工程热力学第三版答案【英文】第4章

合集下载

工程热力学第4章-课堂

工程热力学第4章-课堂

T T s v c p
T T 0 s T cT
定温过程:
三、比热容
定容过程 定压过程 定温过程
cV
Rg
1
cp
1
Rg
cT
四、Δu、 Δh和Δs
定容过程
u c
T2 V T1
2
T2 T1
h c
利用特殊过程的特性,如 利用过程的能量关系,如
p1 p4
v4 v1 T4 T1
T4 T1
T1 T4
q u w 0
s4 s1 q 0 v4 v1
2. 在T-s图上用图形面积表示Δu和Δh
依据: a)T-s图上过程下面积表示q
b)qp=Δh,qv=Δu 例:ha - hb用什么面积表示?
0
六、变比热绝热过程的计算
1.
1
Rg T1 T2 w
w u1 u2
2.
wt h1 h2 用 m 代替
a)
查表
m
cp cV
t2 t1 t2 t1
b)
m
1 2
2
1
c p1 cV 1
2
cp2 cV 2
3.
p2 dT s c p Rg ln 0 1 T p1 T1 T p2 1 T2 dT dT 令 0 dT ln cp s cp T0 c p T0 T0 p1 Rg T T T p2 1 0 0 ln s2 s1 A p1 Rg
n 1
n
pv 常数
pv 常数
定温过程
定熵(可逆绝热)过程

工程热力学第四章lm——工程热力学课件PPT

工程热力学第四章lm——工程热力学课件PPT

k 1 k
w
RT1 k 1
1
v1 v2
k 1
k
1( 1
p1v1
p2v2 )
k
R
1
(T1
T2 )
绝热过程中的能量转换
技术功 wt
绝热
稳态稳流: q h wt 0
wt h h1 h2
理想气体:
wt
cp (T1
T2 )
k
k
1
R(T1

p2v2 )
基本热 力过程
多变指数n
实际过程可用多段多变过程近似表示,其中每个多变 过程的多变指数n可由该多变过程的初终态求出。
p2 p1
v1 v2
n
ln p2 n ln v1
p1
v2
ln p2 n p1
ln v1 v2
多变过程的能量转换
w
pdv
R n 1 (T1
T2 )
pvn const
1 2
v
s
绝热过程中的能量转换
u , h , s 的计算
状态参数的变化与过程无关
内能变化 焓变化 熵变化
u cvdT h cpdT
s 0
绝热过程中的能量转换
w , wt , q 的计算
q0 q0
pvk Const
w
2 1
pdv
p1v1k
2 1
dv vk
w
RT1 k 1
1
p2 p1
工程热力学
Engineering Thermodynamics
北京航空航天大学
作业
习题4-6,4-7,4-15,4-16,4-18
第四章 理想气体的热力过程及气体压缩

工程热力学 课后习题答案 可打印 第三版 第一章

工程热力学 课后习题答案  可打印 第三版 第一章

pb = 755mm ,求容器中的绝对压力(以 MPa 表示) 。如果容器 ′ = 770mm ,求此时真空表上的读数(以 中的绝对压力不变,而气压计上水银柱高度为 pb
mmHg 表示)是多少? 解 :容器中气体压力低于当地大气压力,故绝对压力
p = pb − pv = (755 − 600)mmHg = 155mmHg = 0.0207MPa ′ = 770mmHg 。则此时真空表上的读数为 若容器中绝对压力不变,而大气压力变为 pb ′ = pb ′ − p = (770 − 155)mmHg = 615mmHg pv
3 3
程中 pV 持不变; (2)过程中气体先循 { p}MPa = 0.4 − 0.5 {V }m3 膨胀到 Vm = 0.6m ,再维持
3
压力不变,膨胀到 V2 = 0.8m 。分别求出两过程中气体作出的膨胀功。
3
解 (1)
W = ∫ pdV = ∫
1
2
2
1
pV V 0.8m3 dV = p1V1 ln 2 = 0.2 × 106 Pa ×0.4m3 × ln = 5.54 × 104 J 0.4m3 V V1
6
(2)A0=4πd =4×3.1416×1m =12.57m
2
2
2
F=A0Δp=A0(pb–p)=12.57 m2×(0.101×106Pa–691.75Pa)=1.261×106N
1-5 用∪型压力计测量容器中气体的压力,在水银柱上加一段水,则得水柱高 1020mm,水银 柱高 900mm, 如图 1-17 所示, 若当地大气压为 755mmHg, 求容器中气体的压力为多少 MPa? 解:
1-11 测得某汽油机气缸内燃气的压力与容积对应值如下表所示,求燃气在该膨胀过程中所作 的功。 p/MPa V /cm

