用列表法、树状图法求概率

合集下载

利用树状图和列表计算概率

利用树状图和列表计算概率

利用树状图和列表计算概率学习目标1.会用画树状图的方法求简单事件的概率;2.会用列表的方法求简单事件的概率.温故知新1.三种事件发生的概率及表示:①必然事件发生的概率为1 记作 P(必然事件)=1;②不可能事件发生的概率为0 记作 P(不可能事件)=0;③若A为不确定事件则 0<P(A)<12.等可能性事件的两个特征:(1)出现的结果有限多个;(2)各结果发生的可能性相等.如何求等可能性事件的概率-----树状图列表法... ... ...用列表法和树状图法求概率有什么优点?利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.用树状图和列表的方法求概率时应注意些什么?用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同.典例透析甲乙两只不透明的袋子里装有除颜色之外都相同的球,甲袋装有红、蓝、黄色球各一个,乙袋装有红、蓝色球各一个,从每个袋子里分别随机地摸出一个球,两个球恰为同色的概率是多少?同时掷两枚骰子,落定后,两枚骰子朝上一面的点数之和可能是哪些数?其中概率最大的是什么数?概率最小的是什么数?解析:如果画树状图,需要42个箭头,太麻烦,故用列表法较简单... ... ...随堂练习1.在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是7/18.2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.... ... ...本课小结利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,当然,此时也可以用树状图法,当试验在三步或三步以上时,用画树状图法方便.感谢您的阅读,祝您生活愉快。

用列表法或画树状图法求概率

用列表法或画树状图法求概率

用列表法或画树状图法求概率(放回、不放回)
【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出
n
m A P )(即得所求事件的概率。

【出错点】求m 或n 的值。

【分类】放回、不放回
(一)明确写出放回、不放回类型
例1:(2018·威海中考)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?
例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?
(二)隐含放回、不放回类型
例3:选人(不放回)(2019济南)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率。

例4:选课(放回)(2016济南中考)某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小容两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是?。

知识卡片-列表法与树状图法

知识卡片-列表法与树状图法

列表法与树状图法能量储备在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性的大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率.注意:(1)用列举法求概率时,各种情况出现的可能性必须相同;(2)全面列举出所有可能的结果,各种情况不能重复,也不能遗漏;(3)所求概率是一个准确数,一般用分数表示.通关宝典★基础方法点方法点1:利用概率公式计算某个事件发生的概率时,可利用列表法或画树状图法找全所有可能出现的情况,并将可能出现的全部的结果数作为分母.例1袋中有大小相同、标号不同的白球2个,黑球2个.(1)从袋中连取2个球后不放回,取出的2个球中有1个白球,1个黑球的概率是多少?(2)从袋中有放回地取出2个球的顺序为黑、白的概率是多少?解:(1)根据题意列表如下:共有12种等可能情况,符合题意的有8种,故有1个白球,1个黑球的概率P =812=23. (2)画树状图如图所示.共有16种等可能情况,符合条件的有4种,故取球顺序为黑、白的概率P =416=14. ★ ★ 易混易误点易混易误点1:研究所有等可能结果时重复或遗漏例2 从装有两个红球、两个黄球(每个球除颜色外其他均相同)的袋中任意取出两个球,取出一个红球和一个黄球的概率是( )A.13B.23C.14D.12解析:我们不妨把四个球分别记为红1,红2,黄1,黄2,从中摸出两个球的所有可能结果为(红1,红2),(红1,黄1),(红1,黄2),(红2,黄1),(红2,黄2),(黄1,黄2),共6种,其中一红一黄共有4种,故其概率P =46=23.故选B . 答案:B分析:本题易错误地认为任意取出两个球,共可能出现“两红”“两黄”“一红一黄”三种可能的结果,所以任意取出两个球,取得一个红球和一个黄球的概率为13. 易混易误点2:不能准确区分放回抽样与不放回抽样对事件发生概率的影响例2 有完全相同的4个小球,上面分别标有数字1,-1,2,-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后不放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m ,n ,以m ,n 分别作为一个点的横坐标与纵坐标,求点(m ,n)不在第二象限的概率.解:用列表法.可以看出,共有12种等可能的情况,其中点(m,n)不在第二象限的有8种情况,所以点(m,n)不在第二象限的概率P=812=23.,注意:对于某一关注的结果,放回抽样与不放回抽样是完全不同的,本题易忽视“不放回”这一条件而错误地列出如下表格求错概率.蓄势待发考前攻略考查用列表法或画树状图法求事件的概率是中考的必考内容,命题形式有填空题、选择题、解答题,难度适中.试题常用的背景有摸球、抽取卡片、转转盘、掷骰子等富有生活气息及与社会生活息息相关的内容,是中考的命题趋势,要引起重视.完胜关卡。

