
3. 说明角动量守恒定律在天体物理中的应用。
四、分析题1. 一个质量为m的物体从高度h处自由落体,忽略空气阻力。
请分析其在落地时的动能,并与从同一高度以初速度v0水平抛出时的动能进行比较。
2. 一个质量为m的物体在光滑水平面上,受到一个恒定的力F作用,力的方向与水平面成θ角。
请分析物体的运动状态,并求出其加速度大小。
3. 考虑一个质量为m的物体在光滑水平面上,受到一个大小为F,方向始终与速度方向垂直的力作用。
请分析物体的运动状态,并求出其速度随时间的变化关系。
五、应用题1. 一个质量为2kg的物体在水平面上以5m/s的速度做匀速直线运动,若突然施加一个大小为10N的力,方向与运动方向相反,求物体在2秒后的速度。
2. 一个质量为3kg的物体从静止开始,受到一个大小为20N的恒定力作用,求物体在5秒后的速度和位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K
C E 1 2mR 2 FEH 2 R 3maR 3mgR 0 2 FEH m( 4a g ) 0 M 0 (2): A H D 1 2mR 2 2 FEHR m( g 2a ) R 0 2 2 FCy B 1 R a F 2mR 2 C Cx 2 1 1 得: a g aA 2a g 2mg FEH 6 12 2a A FEH 2ma F 4 FEH mg mg 1 2mR 3 2 D P 2ma 2mg ma a B mg
FKx FCx 0
FKy FCy 0
M K 3R FCy 0
FKx 0
FKy 4.5mg
MK 13.5mgR
解(1): ma mg FD (2):3 2mR 2 FDR 2mgR FEH 2 R 21 (3): 2mR 2 2 FEHR FAR 2 (4): 2ma FA mg 2 FCy C FCx FA 2mg FEH FA 2a
2 n B B 1
A
2
a a ( a a ) tan θ 1 16tanθ 3.71m/s a a 3.71m/s
B
C B
解: 取小环M为动点,动系固定在杆OC。
va ve vr
e
ve
O
A a
45°
v
v 2R 2 v v v R 2
a r e
M
vr
C
a a a a a a a a
n t a e r c e r r
B
c
aa
a
c
a a a a cos 45
n n a c r e
n a
2
a
30°
t a
ar
a 2 3v a cos 30 9l
例2:半径为R的半圆形凸轮沿水平面向右运动,使杆 OA绕定轴转动。OA=R,在图示瞬时杆OA与铅垂线夹 角=30°,杆端A与凸轮相接触,点O与O1在同一铅直 线上,凸轮的速度为v,加速度为a。求该瞬时杆OA的 角速度和角加速度。
C
2 2
(3):
MK
FKy K FKx
2
C
Fx 0
FKx 0
FKy 3mg 2ma FEH 0
2a
A
1 2mR 2 2 2 E
Fy 0
MK 0
2mg F EH mg
2ma
1 M K 2mR 2 2 3R 2mg FEH 4 R m( g 2a ) 2 R 0 2
n 2 A
n
t BA
0
B
n A n B
a
t A
a AB 0
2 BA AB
a
n A
x
a
t B
a 0.2 5 1m / s
t
2
a
t
x : a sin θ a cos θ a cosθ a sin θ
n t t n B B A A t n n 2 A A B
t 2
v a 4m / s OB
n
0
BA 2 AB
B
60
a
A
n BA
x
a cos 60 a cos 60 a
B
n
a r
A
B
1 a r 3
2 a AB r 3
n 2 BA AB 2 0
A
BA
2 0
[例2] :图示机构中,BC=0.05m,AB=0.1m, AB杆A端以匀速vA=0.1m/s沿水平面向右运动, 图示瞬时CB杆处于竖直状态。求该瞬时B点的 加速度和AB杆的角加速度
O1
r
a a
e
n a
v v a R 3R
2 2 n a a
v v a R 3R
2 n r r
a
n
n a
x
a 30°
t a
a cos 60 a cos 30 a cos 60 a