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么?答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量。

一个系统能否绝热与其边界是否对物质流开放无关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。

工程热力学第四章

工程热力学第四章

p
n=+∞ n= —∞
T
n=1 n=0 n=0
n=1
n= —∞
v
s
2.内能、焓的变化量 内能变化量 焓的变化量 3. 功和热 量 容 积 功
多变过程中容积功的计算
u u2 u1 cv T h h2 h1 c p T
v2 dv vn n w pdv p n dv pv n v1 v1 v1 v v n pv n 1n v2 pv 1 v v1n v1 n v1 1 n 2 1 n 1 p2v2 p1v1 n 1 v2 v2

nk q cv T cn T n 1
n k 称 cn为多变过程的比热容。 cn cv n 1
例题1 有1kg空气,初始状态为p1 0.5MPa, t1 150 ℃。假设气体从初 态分别经历下列过程变化到终态2: 1.可逆绝热膨胀到
第四章
理想气体的热力过程
教学目标:使学生熟练掌握气体的各种基本热力过程及多 变过程的状态参数及过程参数的热力计算。 知识点:分析热力过程的目的及一般方法;气体的基本热 力过程及多变过程。 重 点: 结合热力学第一定律,分析和导出各种基本热力 过程及多变过程(包括压气过程)的相应计算式并进行计 算,利用p-v、T-s图分析热力过程。 难 点: 使学生掌握理想气体热力过程的热力学计算的特 殊性,并能利用状态坐标图表示各种过程及过程中能量转 换的特点。

多变过程中热量的 计算
n 1
R q u w cv T T2 T1 n 1 R k 1 nk cv T cv cv T cv T n 1 n 1 n 1

工程热力学第三版电子教案第4章自我测验题

工程热力学第三版电子教案第4章自我测验题

第四章自我测验题1、是非题(1)在任何情况下,向气体加热,熵一定增加;气体放热,熵总减少。

()(2)熵增大的过程必为不可逆过程。

()(3)熵减小的过程是不可能实现的。

()(4)卡诺循环是理想循环,一切循环的热效率都比卡诺循环的热效率低。

()(5)把热量全部变为功是不可能的。

(、(6)若从某一初态经可逆与不可逆两条途径到达同一终态,则不可逆途径的△S必大于可逆途径的△S。

()2、填充题(1)大气温度为 300 K,从温度为 1000K的热源放出热量 1O0kJ,此热量的有效能为_________。

(2)度量能量品质的标准是______,据此,机械能的品质________热能的品质________;热量的品质_________功的品质;高温热量的品质___________低温热量的品质。

(3)卡诺循环的热效率=___________;卡诺制冷循环的制冷系数=________。

(4)任意可逆循环的热效率可用平均温度表示,其通式为__________。

(5)请在图上画出可逆过程l-2所吸收热量的热量拥和熵。

(6)图中1-2过程是不可逆绝热膨胀过程,过程中的有效能损失用哪块面积表示3、一汽车发动机的热效率是18%,燃气温度为950℃,周围环境温度为25℃,这个发动机的工作有没有违反热力学第二定律?4、两个绝热喷嘴,效率均为95%,喷嘴入口处氮气的压力均为2MPa,入口速度均可忽略,都膨胀到200kPa,每个喷嘴的氮气的质量流率是相同的,但是喷嘴A的进口温度为300℃,喷嘴B的进口温度为400℃。