列表法和树状图求概率

列表法和树状图求概率

例题讲解---树形图
甲口袋中装有2个相同的小球,它们分别写有字母A和B; 乙 口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙 口袋中装有2个相同的小球,它们分别写有字母H和I。 从3个口袋中各随机地取出1个小球。 (1)取出的3个小球上恰好有1个、2个和3个元音字母的概率 分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少?
(1)指向红色; (2)指向红色或黄色; (3)不指向红色。
解:把7个扇形分别记为红1,红2,红3,绿1,绿2, 黄1,黄2,一共有7个等可能的结果,且这7个结果发生 的可能性相等,
绿(2,3)P(不指指向向红指色向或红黄色色有)= 个47结果,即黄1,黄2,绿1,
练习
二、耐心填一填
3.从一幅充分均匀混合的扑克牌中,随机抽取一张,抽到大王的概率是
( (
15314))。,抽到牌面数字是6的概率是(
2 27
),抽到黑桃的概率是
54
4.四张形状、大小、质地相同的卡片上分别画上圆、平行四边形、等边
三角形、正方形,然后反扣在桌面上,洗匀后随机抽取一张,抽到轴对称图
形的概率是(0.75
),抽到中心对称图形的概率是(0.75
)。
5. 某班文艺委员小芳收集了班上同学喜爱传唱的七首歌曲,作为课前三
1 第第二一张张 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

利用画树状图和列表计算概率课件

利用画树状图和列表计算概率课件

解:
大刚
小亮
抽到A组
抽到B 组
抽到C 组
BC
抽到C组
CA CB CC
P(
同组)=
3 9
=1
3
答:他们恰好分到一组的概率是
1 3·
利用树状图或表格可以清楚地表示出某个事件 产生的所有可能出现的结果,从而较方便地求出某 些事件产生的概率.
除上述方法外,还可以用什么方法解决这个问题?
列表
大刚 小亮
走A
走B
走A
AA
AB
走B
BA
BB
所有等可能的4种结果,即AA、AB、BA、BB,其中二人 相
遇的结果有2种.
想一想: 用树状图和列表法来计算概率,有什么优点?
用树状图和列表法来能帮助我们将所有可能的 结果,直观的列出来做到既不重复也不遗漏.
例1. A,B两个盒子里各装入分别写有数字0,1的两 张卡片,分别从每个盒子中随机取出1张卡片,两张 卡片上的数字之积为0的概率是多少?
解:画树状图
从树状图可以看出,两张卡片 上的数字之积共有4个等可能 结果,从中可找出“两数之积 为0”这一事件的结果有3个.
方法二:列表
B
A
0
1
0
0
0
1
0
1
由上表可知,两张卡片上的数字之积共有4种等可能的结 果,积为0的结果有3种.
次数
54
100
46
(1)根据表格提供的信息分别求出事件A、B、C产生的频率;
(2)你能求出事件A、B、C产生的理论概率吗? (3)比较同一事件的频率与概率是否一致?
通过这节课的学习,你将知道答案.
如图,甲、乙两村之间有两条A,而两条道路,小亮从甲村 去往乙村,大刚从乙村去往甲村,二人同时出发.如果每人 从A,B两条道路中随机选择一条,而且他们都不知道对方 的选择,那么二人途中相遇的概率是多少?

