4-二次函数压轴题

合集下载

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案

一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。

最新九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)

最新九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)

2023年九年级数学中考专题训练:二次函数综合压轴题(相似三角形问题)1.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图1,抛物线234y x x =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接,AC BC .(1)求ABC 的面积;(2)如图2,点P 为直线上方抛物线上的动点,过点P 作PD AC ∥交直线BC 于点D ,过点P 作直线PE x ∥轴交直线BC 于点E ,求PD PE +的最大值及此时P 的坐标;(3)在(2)的条件下,将原抛物线234y x x =-++沿射线AC 方向平移M 是新抛物线与原抛物线的交点,N 是平面内任意一点,若以P 、B 、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.3.已知抛物线2y x bx c =++与x 轴交于()()1030A B ,、,两点,且与y 轴的公共点为点C ,设该抛物线的顶点为D .(1)求抛物线的表达式,并求出顶点D 的坐标;(2)若点P 为抛物线上一点,且满足PB PC =,求点P 的横坐标;(3)连接CD BC ,,点E 为线段BC 上一点,过点E 作EF CD ⊥交CD 于点F ,若12=DF CF ,求点E 的坐标.4.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线24y ax bx =++与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,直线4y x =-+经过B 、C 两点,4OB OA =.(1)求抛物线的解析式;(2)如图2,点P 为第四象限抛物线上一点,过点P 作PD x ⊥轴交BC 于点D ,垂足为N ,连接PC 交x 轴于点E ,设点P 的横坐标为t ,PCD 的面积为S ,求S 与t 的函数关系式;(3)在(2)的条件下,如图3,过点P 作PF PC ⊥交y 轴于点F ,PF PE =.点G 在抛物线上,连接PG ,45CPG ∠=︒,连接BG ,求直线BG 的解析式.5.如图1,已知二次函数2y ax bx c =++的图象的顶点为()0,1D ,且经过点()2,2A .(1)求二次函数的解析式;(2)过点A 的直线与二次函数图象的另一交点为B ,与y 轴交于点C ,若BDC 的面积是ADC △的两倍,求直线AB 的解析式;(3)如图2,已知(),0E m ,是x 轴上一动点(E ,O 不重合),过E 的两条直线1l ,2l 与二次函数均只有一个交点,且直线1l ,2l 与y 轴分别交于点M 、N .对于任意的点E ,在y 轴上(点M 、N 上方)是否存在一点()0,F t ,使N FEM F E △∽△恒成立.若存在,求出t 的值;若不存在,请说明理由.6.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.7.如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,3).(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△CBP=△ACO,若存在,求出点P的坐标,若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求DQ EQ QFAD BE CF++的值.8.如图所示,平面直角坐标系中,二次函数y=a(x+2k)(x﹣k)图象与x轴交于A、B两点,抛物线对称轴为直线x=﹣2;(1)求k 的值;(2)点C 为抛物线上一点,连接BC 、AC ,作CD △x 轴于D ,当△BCA =90°时,设CD 长度为d ,求d 与a 的函数关系式;(3)抛物线顶点为S ,作S T 垂直AB 于T ,点Q 为第一象限抛物线上一点,连接AQ 交S T 于点P ,过B 作x 轴的垂线交AQ 延长线于点E ,连接OE 交BQ 于点G ,过O 作OE 的垂线交AQ 于点F ,若OF =OG ,tan△ABQ =2时,连接S Q ,求证:S Q =S P .9.已知抛物线23y x bx =-++的图象与x 轴相交于点A 和点B ,与y 轴交于点C ,图象的对称轴为直线=1x -.连接AC ,有一动点D 在线段AC 上运动,过点D 作x 轴的垂线,交抛物线于点E ,交x 轴于点F .设点D 的横坐标为m .(1)求AB 的长度;(2)连接AE CE 、,当ACE △的面积最大时,求点D 的坐标; (3)当m 为何值时,ADF △与CDE 相似.10.如图,抛物线28y ax bx =++与x 轴交于()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求该抛物线的函数表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,设四边形PBOC 和AOC 的面积分别为PBOC S 四边形和AOCS,记AOC PBOC S S S =-△四边形,求S 最大值点P 的坐标及S 的最大值;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与BOC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.如图,抛物线24y ax bx =+-经过点()1,0C -,点()4,0B ,交y 轴于点A ,点H 是该抛物线上第四象限内的一个动点,HE △x 轴于点E ,交线段AB 于点D ,HQ △y 轴,交y 轴于点Q .(1)求抛物线的函数解析式.(2)若四边形HQOE 是正方形,求该正方形的面积.(3)连接OD 、AC ,抛物线上是否存在点H ,使得以点O 、A 、D 为顶点的三角形与△ABC 相似,若存在,请直接写出点H 的坐标,若不存在,请说明理由.12.如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为()10A -,,顶点为B .点()5C m ,在抛物线上,直线BC 交x 轴于点E .(1)求抛物线的表达式及点E 的坐标; (2)连接AB ,求△B 的余切值;(3)点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.13.如图所示,抛物线2=23y x x --与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN △面积的最大值. (3)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC 相似.若存在,求出点P 的坐标;若不存在,请说明理由.14.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.15.综合与探究如图,抛物线212y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B ,C 的坐标分别为(2,0),(0,3),点D 与点C 关于x 轴对称,P 是直线AC 上方抛物线上一动点,连接PD 、交AC 于点Q .(1)求抛物线的函数表达式及点A 的坐标; (2)在点P 运动的过程中,求PQ :DQ 的最大值;(3)在y 轴上是不存在点M ,使45AMB ∠=︒?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得△CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.17.如图(1),直线y =-x +3与x 轴、y 轴分别交于点B (3,0)、点C (0,3),经过B 、C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式与点P 的坐标;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值; (3)连接AC ,点N 在x 轴上,点M 在对称轴上,△是否存在使以B 、P 、N 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由;△是否存在点M ,N ,使以C 、P 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. (图(2)、图(3)供画图探究)18.如图,已知抛物线213222y x x =-++与x 轴交于点A 、B ,与y 轴交于点C .(1)则点A 的坐标为_________,点B 的坐标为_________,点C 的坐标为_________;(2)设点11(,)P x y ,22(,)Q x y (其中12x x >)都在抛物线213222y x x =-++上,若121x x =+,请证明:12y y >;(3)已知点M 是线段BC 上的动点,点N 是线段BC 上方抛物线上的动点,若90CNM ∠=︒,且CMN 与OBC △相似,试求此时点N 的坐标.参考答案:1.(1)2=23y x x --(2)函数的最大值为5,最小值为4-(3)存在,(0,9)P -或9(0,)5P -2.(1)10;(2)最大值为4,()2,6P ; (3)N 点坐标为113,24⎛⎫ ⎪⎝⎭或345,24⎛⎫- ⎪⎝⎭或53,24⎛⎫- ⎪⎝⎭.3.(1)243y x x =-+,()21-,(2)⎝⎭或⎝⎭(3)207,99⎛⎫ ⎪⎝⎭4.(1)254y x x =-+ (2)32122S t t =-+ (3)416y x =-5.(1)2114y x =+ (2)312y x =-或132y x =-+ (3)存在,=2t6.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 7.(1)223y x x =-++(2)存在,1217(,),(1,4)24P P - (3)DQ EQ QF AD BE CF ++的值为18.(1)k =4 (2)1d a=-9.(1)4(2)(32-,32-) (3)当2m =-或1m =-时ADF △与CDE 相似10.(1)21382y x x =-++ (2)()4,12P ,最大值为56(3)存在,()3,8,(3,5,()3,1111.(1)234y x x =--(2)6+(3)存在,点H 的坐标为1684,525⎛⎫- ⎪⎝⎭或521,24⎛⎫- ⎪⎝⎭12.(1)21322y x x =--;E (2,0) (2)3(3)M 点的坐标为(5,0)或(7,0)13.(1)C 点坐标为(0,-3),顶点M 的坐标为(1,-4);(2)278(3)P 点的坐标为39(,)44--或(-1,-2).14.(1)抛物线L 1:2=23y x x --,抛物线L 2:223y x x =-++; (2)435(,)39M 或(4,5)M -.15.(1)211322y x x =--+,A (-3,0); (2)316; (3)存在,M (0,6)或(0,-6)16.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)17.(1)243y x x =-+,顶点坐标为P (2,-1) (2)33,24E ⎛⎫- ⎪⎝⎭(3)△存在,()10,0N 或27,03N ⎛⎫ ⎪⎝⎭;△存在,点M 的坐标为(2,2);(2,-4);(2,4)18.(1)(-1,0),(4,0),(0,2);(3)点N 的坐标为(32,258)或(3,2).。