以热力学角度着哪个喷嘴过程更好?证明并解释你的结论。

5、现有初温分别为T A、T B的两种不可压缩流体,它们的质量与比热容乘积分别为C A、C B,用它们分别作可逆机的有限热源和有限冷源,可逆热机工作到两流体温度相等时为止。

求(1)平衡的的温度;(2)热机作出的最大功量?6、初态为47℃、200kPa的空气经历一过程达到267℃和800kPa的终态。

《工程热力学》(第四版)习题提示及答案04章习题提示与答案

《工程热力学》(第四版)习题提示及答案04章习题提示与答案

习题提示与答案 第四章 理想气体的热力过程4-1 设气缸中有0.1 kg 二氧化碳,其压力为0.1 MPa 、温度为27 ℃。

如进行一个定压过程,气体对外作功3kJ 。

设比热容为定值,试求过程中气体热力学能和熵的变化以及气体吸收的热量。

提示:理想气体;Q =ΔU +W ;ΔU =mc V 0ΔT ;12120ln lnp pR T T c s p g Δ-=。

答案:ΔU =10.5 kJ ,ΔS =0.036 11 kJ/K ,Q =13.5 kJ 。

4-2 有一气缸,其中氮气的压力为0.15 MPa 、温度为300 K 。

如果按两种不同的过程变化:(1)在定压下温度变化到450 K ;(2)在定温下压力下降到0.1 MPa 。

然后在定容下变化到0.15 MPa 及450 K 。

设比热容为定值,试求两种过程中热力学能和熵的变化以及从外界吸收的热量。

提示:略。

答案:(1)u Δ=111.15 kJ/kg ,s Δ=0.421 kJ/(kg ·K),q 1-2=155.7 kJ/kg 。

(2)u Δ=111.15 kJ/kg ,s ∆=0.421kJ/(kg ·K),q 1-3-2=147.25 kJ/kg 。

4-3 设气缸中空气的压力为0.5 MPa 、温度为600 K ,若经绝热过程膨胀到0.1 MPa ,试求膨胀终了的温度及比体积:(1)按定值比热容计算;(2)按空气的热力性质表进行计算。

提示:(2) 1200ln 12p p R S S g T T +=;依02T S ,由热力性质表确定T 2 及v r2。

答案:(1) T 2=378.8 K ,v 2=1.089 m 3/kg ;(2) T 2=382.6 K ,v 2=1.10 m 3/kg 。

4-4 柴油机吸气终了时气缸中空气的温度为60 ℃、压力为0.1 MPa 。

为使压缩终了时空气温度超过柴油的自燃温度以使其着火,故要求压缩终了的温度至少为720 ℃。

工程热力学和传热学课后答案前五章

工程热力学和传热学课后答案前五章

第一篇工程热力学第一章基本概念一.基本概念系统:状态参数:热力学平衡态:温度:热平衡定律:温标:准平衡过程:可逆过程:循环:可逆循环:不可逆循环:二、习题1.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗?错2.牛顿温标,用符号°N表示其温度单位,并规定水的冰点和沸点分别为100°N和200°N,且线性分布。

(1)试求牛顿温标与国际单位制中的热力学绝对温标(开尔文温标)的换算关系式;(2)绝对零度为牛顿温标上的多少度?3.某远洋货轮的真空造水设备的真空度为0.0917MPa,而当地大气压力为0.1013MPa,当航行至另一海域,其真空度变化为0.0874MPa,而当地大气压力变化为0.097MPa。