用列表法树状图法求概率

用列表法树状图法求概率

用列表法、树状图法求概率有招刘琛概率问题是中考中的热点问题,与概率有关的题目形式多样,但其中最主要的是考查利用列表法或树状图法求随即事件的概率.而利用列表法或树状图法求随即事件的概率,关键要注意以下三点:(1)注意各种情况出现的可能性务必相同;(2)其中某一事件发生的概率=各种情况出现的次数某一事件发生的次数;(3)在考察各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏.(4)用列表法或树状图法求得概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率.例1 田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.(1). 如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2). 如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)分析:正确理解题意,将齐王和田忌的马正确排列,而后恰当列表.解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.双方马的对阵中,只有一种对阵情况田忌能赢,所以田忌获胜的概率 P=6. 例 2 “石头、剪刀、布”是广为流传的游戏,游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同样手势不分胜负,假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S 表示“石头”,用J 表示“剪刀”,用B 表示“布”)解析:解法一:一次游戏、甲、乙两人随机出手势的所有可能的结果如下图:所有可能出的结果:(S ,S )(S ,J )(S ,B )(J ,S )(J ,J )(J ,B )(B ,S )(B ,J )(B ,B ) 从上面的树状图可以看出,一次游戏可能出现的结果共有9种,而且每种结果出现的可能性相同. 所以,P (出同种手势)=93=31P (甲获胜)=93=31解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:以下同解法一评注:(1)利用列表法、树状图法求概率必须是等可能事件.(2)对各种可能出现的情况不能遗漏或重复某种可能.例3.有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:(1).5的倍数的概率;(2).2分;数字之积为5戏对双方公平.解析:(1)每次游戏可能出现的所有结果列表如下:表格中共有9种等可能的结果,其中数字之积为3的倍数的有五种,数字之积为5的倍数的有三种,所以P(3的倍数)=95;P(5的倍数)93.(2)这个游戏对双方不公平∵小亮平均每次得分为2×95=910(分),小芸平均每次得分为3×93=99=1(分).∵910≠1,∴游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.A B。

例析用列表法或树状图求事件的概率

例析用列表法或树状图求事件的概率

例析用列表法或树状图求事件的概率列表法或树状图是查找事件所有可能结果的非常有效的方法,要根据“求某事件的概率”的题目的具体特点,选用列表法或画树状图法,找出事件所有等可能结果,才能正确解决这类问题。

利用列举法求概率的关键在于正确列举出实验结果的各种可能性,当事件只有一步或涉及一个因素时,通常用直接列举法。

例1(2022•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况∴两次摸出的小球标号之和等于5的概率是:=.故选:C.【点评】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.例2(2022•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.练一练:1、(2022•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. B.C.D.2、(2022•盐城)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.3、(2022•贵阳)2022年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.参考答案:1、解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.2、解:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.3、解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1234561(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选中)==.。

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率 (3)

用列表法或画树状图法求概率(放回、不放回)【方法】使用列表法或画树状图法求概率时,首先要通过列表或画树状图列出所有可能出现的结果数n ,然后找出符合事件A 出现的结果数m ,用公式求出nmA P =)(即得所求事件的概率。

【分类】放回、不放回类型一:明确写出放回、不放回类型例1:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是?例2:一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取一张卡片后放回再抽取的一张卡片上数字之积为负数的概率是?类型二:隐含放回、不放回类型例3:(指定特殊条件)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,先她选择从A 入口进入、从C ,D 出口离开的概率是( ) A .12B .13C .16D .23答:根据题意,列表如下: 共有 6 种可能的结果,每种结果出现的可能性都相同。