二次函数压轴题(带详细答案)

二次函数压轴题(带详细答案)

二次函数压轴题强化训练(带详细答案)一.解答题(共30小题)1.(2016•深圳模拟)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.2.(2015•枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.3.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.4.(2013•凉山州)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.5.(2009•綦江县)如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.6.(2013•天水)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m 的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).7.(2014•河南)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.8.(2013•德州)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.9.(2013•河南)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.10.(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.11.(2013•徐州)如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED 与正方形ABCD重叠部分的面积;若不存在,请说明理由.12.(2013•泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.13.(2014•广元)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.14.(2014•成都)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A 出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?15.(2014•南宁)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.16.(2013•防城港)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.17.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B 的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.18.(2014•钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH 相似?若存在,求出此时m的值;若不存在,请说明理由.19.(2014•昆明)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A (﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.20.(2013•恩施州)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB 沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.21.(2013•毕节地区)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.22.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.23.(2014•吉林)如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.24.(2013•武汉)如图,点P是直线l:y=﹣2x﹣2上的点,过点P的另一条直线m交抛物线y=x2于A、B两点.(1)若直线m的解析式为y=﹣x+,求A,B两点的坐标;(2)①若点P的坐标为(﹣2,t).当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上能找到点A,使得PA=AB成立.(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.25.(2013•遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC 是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.26.(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?27.(2006•重庆)已知:m、n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c 的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标.28.(2015•阜新)如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.29.(2014•白银)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.30.(2014•宿迁)如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.二次函数压轴题强化答案一.解答题(共30小题)1.(2016•深圳模拟)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.【考点】二次函数综合题.【专题】压轴题;开放型.【分析】(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是∠ABO的角平分线,所以OC=CH,BH=OB=6∵AB=10,∴AH=4,设OC=x,则AC=8﹣x由勾股定理得:x=3∴点C的坐标为(3,0)将此三点代入二次函数一般式,列的方程组即可求得;(2)求得直线BC的解析式,根据平行四边形的性质,对角相等,对边平行且相等,借助于三角函数即可求得;(3)如图,由对称性可知QO=QH,|QA﹣QO|=|QA﹣QH|.当点Q与点B重合时,Q、H、A三点共线,|QA﹣QO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QA﹣QO|取得最小值0.【解答】解:(1)点C的坐标为(3,0).(1分)∵点A、B的坐标分别为A(8,0),B(0,6),∴可设过A、B、C三点的抛物线的解析式为y=a(x﹣3)(x﹣8).将x=0,y=6代入抛物线的解析式,得.(2分)∴过A、B、C三点的抛物线的解析式为.(3分)(2)可得抛物线的对称轴为直线,顶点D的坐标为,设抛物线的对称轴与x轴的交点为G.直线BC的解析式为y=﹣2x+6.4分)设点P的坐标为(x,﹣2x+6).解法一:如图,作OP∥AD交直线BC于点P,连接AP,作PM⊥x轴于点M.∵OP∥AD,∴∠POM=∠GAD,tan∠POM=tan∠GAD.∴,即.解得.经检验是原方程的解.此时点P的坐标为.(5分)但此时,OM<GA.∵,∴OP<AD,即四边形的对边OP与AD平行但不相等,∴直线BC上不存在符合条件的点P(6分)解法二:如图,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于点N.则∠PEO=∠DEA,PE=DE.可得△PEN≌△DEG.由,可得E点的坐标为(4,0).NE=EG=,ON=OE﹣NE=,NP=DG=.∴点P的坐标为.(5分)∵x=时,,∴点P不在直线BC上.∴直线BC上不存在符合条件的点P.(6分)(3)|QA﹣QO|的取值范围是.(8分)(如点K处),此时OK=AK,则|QA﹣QO|=0,当Q在OA的垂直平分线上与直线BC的交点时,当Q在AH的延长线与直线BC交点时,此时|QA﹣QO|最大,直线AH的解析式为:y=﹣x+6,直线BC的解析式为:y=﹣2x+6,联立可得:交点为(0,6),∴OQ=6,AQ=10,∴|QA﹣QO|=4,∴|QA﹣QO|的取值范围是:0≤|QA﹣QO|≤4.【点评】此题考查了二次函数与一次函数以及平行四边形的综合知识,解题的关键是认真识图,注意数形结合思想的应用.2.(2015•枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.【考点】二次函数综合题.【专题】几何综合题;压轴题.【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【点评】此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识.3.(2007•玉溪)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可;(2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3;(3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在.【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).(3)存在.解法1:要使四边形DCEP是平行四边形,必需有PE=DC.∵点D在直线y=x+1上,∴点D的坐标为(1,2),∴﹣x2+3x=2.即x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.设直线CE的函数关系式为y=x+b.∵直线CE经过点C(1,0),∴0=1+b,∴b=﹣1.∴直线CE的函数关系式为y=x﹣1.∴得x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.【点评】此题考查了用待定系数法求函数解析式以及函数图象上点的坐标特征,结合图形有利于解答;(3)是一道存在性问题,有一定的开放性,需要先假设点P存在,然后进行验证计算.4.(2013•凉山州)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将A(3,0),C(0,4)代入y=ax2﹣2ax+c,运用待定系数法即可求出抛物线的解析式;(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长;(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.【解答】解:(1)∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),∴,解得,∴抛物线的解析式为y=﹣x2+x+4;(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得,∴直线AC的解析式为y=﹣x+4.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,﹣m+4),∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,∴点P的坐标为(m,﹣m2+m+4),∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,即PM=﹣m2+4m(0<m<3);(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,若以P、C、F为顶点的三角形和△AEM 相似,情况:①P点在F上,PF=﹣m2+m+4﹣4=﹣m2+m.若△PFC∽△AEM,则PF:AE=FC:EM,即(﹣m2+m):(3﹣m)=m:(﹣m+4),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME,∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°,∴△PCM为直角三角形;②P点在F下,PF=4﹣(﹣m2+m+4)=m2﹣m若△PFC∽△AEM,则PF:AE=FC:EM,即(m2﹣m):(3﹣m)=m:(﹣m+4),∵m≠0且m≠3,∴m=(不合题意舍去).∵∠CFP=90°,∴∠CPM=∠CFP+FCM>90°,∴△CPM为钝角三角形;③若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3﹣m)=(﹣m2+m):(﹣m+4),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME,∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM,∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【点评】此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解.5.(2009•綦江县)如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将A的坐标代入抛物线y=a(x﹣1)2+3(a≠0)可得a的值,即可得到抛物线的解析式;(2)易得D的坐标,过D作DN⊥OB于N;进而可得DN、AN、AD的长,根据平行四边形,直角梯形,等腰梯形的性质,用t将其中的关系表示出来,并求解可得答案;(3)根据(2)的结论,易得△OCB是等边三角形,可得BQ、PE关于t的关系式,将四边形的面积用t表示出来,进而分析可得最小值及此时t的值,进而可求得PQ的长.【解答】解:(1)∵抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),∴0=9a+3,∴a=﹣(1分)∴二次函数的解析式为:y=﹣x2+x+;(3分)(2)①∵D为抛物线的顶点,∴D(1,3),过D作DN⊥OB于N,则DN=3,AN=3,∴AD==6,∴∠DAO=60°.(4分)∵OM∥AD,①当AD=OP时,四边形DAOP是平行四边形,∴OP=6,∴t=6(s).(5分)②当DP⊥OM时,四边形DAOP是直角梯形,过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA (求AH=1)∴OP=DH=5,t=5(s)(6分)③当PD=OA时,四边形DAOP是等腰梯形,易证:△AOH≌△DPP′,∴AH=CP,∴OP=AD﹣2AH=6﹣2=4,∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(7分)(3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t,∴OQ=6﹣2t(0<t<3)过P作PE⊥OQ于E,则PE=t(8分)∴S BCPQ=×6×3×(6﹣2t)×t=(t﹣)2+(9分)当t=时,四边形BCPQ的面积最小值为.(10分)∴此时OQ=3,OP=,OE=;。