试问该真空造水设备的绝对压力有无变化?4.如图1-1所示,一刚性绝热容器内盛有水,电流通过容器底部的电阻丝加热水。

试述按下列三种方式取系统时,系统与外界交换的能量形式是什么。

(1)取水为系统;(2)取电阻丝、容器和水为系统;(3)取虚线内空间为系统。

(1)不考虑水的蒸发,闭口系统。

(2)绝热系统。

注:不是封闭系统,有电荷的交换(3)绝热系统。

图1-15.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。

(1)在大气压力为0.1013MPa时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。

耗散效应(2)在大气压力为0.1013MPa时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。

可逆(3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。

可逆(4)100℃的水和15℃的水混合。

有限温差热传递6.如图1-2所示的一圆筒容器,表A的读数为360kPa;表B的读数为170kPa,表示室I压力高于室II的压力。

大气压力为760mmHg。

试求:(1)真空室以及I室和II室的绝对压力;(2)表C的读数;(3)圆筒顶面所受的作用力。

图1-2第二章热力学第一定律一.基本概念功:热量:体积功:节流:二.习题1.膨胀功、流动功、轴功和技术功四者之间有何联系与区别?2.下面所写的热力学第一定律表达是否正确?若不正确,请更正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-4The work done during the isothermal process shown in the figure is to be determined. Assumptions The process is quasi-equilibrium. Analysis From the ideal gas equation,vRTP =For an isothermal process,/kgm 0.6kPa200kPa 600/kg)m (0.2331221===P P v vSubstituting ideal gas equation and this result into the boundary work integral produceskJ395.5-=⎪⎪⎭⎫⎝⎛⋅====⎰⎰333312112121out ,m kPa 1kJ 1m0.6m 0.2ln)m kPa)(0.6 kg)(200 (3lnv v v vvv mP d mRTd P W bThe negative sign shows that the work is done on the system.4-9Refrigerant-134a in a cylinder is heated at constant pressure until its temperature rises to a specified value. The boundary work done during this process is to be determined. Assumptions The process is quasi-equilibrium.Properties Noting that the pressure remains constant during this process, the specific volumes at the initial and the final states are (Table A-11 through A-13)/kgm 0.052427C 07kPa 005/kgm 0.0008059liquid Sat.kPa 00532223k Pa005@11=⎭⎬⎫︒====⎭⎬⎫=v vv T P P fAnalysiskg04.62/kgm 0.0008059m0.053311===v V mandvPkJ1600=⎪⎪⎭⎫⎝⎛⋅-=-=-==⎰33121221out ,m kPa 1kJ 1/kg m 0.0008059)427kPa)(0.052 kg)(500 (62.04)()( v v V V V mP P d P W bDiscussion The positive sign indicates that work is done by the system (work output).4-23A saturated water mixture contained in a spring-loaded piston-cylinder device is heated until the pressure and temperature rises to specified values. The work done during this process is to be determined. Assumptions The process is quasi-equilibrium. Analysis The initial state is saturated mixture at 90︒C. The pressure and the specific volume at this state are (Table A-4),/kgm 23686.0)001036.03593.2)(10.0(001036.0kPa183.70311=-+=+==fgfx P vvvThe final specific volume at 800 kPa and 250°C is (Table A-6)/kgm 29321.032=vSince this is a linear process, the work done is equal to the area under the process line 1-2:kJ24.52=⎪⎭⎫ ⎝⎛⋅-+=-+==331221out ,m kPa 1kJ 1)m 23686.01kg)(0.2932 (12)kPa 800(70.183)(2Area v v m P P W b4-29An insulated rigid tank is initially filled with a saturated liquid-vapor mixture of water. An electric heater in the tank is turned on, and the entire liquid in the tank is vaporized. The length of time the heater was kept on is to be determined, and the process is to be shown on a P-v diagram.Assumptions 1 The tank is stationary and thus the kinetic and potential energy changes are zero. 2 The device is well-insulated and thus heat transfer is negligible. 