其中恰好选中“A 入口进入、从C ,D 出口”的结果有2种,所以3162)出口D ,C 入口A (==P例4:选人(不放回)(2019济南)该年级学生会宣传部有 2 名男生和 2 名女生,现从中随机挑选 2 名同学参加“防控近视,爱眼护眼”宣 传活动,请用树状图法或列表法求出恰好选中“1 男 1 女”的概率.有 8 种,所以32128)(==选择一男一女P 出口出口【同类题】1.(2019历下一模)调查结果中,该校九年级(2)班有四名同学相当优秀,了解程度为“很了解”,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去市里参加“舜文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.2.(2019年市中一模)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.3.(2019长清一模)已知受访的教师中,E 组只有2名女教师,F 组只有1名男教师,现要从E 组、F 组中分别选派1名教师写总结报告,请用列表法或画树状图的方法,求所选派的两名教师恰好是1男1女的概率.例5:选课(放回)(2018济南中考)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.A (A,A ) (B,A ) (C,A )B (A,B ) (B,B ) (C,B ) C(A,C )(B,C )(C,C )共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:39=13.【同类题】1. (2015年中考)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.2. (2014年中考)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .32 B .21 C .31 D .41。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用列表法、树状图法求概率有招
刘琛
概率问题是中考中的热点问题,与概率有关的题目形式多样,但其中最主要的是考查利用列表法或树状图法求随即事件的概率.而利用列表法或树状图法求随即事件的概率,关键要注意以下三点:
(1)注意各种情况出现的可能性务必相同;(2)其中某一事件发生的概率=
各种情况出现的次数
某一事件发生的次数
;(3)在考察各种情况出现的次数和某一事件发生的次数时不能重
复也不能遗漏.(4)用列表法或树状图法求得概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率.
例1 田忌赛马是一个为人熟知的故事,传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛一次,赢得两局者为胜,看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强.
(1). 如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜? (2). 如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)
分析:正确理解题意,将齐王和田忌的马正确排列,而后恰当列表. 解:(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.
(2).当田忌的马随机出阵时,双方马的对阵情况如下表:
双方马的对阵中,只有一种对阵情况田忌能赢,所以田忌获胜的概率 P=
6
1. 例2 “石头、剪刀、布”是广为流传的游戏,游戏时甲、乙双方每次出“石头”、“剪刀”、“布”三种手势中一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头”,同样手势不分胜负,假定甲、乙两人每次都是等可能地出这三种手势,用画树状图或列表的方法分别求出一次游戏中两人同种手势的概率和甲获胜的概率.(提示:为书写方便,解答时可以用S 表示“石头”,用J 表示“剪刀”,用B 表示“布”)
解析:解法一:一次游戏、甲、乙两人随机出手势的所有可能的结果如下图:
所有可能出的结果:(S ,S )(S ,J )(S ,B )(J ,S )(J ,J )(J ,B )(B ,S )(B ,J )(B ,B )
从上面的树状图可以看出,一次游戏可能出现的结果共有9种,而且每种结果出现的可能性相同.
所以,P (出同种手势)=
93=3
1
P (甲获胜)=
93=3
1 解法二:一次游戏,甲、乙两人随机出手势的所有可能的结果如下表:
以下同解法一 评注:(1)利用列表法、树状图法求概率必须是等可能事件.
(2)对各种可能出现的情况不能遗漏或重复某种可能.
例3.有两个可以自由转动的均匀转盘A 、B ,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:
①分别转动转盘A 、B ;
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等分线上,那么重转一次,直到指针指向某一份为止).
(1).用列表法(或树状图)分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
(2).小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分,这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平. 解析:(1)每次游戏可能出现的所有结果列表如下: 表格中共有9种等可能的结果,其中数字之积为3的倍数的有五种,数字之积为5的倍数的有三种,所以P (3的倍数)=95;P (5的倍数)9
3. (2)这个游戏对双方不公平
A
B
∵小亮平均每次得分为2×
95=910
(分), 小芸平均每次得分为3×93=9
9
=1(分).
∵9
10≠1,∴游戏对双方不公平. 修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小芸得5分即可.。

相关文档
最新文档