2023年中考数学复习《二次函数综合压轴题》培优提升专题训练(含解析)

2023年中考数学复习《二次函数综合压轴题》培优提升专题训练(含解析)

2023年春九年级数学中考复习《二次函数综合压轴题》培优提升专题训练(附答案)1.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.2.如图,在平面直角坐标系中,矩形ABCD的顶点B,C,D的坐标分别(1,0),(3,0),(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D匀速运动,过点P作PE⊥x轴,交对角线AC于点N.设点P运动的时间为t(秒).(1)求抛物线的解析式;(2)若PN分△ACD的面积为1:2的两部分,求t的值;(3)若动点P从A出发的同时,点Q从C出发,以每秒1个单位的速度沿线段CD向点D匀速运动,点H为线段PE上一点.若以C,Q,N,H为顶点的四边形为菱形,求t的值.3.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?5.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.6.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?8.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一动点,过点P作x轴的垂线l,交BC于点H.当点P 运动到何处时满足PC=CH?求出此时点P的坐标;(3)若m≤x≤m+1时,二次函数y=ax2+bx+3的最大值为m,求m的值.9.综合与探究如图,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(2,0),点C在y轴上,其坐标为(0,﹣3),抛物线经过点A,B,C.P为第三象限内抛物线上一动点.(1)求该抛物线的解析式.(2)连接AC,过点P作PD⊥AC,PE∥y轴交AC于点E,当△PDE的周长最大时,求P点的坐标和△PDE周长的最大值.(3)若点M为x轴上一动点,点F为平面直角坐标系内一点.当点M,B,C,F构成菱形时,请直接写出点F的坐标.10.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,CA=4,将∠ABC对折,使点C 的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.(1)求过A,B,O三点的抛物线解析式;(2)若在线段AB上有一动点P,过点P作x轴的垂线,交抛物线于M,连接MB,MA,求△MAB的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O,A,E,F为顶点的四边形为平行四边形,求点E的坐标.11.如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P 的坐标;如果不存在,请说明理由.12.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC,若存在,请求出点M的坐标;若不存在,请说明理由.13.已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).(1)求证:抛物线与x轴有两个交点.(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值.14.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.15.如图,已知直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+3经过B、C两点并与x轴的另一个交点为A,且OC=3OA.(1)求抛物线的解析式;(2)点R为直线BC上方对称轴右侧抛物线上一点,当△RBC的面积为时,求R点的坐标;(3)在(2)的条件下,连接CR,作RH⊥x轴于H,连接CH、AC,点P为线段CR上一点,点Q为线段CH上一点,满足QH=CP,过点P作PE∥AC交x轴于点E,连接EQ,当∠PEQ=45°时,求CP的长.16.综合与探究如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y =ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.(1)求抛物线的解析式;(2)当∠ECD=∠EDC时,求出此时m的值;(3)点D在运动的过程中,△EBF的周长是否存在最小值?若存在,求出此时m的值;若不存在,请说明理由.17.如图,抛物线y=ax2+bx+3经过点A(1,0),B(4,0).(1)求抛物线的表达式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC的周长最小值;若不存在,请说明理由;(3)如图②,点Q是OB上的一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.18.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(﹣3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠P A′O=90◦.求点C的坐标.19.如图,在直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.20.如图,抛物线y=ax2+6x﹣5交x轴于A,B两点,交y轴于C点,点B的坐标为(5,0),直线y=x﹣5经过点B,C.(1)求抛物线的函数表达式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值并求出此时点P 的坐标;(3)过点A的直线交直线BC于点M,连接AC当直线AM与直线BC的一个夹角等于∠ACB的3倍时,请直接写出点M的坐标.21.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.23.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.24.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.25.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.26.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.27.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求顶点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系式,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.28.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.2.解:(1)∵四边形ABCD为矩形,且B(1,0),C(3,0),D(3,4),∴A(1,4),设抛物线的解析式为y=a(x﹣1)2+4,将C(3,0)代入y=a(x﹣1)2+4,得0=4a+4,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)∵PE⊥x轴,DC⊥x轴,∴PE∥DC,∴△APN∽△ADC,∵PN分△ACD的面积为1:2的两部分,∴=或,当=时,==,∵AD=2,∴AP=,∴t的值为×2=;当=时,==,∵AD=2,∴AP=,∴t的值为×2=,综上所述,t的值为或;(3)如图2﹣1,当CN为菱形的对角线时,点P,N的横坐标均为,设直线AC的解析式为y=kx+b,将A(1,4),C(3,0)代入y=kx+b,得,解得,∴直线AC的表达式为y=﹣2x+6,将点N的横坐标代入y=﹣2x+6,得,即EN=4﹣t,由菱形CQNH可得,CQ=NH=t=CH,可得EH=(4﹣t)﹣t=4﹣2t,∵,∴,在Rt△CHE中,∵CE2+EH2=CH2,∴,解得,t1=,t2=4(舍);如图2﹣2,当CN为菱形的边时,由菱形CQHN可得,CQ=CN=t,在Rt△CNE中,∵NE2+CE2=CN2,∴(4﹣t)2+(2﹣t)2=t2,解得,t1=20﹣8,t2=20+8(舍);综上所述,t的值为或.3.解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S△ACD有最大值,当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.4.解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1∴S△AED=S△AEF+S△EFD==,∴当m为﹣2时,S△AED的最大值为1,如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.5.解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,∴S△AOB=OC•(y A﹣y B)=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,∵△POB为等腰三角形,∴①PO2=OB2时,+y2=8,解得,y=±,∴P1(﹣,﹣),P2(﹣,);②PB2=OB2时,+(y+2)2=8,解得,y=﹣2±,∴P3(﹣,﹣2﹣),P4(﹣,﹣2+);③PB2=OP2时,+(y+2)2=+y2,解得,y=﹣,∴P5(﹣,﹣);综上所述,点P的坐标为P1(﹣,﹣),P2(﹣,),P3(﹣,﹣2﹣),P4(﹣,﹣2+),P5(﹣,﹣);(3)设M(x,y),∵A(1,4),B(﹣2,﹣2),O(0,0),∴MO2=x2+y2,MA2=(x﹣1)2+(y﹣4)2,MB2=(x+2)2+(y+2)2,又∵MO=MA=MB,∴,解得,,∴M(﹣,),作B关于y轴的对称点B'(2,﹣2),连接B'M交y轴于Q,则此时MQ+BQ的值最小,理由是两点之间,线段最短,又∵MB的长度为定值,∴此时△BQM的周长最小,C△BQM=MB+MQ+BQ=MB+MB'==,∴M的坐标为(﹣,),△BQM周长的最小值为.6.解:(1)将点A(﹣1,0),B(4,0)代入y=x2+bx+c,得,,解得,,∴抛物线的解析式为y=x2﹣3x﹣4;(2)当k=﹣1时,直线AC的解析式为y=﹣x﹣1,设P(x,x2﹣3x﹣4),则E(x,﹣x﹣1),D(x,0),则PE=|x2﹣3x﹣4﹣(﹣x﹣1)|=|x2﹣2x﹣3|,DE=|x+1|,∵PE=2ED,∴|x2﹣2x﹣3|=2|x+1|,当x2﹣2x﹣3=2(x+1)时,解得,x1=﹣1(舍去),x2=5,∴P(5,6);当x2﹣2x﹣3=﹣2(x+1)时,解得,x1=﹣1(舍去),x2=1,∴P(1,﹣6);综上所述,点P的坐标为(5,6)或(1,﹣6);(3)存在,理由如下;∵∠AED=∠PEC,∴要使△ADE与△PCE相似,必有∠EPC=∠ADE=90°或∠ECP=∠ADE=90°,①当∠EPC=∠ADE=90°时,如图1,CP∥x轴,∵P(1,﹣6),根据对称性可得C(2,﹣6),将C(2,﹣6),代入直线AC解析式中,得2k+k=﹣6,解得,k=﹣2;②当∠ECP=∠ADE=90°时,如图2,过C点作CF⊥PD于点F,则有∠FCP=∠PEC=∠AED,则△PCF∽△AED,∴=,在直线y=kx+k上,当x=1时,y=2k,∴E(1,2k),∴DE=﹣2k,由,得或,∴C(k+4,k2+5k),∴F(1,k2+5k),∴CF=k+3,FP=k2+5k+6,∴=,解得,k1=k2=﹣1,k3=﹣3(此时C与P重合,舍去),综上,当k=﹣2或﹣1时,△ADE与△PCE相似.7.(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0),B(3,0)两点,∴,∴,∴抛物线解析式为;(2)如图1,过点A作AH∥y轴交BC于H,交BE于G,由(1),C(0,﹣2),将B(3,0),C(0,﹣2)代入y=kx+b,得,,解得,,∴直线BC的解析式为,∵H(1,y)在直线BC上,∴,∴,将点B(3,0),E(0,﹣1)代入y=kx+b,得,,解得,,∴直线BE的解析式为y=x﹣1,∴G(1,﹣),∴GH=,∵直线BE:y=x﹣1与抛物线y=﹣x2+x﹣2相交于F,B,∴F(,﹣),∴S△FHB=GH×(x B﹣x F)=××(3﹣)=;(3)如图2,由(1)y=﹣x2+x﹣2=﹣(x﹣2)2+,∴顶点D(2,),∵动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,∴设M(2,m),m>,∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m1=,m2=﹣(舍),∴M(2,),∴MD=﹣,∴,∴当时,∠OMB=90°.8.