3The energy stored in the resistance wires, and the heat transferred to the tank itself is negligible.Analysis We take the contents of the tank as the system. This is a closed system since no mass enters or leaves. Noting that the volume of the system is constant and thus there is no boundary work, the energy balance for this stationary closed system can be expressed as)(V 0)=PE =KE (since )(1212in ,energiesetc. potential, k inetic,internal,in Change system massand work ,heat,by nsfer energy tra Net out in u u m t I Q u u m U W E E E e -=∆=-=∆=∆=-The properties of water are (Tables A-4 through A-6)()[]()k J /k g2569.7v a p o rs a t ./k g m 0.29065k J /k g980.032052.30.25466.97/k g m 0.290650.0010531.15940.250.001053k J /k g3.2052,97.466/kg m 1.1594,001053.025.0kPa 150/k gm 0.29065@2312113113113==⎪⎭⎪⎬⎫===⨯+=+==-⨯+=+=====⎭⎬⎫==g fgffg f fgf g f u u ux uu x uu x P v v v vv vvSubstituting,min60.2==∆⎪⎪⎭⎫ ⎝⎛-=∆s 33613kJ/s1VA1000.03)kJ/kg 980kg)(2569.7(2)A8)(V 110(t t4-39A saturated water mixture contained in a spring-loaded piston-cylinder device is heated until the pressure and volume rise to specified values. The heat transfer and the work done are to be determined.Assumptions 1 The cylinder is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions involved other than the boundary work. 3 The thermal energy stored in the cylinder itself is negligible. 4 The compression or expansion process is quasi-equilibrium. Analysis We take the contents of the cylinder as the system. This is a closed system since no mass enters or leaves. The energy balance for this stationary closed system can be expressed asv)(0)=PE =KE (since )(12ou ,in 12ou ,in energiesetc. potential, k inetic,internal,in Change system massand work ,heat,by nsfer energy tra Net out in u u m W Q u u m U W Q E E E t b t b -+=-=∆=-∆=-The initial state is saturated mixture at 75 kPa. The specific volume and internal energy at this state are (Table A-5),kJ/kg30.553)8.2111)(08.0(36.384/kg m 1783.0)001037.02172.2)(08.0(001037.0131=+=+==-+=+=fgffg f xuuu x v vvThe mass of water iskg22.11/kgm 1783.0m23311===v V mThe final specific volume is/kgm 4458.0kg22.11m53322===m V vThe final state is now fixed. The internal energy at this specific volume and 225 kPa pressure is (Table A-6) kJ/kg 4.16502=u Since this is a linear process, the work done is equal to the area under the process line 1-2:kJ450=⎪⎭⎫ ⎝⎛⋅-+=-+==331221out ,m kPa 1kJ 1)m 2(52)kPa225(75)(2Area V V P P W bSubstituting into energy balance equation giveskJ12,750=-+=-+=kJ/kg )30.553kg)(1650.422.11(kJ 450)(12out ,in u u m W Q b4-43Two tanks initially separated by a partition contain steam at different states. Now the partition is removed and they are allowed to mix until equilibrium is established. The temperature and quality of the steam at the final state and the amount of heat lost from the tanks are to be determined.Assumptions 1 The tank is stationary and thus the kinetic and potential energy changes are zero. 2 There are no work interactions.Analysis (a ) We take the contents of both tanks as the system. This is a closed system since no massenters or leaves. Noting that the volume of the system is constant and thus there is no boundary work, the energy balance for this stationary closed system can be expressed as[][]0)=PE =KE (since )()(1212out energiesetc. potential, k inetic,internal,in Change systemmass and work ,heat,by nsfer energy tra Net out in =-+-=∆+∆=-∆=-W u u m u u m UUQ E E E B A BAThe properties of steam in both tanks at the initial state are (Tables A-4 through A-6)kJ/kg7.2793/kgm 25799.0C 300kPa 1000,13,1,1,1==⎪⎭⎪⎬⎫︒==A A A A u T P v()[]()kJ/kg4.15954.19270.50.66631/kgm 0.196790.0010910.392480.500.001091kJ/kg4.1927,66.631/kgm .392480,001091.050.0C 1501,131,131,1=⨯+=+==-⨯+=+=====⎭⎬⎫=︒=fgfB fg f B fgf gf B ux uu x u u x T v vv vvThe total volume and total mass of the system arekg523m106.1/kg)m 19679.0kg)( 3(/kg)m 25799.0kg)( 2(333,1,1=+=+==+=+=+=B A B B A A B A m m m m m v v V