t a e
a
t r
30°
30°
r
a 3 v a 2 2 3R cos 30
v
A
O
30°
解: 取OA杆上A为动点,动系固定斜面。
va ve vr
v v
e
vr
e
v 2 3 v v cos30 3
r
v a 30°
A
v
30°
ve
O
3 v v sin 30 v 3
a r
a a a
a e
r
2 2 a
a
n a
a 0
e
a r
v v a l 3l
a
e a e
D
r v v cos60 v 2 BC 2
CD
3 v r 2
r
A e
v
B
a a a a
a e r
a r
a
2
a cos 30 a a
t a e
3 a 2 v r 2
c CD r
c
2
va60° ar
vr
C
CD
aa
2
60°
A
K
C
E
A
H
D
R a
(1) R (2) 4mRa 3mgR 2FEHR (4) R (3)
B
FEH
H
F
D
4mRa FEHR mgR
1 aA 2a g 6
FD a
B
1 4 a g 得: FEH mg 12 3
2mg
FD mg
mg
FCx 0
FCy 4.5mg
E C
D B A
§13-6
普遍定理的综合应用举例
2
C E
解(1)取整体为研究对象。
W 2mgh mg sin 2h
12
2V
D
2
T 0
1
2 2 2 2
B
1 1 3 v T mv mR ( ) A V 2 2 2 R 1 3 2v 1 1 2v 1 3 21 mR ( ) mR ( ) ( 3 1)mv mv 2 2 R 2 2 R 2 4 4
R 2 2 R 2R 0 R 2
2 2 2
a
n e
45°
a
n r
t r
a
[例1] :已知OA= r , OA杆以匀角速度0转动, AB=6 r , 求该瞬时滑块B的速度和加速度
B 60° 0 O
A 60°
解: OA定轴转动 ; AB平面运动,滑块B平移 AB平面运动,P为速度瞬心
dT P,得: 12mva mgv 由功率方程 dt
得:
B
V
1 a g 12
1 aA 2 a g 6
§13-6
普遍定理的综合应用举例
C VA aA
A
(2)取研究对象如图: dLC MC ( F ) dt
C FCy
C
FCx FEH
d 1 ( 2mR 2C mvAR ) ( FEH mg ) R dt 2 4 得: F mg 3
得: FKx
0
FKy 4.5mg
16 7 M K ( 2a 6 g g g )mR 13.5mgR 3 3
【题2】三个均质圆轮B、C、D具有相同的质量m和相同的半
径分别为 R, 绳重不计,系统从静止释放。设轮D做纯滚动,绳
与轮B、C之间无相对滑动。绳的倾斜段与斜面平行。求:(1) 在重力作用下,质量为m的物体A下落h时轮D中心的速度和加 速度;(2)绳DE段的拉力。
0
A
O
B
C
O1
0
A
O
v
解: AB、BC杆瞬时平移
A
B
v
O1
v
C
C
v v v 0.2 10 2m/s
B A C
B
取点A为基点,则
n t n t B B A A
0
AB
a a a a a a
t BA
n BA
A
a
t A
a a
a 0.2 20m / s
2 2 B B BA
t t n B BA B
2
2
a 0.2 4 3 rad / s 3 AB 3 0.1 2
t BA AB
0.2 0.4 3 a a 3 3 2
t B BA
[例3] :图示机构中,OA=20cm,O1B=100cm, AB=BC=120cm,0=10rad/s,=5rad/s2,求当 OA与O1B竖直,B点和C点的速度和加速度。
2 D
(2)取轮D如图:
FDE aD
FN D
3 a mR ( F mg sin ) R 2 R
2 D T
mg
3 mg F ma mg sin ( 4 3 sin ) 2 7
T D
F
例1:长为l的OA杆,A端恒与倾角为30°的斜面接触, 并沿斜面滑动,斜面以速度v作匀速直线运动,方向如 图。图示位置OA杆水平,求此时杆端A相对斜面的速度 和加速度。
O A
R O1
v a
解: 取OA杆上A为动点,动系凸轮。
v v 3 v v v 3 3 2cos30 2 2 v 3v R 3R