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得,,∴抛物线的解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得,x1=0(舍去),x2=1,∴P(1,4);(3)在y=﹣x2+2x+3中,对称轴为x=1,若m+1≤1,即m≤0时,当x=m+1时,函数有最大值m,∴﹣(m+1)2+2(m+1)+3=m,解得,m1=(舍去),m2=;若m<1<m+1,即0<m<1时,当x=1时,函数有最大值为m=4(舍);若m>1,当x=m时,函数有最大值为m,∴﹣m2+2m+3=m,解得,m1=(舍去),m2=,综上所述,m的值为或.9.解:(1)∵抛物线经过点A,B,它们的坐标分别为(﹣4,0)、(2,0),∴设其解析式为y=a(x+4)(x﹣2),将点C(0,﹣3)代入y=a(x+4)(x﹣2),解得,,∴抛物线的解析式为;(2)∵OA=4,OC=3,∠AOC=90°,∴AC==5,∵PD⊥AC,∠PDE=∠AOC=90°,又∵PE∥y轴,∴∠PED=∠ACO,∴△PDE∽△AOC,∴PD:AO=DE:OC=PE:AC,即PD:4=DE:3=PE:5,∴,∴△PDE的周长=,则要使△PDE周长最大,PE取最大值即可,设直线AC的解析式为y=kx﹣3,将点A(﹣4,0)代入y=kx﹣3,得,k=﹣,∴直线AC的解析式为,设点,则,∴当a=﹣2时,取得最PE大值,最大值为,则,∴P(﹣2,﹣3),△PDE周长的最大值为;(3)如右图,①当BM为对角线时,显然,点F在y轴上,根据对称性得到点F的坐标为(0,3);②当BM为边时,∵,则有以下几种情况:(I)BC为边时,BM=BC=,点M在x轴负半轴上时,点M是点B向左平移个单位长度得到的,∴M(2﹣,0),∴点C(0,﹣3)向左平移个单位长度得到点F;点M在x轴正半轴上时,点M是点B向平右移个单位长度得到的,∴M(2+,0),∴点C(0,﹣3)向右平移个单位长度得到点F;(II)BC为对角线时,设OM=x,在直角三角形OMC中,由勾股定理可得OM2+OC2=MC2,即x2+32=(x+2)2,解得,x=,∴菱形的边长为2+=,∴CF=,∴F(,﹣3),综上所述,点F的坐标为(0,3)或或或.10.解:(1)在Rt△ABC中,AB===5,由翻折知,△BCO≌△BHO,∴BH=BC=3,∴AH=AB﹣BH=2,∵∠HAO=∠CAB,∠OHA=∠BCA=90°,∴△AHO∽△ACB,∴=,即=,∴AO=,∴A(,0),B(﹣,3),∵抛物线经过原点O,∴可设抛物线的解析式为y=ax2+bx,将点A(,0),B(﹣,3)代入,得,解得,,∴过A,B,O三点的抛物线解析式为y=x2﹣x;(2)设直线AB的解析式为y=kx+b,将点A(,0),B(﹣,3)代入,得,解得∴直线AB的解析式为y=﹣x+,∴可设P(x,﹣x+),则M(x,x2﹣x),∴PM=﹣x+﹣(x2﹣x)=﹣x2+x+,∴S△MAB=PM(x A﹣x B)=(﹣x2+x+)×4=﹣x2+x+=﹣(x﹣)2+4,∴当x=时,△MAB的面积取最大值4;(3)在y=x2﹣x中,对称轴为x=,①如图3﹣1,当OA为平行四边形的一边时,OA平行且等于EF,∵OA=,∴EF=,∵x F=,∴x E=±=或﹣,当x E=或﹣,时y E=,∴点E的坐标为(,)或(﹣,);②如图3﹣2,当OA为平行四边形的对角线时,OA与EF互相平分,则点E在抛物线顶点处,∵当x=时,y=﹣,∴点E的坐标为(,﹣),综上所述,点E的坐标为(,)或(﹣,)或(,﹣).11.解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵C(4,2)和D(3,0)在该函数图象上,∴,得,∴该抛物线的解析式为y=x2﹣x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x 轴于点M,交线段BC于点N.根据对称与最短路径原理,此时,四边形AMNE周长最小.易知A1(0,﹣2),E1(6,2).设直线A1E1的解析式为y=kx+b,,得,∴直线A1E1的解析式为.当y=0时,x=3,∴点M的坐标为(3,0).∴由勾股定理得AM=,ME1=,∴四边形EAMN周长的最小值为AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:过点F作EH的平行线,交抛物线于点P.易得直线OE的解析式为y=x,∵抛物线的解析式为y=x2﹣x+2=,∴抛物线的顶点F的坐标为(2,﹣),设直线FP的解析式为y=x+b,将点F代入,得,∴直线FP的解析式为.,解得或,∴点P的坐标为(,),FP=×(﹣2)=,,解得,或,∵点H是直线y=x与抛物线左侧的交点,∴点H的坐标为(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴点P不符合要求,∴不存在点P,使得四边形EHFP为平行四边形.12.解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△P AC的周长是:AC+CP+P A=AC+CB=,即点P的坐标为(1,2),△P AC的周长是;(3)存在点M(不与C点重合),使得S△P AM=S△P AC,∵S△P AM=S△P AC,∴当以P A为底边时,只要两个三角形等高即可,即点M和点C到P A的距离相等,当点M在点C的上方时,则CM∥P A时,点M和点C到P A的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP 之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).13.(1)证明:△=b2﹣4ac=[﹣3(a﹣1)]2﹣4a(2a﹣6)=a2+6a+9=(a+3)2,∵a>0,∴(a+3)2>0,∴抛物线与x轴有两个交点;(2)解:令y=0,则ax2﹣3(a﹣1)x+2a﹣6=0,∴或,∵a>0,∴且x1>x2,∴x1=2,,∴,∴t=a﹣5;(3)解:当a=1时,则y=x2﹣4,向上平移一个单位得y=x2﹣3,令y=0,则x2﹣3=0,得,∴,,∵OP=1,∴直线,联立:,解得,,,即,,∴AO=,在Rt△AOP中,AP==2,过C作CN⊥y轴,过M作MG⊥CN于G,过C作CH⊥x轴于H,∵CN∥x轴,∴∠GCM=∠P AO,又∵∠AOP=∠CGM=90°,∴△AOP∽△CGM,∴==,∴,∵B到CN最小距离为CH,∴MB+GM的最小值为CH的长度,∴2MB+MC的最小值为.14.解:(1)令x=0,得y=x﹣2=﹣2,则B(0,﹣2),令y=0,得0=x﹣2,解得x=4,则A(4,0),把A(4,0),B(0,﹣2)代入y=x2+bx+c(a≠0)中,得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;(2)∵PM∥y轴,∴∠ADC=90°,∵∠ACD=∠BCP,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当∠CBP=90°时,如图1,过P作PN⊥y轴于N,设P(x,x2﹣x﹣2),则C(x,x﹣2),∵∠ABO+∠PBN=∠ABO+∠OAB=90°,∴∠PBN=∠OAB,∵∠AOB=∠BNP=90°,∴△AOB∽△BNP,∴,即=,解得:x1=0(舍),x2=,∴P(,﹣5);②当∠CPB=90°时,如图2,则B和P是对称点,当y=﹣2时,x2﹣x﹣2=﹣2,∴x1=0(舍),x2=,∴P(,﹣2);综上,点P的坐标是(,﹣5)或(,﹣2);(3)∵OA=4,OB=2,∠AOB=90°,∴∠BOA≠45°,∴∠BQP≠2∠BOA,∴分两种情况:①当∠PBQ=2∠OAB时,如图3,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,∴OE=AE,∴∠OAB=∠AOE,∴∠OEB=2∠OAB=∠PBQ,∵OB∥PG,∴∠OBE=∠PHB,∴△BOE∽△HPB,∴,由勾股定理得:AB==2,∴BE=,∵GH∥OB,∴,即,∴BH=x,设P(x,x2﹣x﹣2),则H(x,x﹣2),∴PH=x﹣2﹣(x2﹣x﹣2)=﹣x2+4x,∴,解得:x1=0,x2=3,∴点P的横坐标是3;②当∠BPQ=2∠OAB时,如图4,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,过O作OF⊥AB于F,连接AP,则∠BPQ=∠OEF,设点P(t,t2﹣t﹣2),则H(t,t﹣2),∴PH=t﹣2﹣(t2﹣t﹣2)=﹣t2+4t,∵OB=2,OA=4,∴AB=2,∴OE=BE=AE=,OF===,∴EF===,S△ABP==,∴2PQ=4(﹣t2+4t),PQ=,∵∠OFE=∠PQB=90°,∴△PBQ∽△EOF,∴,即,∴BQ=,∵BQ2+PQ2=PB2,∴=,化简得,44t2﹣388t+803=0,即:(2t﹣11)(22t﹣73)=0,解得:t1=5.5(舍),t2=;综上,存在点P,使得△PBQ中有某个角的度数等于∠OAB度数的2倍时,其P点的横坐标为3或.15.解:(1)在直线y=﹣x+3中,当x=0时,y=3;当y=0时,x=4,∴C(0,3),B(4,0),∴OC=3,∵OC=3OA,∴OA=1,∴A(﹣1,0),把A(﹣1,0),B(4,0)代入y=ax2+bx+3,得,,解得,a=﹣,b=,∴抛物线的解析式为y=﹣x2+x+3;(2)如图1,连接RO,RC,RB,设R(t,﹣t2+t+3),则S△RBC=S△OCR+S△OBR﹣S△OBC=×3t+×4(﹣t2+t+3)﹣×3×4=﹣t2+6t,∵S△RBC=,∴﹣t2+6t=,解得,t1=1,t2=3,∵点R为直线BC上方对称轴右侧,∴R(3,3);(3)如图2﹣1,在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB 于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥QE,∴∠MAH=∠QEF,∵∠QFE=MHA=90°,∴△QEF∽△MAH,∴=,∴EF=2QF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=2m,∴EH=3m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴3m=4﹣m,∴m=1,∴CP=1;如图2﹣2,在RH上截取RM=OA,连接CM、AM,AM交PE于G,交QE于N,作QF ⊥OB于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°,∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴=,∴QF=2EF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴4﹣m=m,∴m=,∴CP=,综上所述,CP的长度为1或.16.解:(1)在y=x﹣4中,当x=0时,y=﹣4;当y=0时,x=4.∴A(4,0),C(0,﹣4)把A(4,0),C(0,﹣4)代入y=ax2﹣3x+c中,得,解得,∴抛物线的解析式是y=x2﹣3x﹣4.(2)如图1,过点E作EH⊥y轴,垂足为H.∵OA=OC=4,∴∠OAC=∠ACO=45°,∴∠HEC=∠HCE=45°.∵点D(m,m2﹣3m﹣4),E(m,m﹣4),∴EH=HC=m,ED=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.∴,∴当∠ECD=∠EDC时,EC=ED.∴,解得m=0(舍去)或;(3)存在.∴点D为第四象限抛物线上一动点(不与点A,C重合),∴0<m<4,在抛物线y=x2﹣3x﹣4中,当y=0时,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,∴点B坐标为(﹣1,0).∵∠F AE=∠FEA=45°,∴EF=AF.设△BFE的周长为n,则n=BF+FE+BE=BF+AF+BE=AB+BE,∵AB的值不变,∴当BE最小,即BE⊥AC时,△BFE的周长最小.∵当BE⊥AC时,∠EBA=∠BAE=45°,∴BE=AE,∴BF=AF=2.5.∴m=4﹣2.5=1.5时,△BEF的周长最小.17.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)、B(4,0),∴,解得,∴该抛物线的解析式:y=x+3;(2)∵抛物线y=ax2+bx+3经过点A(1,0),B(4,0),∴A、B关于对称轴对称,。