V VNow, the specific volume at the final state may be determined/kgm 22127.0kg5m 106.1332===m Vvwhich fixes the final state and we can determine other properties()kJ/kg8.12821.19820.3641.11561001073.060582.0001073.022127.0/kg m 22127.0kPa0032222k Pa 300 @sat 2322=⨯+=+==--=--=︒==⎪⎭⎪⎬⎫==fg f f g f u x u u x T T P 0.3641C133.5v v v v v(b ) Substituting,[][]kJ 3959kJ/kg )4.15958.1282(kg) 3(kJ/kg )7.27938.1282(kg) 2()()(1212out -=-+-=-+-=∆+∆=-BA BAu u m u u m UUQorkJ3959=out Q4-60The air in a rigid tank is heated until its pressure doubles. The volume of the tank and the amount of heat transfer are to be determined.Assumptions 1 Air is an ideal gas since it is at a high temperature and low pressure relative to its critical point values of -221︒F and 547 psia. 2 The kinetic and potential energy changes are negligible, ∆∆pe ke ≅≅0. 3 Constant specific heats at room temperature can be used for air. This assumption results in negligible error in heating and air-conditioning applications. Properties The gas constant of air is R = 0.3704 psia.ft 3/lbm.R (Table A-1E).Analysis (a3ft80.0=⋅⋅==psia50R)R)(540/lbm ft psia 4lbm)(0.370 (20311P mRT V(b) We take the air in the tank as our system. The energy balance for this stationary closed system can be expressed as)()(1212in in energiesetc. potential, k inetic,internal,in Change system massand work ,heat,by nsfer energy tra Net out in T T mc u u m Q UQ E E E -≅-=∆=∆=-vThe final temperature of air isR1080R) (540211222211=⨯==−→−=T P P T T P T P V VThe internal energies are (Table A-17E)u u u u 12====@@540R 1080R 92.04Btu /lbm 186.93Btu /lbmSubstituting, Q in = (20 lbm)(186.93 - 92.04)Btu/lbm = 1898 BtuAlternative solutions The specific heat of air at the average temperature of T avg = (540+1080)/2= 810 R = 350︒F is, from Table A-2Eb, c v ,avg = 0.175 Btu/lbm.R. Substituting,Q in = (20 lbm)( 0.175 Btu/lbm.R)(1080 - 540) R = 1890 BtuDiscussion Both approaches resulted in almost the same solution in this case.4-64A student living in a room turns her 150-W fan on in the morning. The temperature inthe room when she comes back 10 h later is to be determined.Assumptions 1 Air is an ideal gas since it is at a high temperature and low pressure relative to its critical point values of -141︒C and 3.77 MPa. 2 The kinetic andQpotential energy changes are negligible,∆∆ke pe ≅≅0. 3 Constant specific heats atroom temperature can be used for air. This assumption results in negligible error in heating and air-conditioning applications. 4 All the doors and windows are tightly closed, and heat transfer through the walls and the windows is disregarded.Properties The gas constant of air is R = 0.287 kPa.m 3/kg.K (Table A-1). Also, c v = 0.718 kJ/kg.K for air at room temperature (Table A-2).Analysis We take the room as the system. This is a closed system since the doors and the windows are said to be tightly closed, and thus no mass crosses the system boundary during the process. The energy balance for this system can be expressed as)()(1212,,energiesetc. potential, k inetic,internal,in Change system massand work ,heat,by nsfer energy tra Net T T mc u u m W UW E E E in e in e out in -≅-=∆=∆=-vThe mass of air iskg174.2K)K)(288/kg m kPa (0.287)m kPa)(144 (100m14466433113=⋅⋅===⨯⨯=RT P m V VThe electrical work done by the fan isW W t e e==⨯= ∆(0.15kJ /s)(103600s)5400kJ Substituting and using the c v value at room temperature, 5400 kJ = (174.2 kg)(0.718 kJ/kg ⋅︒C)(T 2 - 15)︒CT 2 = 58.2︒CDiscussion Note that a fan actually causes the internal temperature of a confinedspace to rise. In fact, a 100-W fan supplies a