2023年九年级数学中考专题:二次函数综合压轴题(线段周长问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(线段周长问题)(含简单答案)
(1)求抛物线的表达式;
(2)点P在直线 下方的抛物线上,连接 交 于点 ,过点 作 轴的垂线 ,垂线 交 于点 , 垂线 ,求证 ;当 最大时,求点P的坐标及 的最大值;
(3)在(2)的条件下,在 上是否存在点 ,使 是直角三角形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
4.如图,已知抛物线与 轴交于点 , ,与 轴交于点 .
(3)若直线 与线段 交于点 (不与点 , 重合),则是否存在这样的直线 ,使得以 , , 为顶点的三角形与 相似?若存在,求出该直线的函数表达式及点 的坐标;若不存在,请说明理由.
8.如图,抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求该抛物线的解析式及顶点坐标;
(2)若点 是抛物线的对称轴与直线 的交点,点 是抛物线的顶点,求 的长;
(3) 或
13.(1)二次函数的解析式为 ;
(3)点P的坐标为 或 .
14.(1)
(2) ,或
(3)
15.(1)抛物线的函数关系式为 ;直线 的函数关系式为 ;
(2) 面积的最大值为 ;
(3)点M的坐标为 .
16.(1) ,
(2)
(3)最大值为4,此时
17.(1) ,
(2)
(3) 或 或
18.(1)
11.已知:抛物线 经过 三点.
(1)求抛物线的解析式;
(2)如图1,点P为直线 上方抛物线上任意一点,连接 , 交直线 于点E,设 ,求当k取最大值时点P的坐标,并求此时k的值.
(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.求 的周长及 的值.
12.如图,抛物线 交 轴于 , 两点(点 在 的右边),与 轴交于点 ,连接 , .点 是第一象限内抛物线上的一个动点,点 的横坐标为 ,过点 作 轴,垂足为点 , 交 于点 .

最新九年级数学中考复习:二次函数综合压轴题题(面积问题)含答案

最新九年级数学中考复习:二次函数综合压轴题题(面积问题)含答案
(1)求抛物线的表达式;
(2)点 是线段 上的动点(除 、 外),过点 作 轴的垂线交抛物线于点 .
①当点 的横坐标为2时,求四边形 的面积;
②如图2,直线 , 分别与抛物线对称轴交于 、 两点.试问, 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
20.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣4,0),交y轴于点B,抛物线 经过A,B两点,其对称轴交x轴于点M.P是线段AM上的一动点,过点P作PC⊥x轴交直线AB于点C,交抛物线于点D.
(2)如图 ,点 在 轴的负半轴上,且 ,连接 ,并延长交抛物线于点 ,点 为直线 上方抛物线上一动点,连接 , ,当 的面积最大时,请求出 的最大值及点 的坐标;
(3)如图 ,将抛物线 沿射线 方向平移 个单位到新抛物线 ,此时新抛物线顶点记为 , 为新抛物线 上一点,若 是以 为直角边的直角三角形,请直接写出满足条件的点 的横坐标.
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.
(4)探究对称轴上是否存在一点P,使得以点P,C,A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
18.已知抛物线 与 轴交于点 和点 ,直线 交 轴于点 和 轴于 点.
①连接 ,当 的面积最大时,求此时点F的坐标;
②探究是否存在点D使得 为直角三角形?若存在,求出点F的坐标;若不存在,说明理由.
8.如图 ,抛物线 : 与 轴交于 , 两点,且顶点为 ,直线 经过 , 两点.
(1)求直线 的表达式与抛物线 的表达式;
(2)如图 ,将抛物线 沿射线 方向平移一定距离后,得到抛物线为 ,其顶点为 ,抛物线 与直线 的另一交点为 ,与 轴交于 , 两点 点在 点右边 ,若 ,求点 的坐标;

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。

二次函数解答压轴题(共62题)(学生版)-2023年中考数学真题分项汇编(全国通用)

二次函数解答压轴题(共62题)(学生版)-2023年中考数学真题分项汇编(全国通用)

二次函数解答压轴题(62题)一、解答题1(2023·浙江绍兴·统考中考真题)已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.4(2023·浙江杭州·统考中考真题)设二次函数y=ax2+bx+1,(a≠0,b是实数).已知函数值y和自变量x的部分对应取值如下表所示:x⋯-10123⋯y⋯m1n1p⋯(1)若m=4,求二次函数的表达式;(2)写出一个符合条件的x的取值范围,使得y随x的增大而减小.(3)若在m、n、p这三个实数中,只有一个是正数,求a的取值范围.5(2023·湖南常德·统考中考真题)如图,二次函数的图象与x轴交于A-1,0,B5,0两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1 5.(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.6(2023·山东烟台·统考中考真题)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx-1交于点D,与x轴交于点E.(1)求直线AD及抛物线的表达式;(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+1PA的最小值.27(2023·江苏苏州·统考中考真题)如图,二次函数y=x2-6x+8的图像与x轴分别交于点A,B(点A 在点B的左侧),直线l是对称轴.点P在函数图像上,其横坐标大于4,连接PA,PB,过点P作PM⊥l,垂足为M,以点M为圆心,作半径为r的圆,PT与⊙M相切,切点为T.(1)求点A,B的坐标;(2)若以⊙M的切线长PT为边长的正方形的面积与△PAB的面积相等,且⊙M不经过点3,2,求PM长的取值范围.8(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,矩形ABCD的边AB在线段,E10,0OE上(点B在点A的左侧),点C,D在抛物线上,设B t,0,当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.9(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,已知抛物线y=ax2+83x+c a≠0与x轴交于点A1,0和点B,与y轴交于点C0,-4.(1)求这条抛物线的函数解析式;(2)P是抛物线上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.①如图,若点P在第三象限,且tan∠CPD=2,求点P的坐标;②直线PD交直线BC于点E,当点E关于直线PC的对称点E 落在y轴上时,请直接写出四边形PECE 的周长.10(2023·四川自贡·统考中考真题)如图,抛物线y=-43x2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C.(1)求抛物线解析式及B,C两点坐标;(2)以A,B,C,D为顶点的四边形是平行四边形,求点D坐标;(3)该抛物线对称轴上是否存在点E,使得∠ACE=45°,若存在,求出点E的坐标;若不存在,请说明理由.11(2023·四川达州·统考中考真题)如图,抛物线y =ax 2+bx +c 过点A -1,0 ,B 3,0 ,C 0,3 .(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出△PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B 、C 、M 、N 为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与坐标轴分别相交于点A,B,C0,6三点,其对称轴为x=2.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与y轴,直线BC交于点D,E.①当CD=CE时,求CD的长;②若△CAD,△CDE,△CEF的面积分别为S1,S2,S3,且满足S1+S3=2S2,求点F的坐标.13(2023·全国·统考中考真题)如图,在平面直角坐标系中,抛物线y=-x2+2x+c经过点A(0,1).点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠PAQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2.当h2-h1=m时,直接写出m的值.14(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.15(2023·四川凉山·统考中考真题)如图,已知抛物线与x轴交于A1,0两点,与y轴交于和B-5,0点C.直线y=-3x+3过抛物线的顶点P.(1)求抛物线的函数解析式;(2)若直线x=m-5<m<0与抛物线交于点E,与直线BC交于点F.①当EF取得最大值时,求m的值和EF的最大值;②当△EFC是等腰三角形时,求点E的坐标.16(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P (4,-3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.17(2023·安徽·统考中考真题)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx a≠0经过点A3,3,对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(ⅰ)当0<t<2时,求△OBD与△ACE的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为32若存在,请求出点B的横坐标t的值;若不存在,请说明理由.18(2023·浙江金华·统考中考真题)如图,直线y =52x +5与x 轴,y 轴分别交于点A ,B ,抛物线的顶点P 在直线AB 上,与x 轴的交点为C ,D ,其中点C 的坐标为2,0 .直线BC 与直线PD 相交于点E .(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BEEC的值.(2)连接PC ,∠CPE 与∠BAO 能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.19(2023·湖南·统考中考真题)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于C点,其中B1,0.,C0,3(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P,使得S△PAC=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;(3)点Q是对称轴l上一点,且点Q的纵坐标为a,当△QAC是锐角三角形时,求a的取值范围.20(2023·四川遂宁·统考中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.21(2023·四川眉山·统考中考真题)在平面直角坐标系中,已知抛物线y =ax 2+bx +c 与x 轴交于点A -3,0 ,B 1,0 两点,与y 轴交于点C 0,3 ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PDDB的值最大时,求点P 的坐标及PDDB的最大值;(3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将△PCM 沿直线PC 翻折,当点M 的对应点M '恰好落在y 轴上时,请直接写出此时点M 的坐标.22(2023·江西·统考中考真题)综合与实践问题提出:某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=2,动点P 以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF设点P的运动时间为ts,正方形DPEF的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当t=1时,S=.②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段AB的长.(3)延伸探究:若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2=;②当t3=4t1时,求正方形DPEF的面积.23(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.24(2023·甘肃武威·统考中考真题)如图1,抛物线y=-x2+bx与x轴交于点A,与直线y=-x交于点B4,-4在y轴上.点P从点B出发,沿线段BO方向匀速运动,运动到点O时停止.,点C0,-4(1)求抛物线y=-x2+bx的表达式;(2)当BP=22时,请在图1中过点P作PD⊥OA交抛物线于点D,连接PC,OD,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.连接BQ,PC,求CP+BQ的最小值.25(2023·四川乐山·统考中考真题)已知x 1,y 1 ,x 2,y 2 是抛物C 1:y =-14x 2+bx (b 为常数)上的两点,当x 1+x 2=0时,总有y 1=y 2(1)求b 的值;(2)将抛物线C 1平移后得到抛物线C 2:y =-14(x -m )2+1(m >0).探究下列问题:①若抛物线C 1与抛物线C 2有一个交点,求m 的取值范围;②设抛物线C 2与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线C 2的顶点为点E ,△ABC 外接圆的圆心为点F ,如果对抛物线C 1上的任意一点P ,在抛物线C 2上总存在一点Q ,使得点P 、Q 的纵坐标相等.求EF 长的取值范围.26(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.27(2023·上海·统考中考真题)在平面直角坐标系xOy中,已知直线y=34x+6与x轴交于点A,y轴交于点B,点C在线段AB上,以点C为顶点的抛物线M:y=ax2+bx+c经过点B.(1)求点A,B的坐标;(2)求b,c的值;(3)平移抛物线M至N,点C,B分别平移至点P,D,联结CD,且CD∥x轴,如果点P在x轴上,且新抛物线过点B,求抛物线N的函数解析式.28(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy中,已知点A在y轴正半轴上.(1)如果四个点0,0中恰有三个点在二次函数y=ax2(a为常数,且a≠0)的图象、-1,1、1,1、0,2上.