room with as much energy as a 100-W resistance heater.4-69Carbon dioxide contained in a spring-loaded piston-cylinder device is heated. The work done and the heat transfer are to be determined.Assumptions 1 CO 2 is an ideal gas since it is at a high temperature relative to its critical temperature of 304.2 K. 2 The kinetic and potential energy changes are negligible,0pe ke ≅∆≅∆.Properties The properties of CO 2 are R = 0.1889 kJ/kg ⋅K and c v = 0.657 kJ/kg ⋅K (Table A-2a ).PAnalysis We take CO 2 as the system. This is a closed system since no mass crosses the boundaries of the system. The energy balance for this system can be expressed as)(12out ,in energiesetc. potential, k inetic,internal,in Change systemmass and work ,heat,by nsfer energy tra Net out in T T mc U W Q E E E b -=∆=-∆=-vThe initial and final specific volumes are 33111m5629.0k P a100K)K)(298/kg m kPa kg)(0.1889 (1=⋅⋅==P mRT V33222m1082.0kPa1000K)K)(573/kg m kPa kg)(0.1889 (1=⋅⋅==P mRT VPressure changes linearly with volume and the work done is equal to the area underthe process line 1-2:kJ1.250m kPa 1kJ 1)m5629.0(0.10822)kPa 1000(100)(2Area 331221out ,-=⎪⎪⎭⎫⎝⎛⋅-+=-+==V V P P W b Thus,kJ250.1=in ,b WUsing the energy balance equation,kJ4.69K )25K)(300kJ/kg 657.0(kg) 1(kJ 1.250)(12out ,in -=-⋅+-=-+=T T mc W Q b vThus, kJ 69.4=outQ4-76Air at a specified state contained in a piston-cylinder device with a set of stops is heated until a final temperature. The amount of heat transfer is to be determined.Assumptions 1 Air is an ideal gas since it is at a high temperature relative to its critical temperature of 304.2 K. 2 The kinetic and potential energy changes are negligible, 0pe ke ≅∆≅∆. Properties The properties of air are R = 0.287 kJ/kg ⋅K and c v = 0.718 kJ/kg ⋅K (Table A-2a ). Analysis We take air as the system. This is a closedsystem since no mass crosses the boundaries of the system. The energy balance for this system can be expressed as)(12out ,in energiesetc. potential, k inetic,internal,in Change systemmassand work ,heat,by nsfer energy tra Net out in T T mc U W Q E E E b -=∆=-∆=-vThe volume will be constant until the pressure is 300 kPa:K900kPa100kPa 300K)(3001212===P P T TThe mass of the air iskg4646.0K)K)(300/kg m kPa (0.287)m kPa)(0.4 (10033111=⋅⋅==RT P m VThe boundary work done during process 2-3 iskJ04900)K -K)(1200/kg m kPa (0.287)kg 4646.0()()(323232out ,=⋅⋅=-=-=T T mR P W b V VSubstituting these values into energy balance equation,kJ340=-⋅+=-+=K )300K)(1200kJ/kg 718.0(kg) 4646.0(kJ 40)(13out ,in T T mc W Q b v4-85An egg is dropped into boiling water. The amount of heat transfer to the egg by the time it is cooked is to be determined.Assumptions 1 The egg is spherical in shape with a radius of r 0 = 2.75 cm. 2 The thermal properties of the egg are constant. 3 Energy absorption or release associated with any chemical and/or phase changes within the egg is negligible. 4 There are no changes in kinetic and potential energies.Properties The density and specific heat of the egg are given to be ρ = 1020 kg/m 3 and c p = 3.32 kJ/kg.︒C.Analysis We take the egg as the system. This is a closes system since no mass enters or leaves the egg. The energy balance for this closed system can be expressed as)()(1212egg in energiesetc. potential, k inetic,internal,in Change system massand work ,heat,by nsfer energy tra Net out in T T mc u u m U Q E E E -=-=∆=∆=-Then the mass of the egg and the amount of heat transfer becomeBoiling PV (m 3)kJ 21.2=︒-︒=-=====C )880)(C kJ/kg. 32.3)(kg 0889.0()(kg0889.06m)055.0()kg/m1020(612in 333T T mc Q Dm p ππρρV。

相关文档
最新文档