①a=;②如图1,已知菱形ABCD的顶点B、C、D在该二次函数的图象上,且AD⊥y轴,求菱形的边长;③如图2,已知正方形ABCD的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究n-m是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD的顶点B、D在二次函数y=ax2(a为常数,且a>0)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.29(2023·湖南岳阳·统考中考真题)已知抛物线Q1:y=-x2+bx+c与x轴交于A-3,0,B两点,交y 轴于点C0,3.(1)请求出抛物线Q1的表达式.(2)如图1,在y轴上有一点D0,-1,点E在抛物线Q1上,点F为坐标平面内一点,是否存在点E,F使得四边形DAEF为正方形?若存在,请求出点E,F的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q1向右平移2个单位,得到抛物线Q2,抛物线Q2的顶点为K,与x轴正半轴交于点H,抛物线Q1上是否存在点P,使得∠CPK=∠CHK?若存在,请求出点P的坐标;若不存在,请说明理由.30(2023·湖南永州·统考中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.31(2023·山东枣庄·统考中考真题)如图,抛物线y=-x2+bx+c经过A(-1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.32(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(-1,0),B(2,0)和C(0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC 于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.33(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于B 4,0 ,C -2,0 两点.与y 轴交于点A 0,-2 .(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK +PD 的最大值及此时点P 的坐标;(3)在抛物线的对称轴上是否存在一点M ,使得△MAB 是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.34(2023·湖南·统考中考真题)已知二次函数y =ax 2+bx +c a >0 .(1)若a =1,c =-1,且该二次函数的图像过点2,0 ,求b 的值;(2)如图所示,在平面直角坐标系Oxy 中,该二次函数的图像与x 轴交于点A x 1,0 ,B x 2,0 ,且x 1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO=23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =-a 2-b 2,求2a +b 的值.35(2023·山西·统考中考真题)如图,二次函数y =-x 2+4x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,3 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ ⊥x 轴于点Q ,BQ 与OP 交于点F ,连接DF .设四边形FQED 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.36(2023·湖北武汉·统考中考真题)抛物线C1:y=x2-2x-8交x轴于A,B两点(A在B的左边),交y 轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t0<t<4,分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF.若△BDE 与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线C2交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.37(2023·湖北宜昌·统考中考真题)如图,已知A(0,2),B(2,0).点E位于第二象限且在直线y=-2x 上,∠EOD=90°,OD=OE,连接AB,DE,AE,DB.(1)直接判断△AOB的形状:△AOB是三角形;(2)求证:△AOE≌△BOD;(3)直线EA交x轴于点C(t,0),t>2.将经过B,C两点的抛物线y1=ax2+bx-4向左平移2个单位,得到抛物线y2.①若直线EA与抛物线y1有唯一交点,求t的值;②若抛物线y2的顶点P在直线EA上,求t的值;③将抛物线y2再向下平移,2(t-1)2个单位,得到抛物线y3.若点D在抛物线y3上,求点D的坐标.38(2023·湖南郴州·统考中考真题)已知抛物线y=ax2+bx+4与x轴相交于点A1,0,与y,B4,0轴相交于点C.(1)求抛物线的表达式;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC的值;(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12若存在,求出点Q的坐标;若不存在,请说明理由.39(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.40(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A-2,0和点B4,0,且与直线l:y=-x-1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M 的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.41(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+4的图象与x 轴交于点A-2,0,B4,0,与y轴交于点C.(1)求抛物线的解析式;(2)已知E为抛物线上一点,F为抛物线对称轴l上一点,以B,E,F为顶点的三角形是等腰直角三角形,且∠BFE=90°,求出点F的坐标;(3)如图2,P为第一象限内抛物线上一点,连接AP交y轴于点M,连接BP并延长交y轴于点N,在点P运动过程中,OM+12ON是否为定值?若是,求出这个定值;若不是,请说明理由.42(2023·山东聊城·统考中考真题)如图①,抛物线y=ax2+bx-9与x轴交于点A-3,0,,B6,0与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P m,0从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.43(2023·湖北荆州·统考中考真题)已知:y关于x的函数y=a-2x+b.x2+a+1(1)若函数的图象与坐标轴有两个公共点,且a=4b,则a的值是;(2)如图,若函数的图象为抛物线,与x轴有两个公共点A-2,0,B4,0,并与动直线l:x=m(0<m<4)交于点P,连接PA,PB,PC,BC,其中PA交y轴于点D,交BC于点E.设△PBE的面积为S1,△CDE 的面积为S2.①当点P为抛物线顶点时,求△PBC的面积;②探究直线l在运动过程中,S1-S2是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.44(2023·福建·统考中考真题)已知抛物线y=ax2+bx+3交x轴于A1,0,B3,0两点,M为抛物线的顶点,C,D为抛物线上不与A,B重合的相异两点,记AB中点为E,直线AD,BC的交点为P.(1)求抛物线的函数表达式;(2)若C4,3,D m,-3 4,且m<2,求证:C,D,E三点共线;(3)小明研究发现:无论C,D在抛物线上如何运动,只要C,D,E三点共线,△AMP,△MEP,△ABP中必存在面积为定值的三角形.请直接写出其中面积为定值的三角形及其面积,不必说明理由.45(2023·山东·统考中考真题)如图,直线y=-x+4交x轴于点B,交y轴于点C,对称轴为x=32的抛物线经过B,C两点,交x轴负半轴于点A.P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y轴于点D.(1)求抛物线的解析式;(2)若0<m<32,当m为何值时,四边形CDNP是平行四边形?(3)若m<32,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m 的值;若不存在,请说明理由.46(2023·山东·统考中考真题)已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C 0,4 ,其对称轴为x =-32.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD ,BD ,将△ABD 沿直线AD 翻折,得到△AB D ,当点B 恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG ⊥x 轴,垂足为G ,求FG +2FP 的最大值.47(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,抛物线C 1:y =x 2上有两点A 、B ,其中点A 的横坐标为-2,点B 的横坐标为1,抛物线C 2:y =-x 2+bx +c 过点A 、B .过A 作AC ∥x 轴交抛物线C 1另一点为点C .以AC 、12AC 长为边向上构造矩形ACDE .(1)求抛物线C 2的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E ,点C 的对应点C 落在抛物线C 1上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E 交抛物线C 1于点P ,交抛物线C 2于点Q .当点E 为线段PQ 的中点时,求m 的值;③抛物线C 2与边E D 、A C 分别相交于点M 、N ,点M 、N 在抛物线C 2的对称轴同侧,当MN =2103时,求点C 的坐标.48(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,已知二次函数y=ax2+bx+c的图象与x轴交于点A-2,0.点D为线段BC上的一动点. 和点B6,0两点,与y轴交于点C0,6(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.49(2023·黑龙江绥化·统考中考真题)如图,抛物线y1=ax2+bx+c的图象经过A(-6,0),B(-2,0),C (0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式.(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标:如果不存在,请说明理由.(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为PD有最大值,最大值是多少?m.过点P作PD⊥NC于点D.求m为何值时,CD+1250(2023·四川南充·统考中考真题)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A-1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K1,3的直线(直线KD除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM⋅EN是否为定值,若是,求出该定值;若不是,说明理由.51(2023·四川宜宾·统考中考真题)如图,抛物线y=ax2+bx+c与x轴交于点A-4,0,且经、B2,0过点C-2,6.(1)求抛物线的表达式;(2)在x轴上方的抛物线上任取一点N,射线AN、BN分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为Q ,求△APQ 的面积;(3)点M是y轴上一动点,当∠AMC最大时,求M的坐标.52(2023·四川广安·统考中考真题)如图,二次函数y=x2+bx+c的图象交x轴于点A,B,交y轴于点C,点B的坐标为1,0,对称轴是直线x=-1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的解析式.(2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P 的坐标.(3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数压轴题1.如图,已知抛物线y=ax2+c过点,过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)设点D(a,0)在x轴上运动,连接FD,作FD的垂直平分线与过点D作x轴的垂线交于点I,判断点I是否在抛物线y=ax2+c,并证明你的判断;(3)若k=1,设AB的中点为M,抛物线上是否存在点P,使得△PMF周长最小,若存在求出周长的最小值,若不存在说明理由;(4)若,在抛物线上是否存在点Q,使得△QAB的面积为,若存在求出点Q的坐标,若不存在说明理由.2.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣x+c与直线y=x+交于A、B两点,已知点B的横坐标是4,直线y=x+与x、y轴的交点分别为A、C,点P是抛物线上一动点.(1)求抛物线的解析式;(2)若点P在直线y=x+下方,求△PAC的最大面积;(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.3.如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?4.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.将抛物线向左平移2个单位,再向上平移4个单位得到一个新的抛物线.(1)求新的抛物线的解析式.(2)过M(2,0)作直线l,使得直线l与新的抛物线仅有一个公共点,求直线l的解析式及相应公共点的坐标.(3)请猜想在新的抛物线上是否有且仅有四个点P1、P2、P3、P4使得P1、P2、P3、P4分别与(2)中的所有公共点所围成的图形的面积均为S?若有,请求出S并直接写出P1、P2、P3、P4的坐标,若不存在,请说明理由.6.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴对折,点A落到点C处,过点A、B的抛物线y=﹣x2+bx+c与直线BC交于点B、D.(1)求直线BD和抛物线的解析式;(2)在直线BD上方的抛物线上求一点E,使△BDE面积最大,求出点E坐标;(3)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N 为项点的三角形与△BOC相似?若存在,求出点M的坐标:若不存在,请说明理由.7.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连接DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(﹣2,4),试求经过D、O、C三点的抛物线的解析式.(3)若坐标平面内的点P,使得以点P和三点D、O、C为顶点的四边形是平行四边形,求P点的坐标.8.如图1,抛物线y=ax2与直线y=2x﹣3有唯一公共点P.(1)求抛物线解析式;(2)与y轴平行的直线交抛物线于D,交y=2x﹣3于E,若△PDE的面积为,求直线解析式;(3)如图2,抛物线和直线y=kx+3(k<0)交于A、B,过B作x轴的平行线,交抛物线于点C,在线段BC下方抛物线上有一动点Q,过Q作QM⊥BC,垂足为M,连接AC并延长交y轴于K,求的值.9.已知,抛物线y=m与y轴交于点C,与x轴交于点A和点B(其中点A在y轴左侧,点B在y轴右侧).(1)若抛物线y=m的对称轴为直线x=1,求抛物线的解析式;=,(2)如图1,∠ACB=90°,点P是抛物线y=m上的一点,若S△BCP 求点P的坐标;(3)如图2,过点A作AD∥BC交抛物线于点D,若点D的纵坐标为﹣m,求直线AD的解析式.10.如图,在直角坐标系中有Rt△AOB,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.11.如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(点B在点A的右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.参考答案与试题解析一.解答题(共11小题)1.如图,已知抛物线y=ax2+c过点,过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)设点D(a,0)在x轴上运动,连接FD,作FD的垂直平分线与过点D作x轴的垂线交于点I,判断点I是否在抛物线y=ax2+c,并证明你的判断;(3)若k=1,设AB的中点为M,抛物线上是否存在点P,使得△PMF周长最小,若存在求出周长的最小值,若不存在说明理由;(4)若,在抛物线上是否存在点Q,使得△QAB的面积为,若存在求出点Q的坐标,若不存在说明理由.【解答】解:(1)由题意得:,解得:;∴抛物线解析式为;(2)设I(a,y),过I作IH⊥y轴于点H,则IH=a,FH=y﹣2,IF=ID=y,在Rt△IHF中∴IF2=IH2+FH2,∴y2=a2+(y﹣2)2,,故点I在抛物线y=x2+c;(3)若k=1,设AB的中点为M,则,解得中点M的坐标为:(2,4),由(2)可知,抛物线上的点到点F的距离等于它到x轴的距离.设抛物线上存在点P,使得△PMF周长最小,过点P作PP'⊥x轴于点P′,∵FM+PM+PF=FM+PM+PP′,∵FM是定值,PM+PP'≥MP'.故当MP⊥x轴时,PM+PP′=MP′,此时P、M、P′共线,△PMF周长最小,故点P(2,2),∴MP′=4,MF=2,故△PMF周长最小的最小值为:4+2;(4)设R(x R,y R)、Q(x Q,y Q),A(x A,y A),B(x B,y B),把点B的坐标代入y=kx+2并解得:k=2,故点A(2﹣2,4﹣2),故xB﹣xA=4,S△QAB=S△AQR+S△BQR=QR•(x R﹣x A)+(x B﹣x R)=(x B﹣x A)=4×QR=4,解得:QR=2,QR=|y R﹣y Q|=|x+2﹣(x2+1)|=|﹣(x﹣2)2+2|=2,当﹣(x﹣2)2+2=2时,解得:x=2,故点Q(2,2);﹣(x﹣2)2+2=﹣2时,解得:x=﹣2或6,故点Q(﹣2,2)或(6,10);综上,点Q(2,2)或(﹣2,2)或(6,10).2.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣x+c与直线y=x+交于A、B两点,已知点B的横坐标是4,直线y=x+与x、y轴的交点分别为A、C,点P是抛物线上一动点.(1)求抛物线的解析式;(2)若点P在直线y=x+下方,求△PAC的最大面积;(3)设M是抛物线对称轴上的一点,以点A、B、P、M为顶点的四边形能否成为平行四边形?若能,求出点P的坐标;若不能,请说明理由.【解答】解:(1)y=x+,令y=0,则x=﹣1,故点A(﹣1,0),∵B的横坐标是4,则点B(4,2),将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2﹣x﹣;(2)过点P作y轴的平行线交AB于点H,设点P(x,x2﹣x﹣),则点H(x,x+)﹣S△PHC=PH(x C﹣x A)=×(x+﹣x2+x+)=﹣x2+x+,则△PAC面积S=S△PHA∵<0,故S有最大值,当x=时,S的最大值为:;(3)能,理由:设点P的坐标为:(m,n),点M(1,s),而点A、B的坐标分别为:(﹣1,0)、(4,2),①当AB是边时,点A向右平移5个单位、向上平移2个单位得到B,同样,点P(M)向右平移5个单位、向上平移2个单位得到M(P),即1+5=m或1﹣5=m,解得:m=6或﹣4,则n=,故点P(6,)或(﹣4,);②当AB是对角线时,由中点公式得:m+1=4﹣1,解得:m=2,故点P(2,﹣);综上,点P的坐标为:(6,)或(﹣4,)或(2,﹣).3.如图1,平面直角坐标系xOy中,已知抛物线y=ax2+4x与x轴交于O、A两点.直线y=kx+m经过抛物线的顶点B及另一点D(D与A不重合),交y轴于点C.(1)当OA=4,∠ABC=90°时.①求该抛物线解析式;②求BC的解析式;(2)如图2,过点D作DE⊥x轴于点E,当a为任意负数时,试探究CO与OE的数量关系?【解答】解:(1)①点A(4,0),则抛物线的表达式为:y=ax(x﹣4),则顶点B的坐标为:(﹣,﹣),而函数的对称轴为:x=2,即﹣=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+4x;②函数的对称轴为x=2,故:B(2,4),设C(0,t),∵∠ABC=∠AOC=90°,∴AC2=BC2+AB2=OC2+AO2,∴42+t2=(2﹣4)2+(4﹣0)2+22+(4﹣t)2,∴t=3,∴OC=3,C(0,3),∴BC的解析式为y=x+3;(2)由y=ax2+4x=0得x1=0,x2=﹣,则A(﹣,0),又y=ax2+4x=a(x+)2﹣,∴顶点B的坐标为(﹣,﹣),将B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣,解得m=,∴点C(0,),即OC=,由得x=﹣或x=,∴E(,0),∴OE=,∴OC:OE==2,∴OC=2OE.4.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S=EF•OB=(﹣m2+3m)×3=﹣(m﹣)2+.=.当m=时,S最大此时,点E的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n=﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n=.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),5.将抛物线向左平移2个单位,再向上平移4个单位得到一个新的抛物线.(1)求新的抛物线的解析式.(2)过M(2,0)作直线l,使得直线l与新的抛物线仅有一个公共点,求直线l的解析式及相应公共点的坐标.(3)请猜想在新的抛物线上是否有且仅有四个点P1、P2、P3、P4使得P1、P2、P3、P4分别与(2)中的所有公共点所围成的图形的面积均为S?若有,请求出S并直接写出P1、P2、P3、P4的坐标,若不存在,请说明理由.【解答】解:(1)由y=,向左平移2个单位,向上平移4个单位后抛物线的顶点为(0,3),∴;(2)解:设直线l的解析式为:y=kx+b,将M(2,0)代入得:∴2k+b=0,∴.∴.∴,即x2+2bx+12﹣4b=0中△=(2b)2﹣4×(12﹣4b)=0解得:b1=2,b2=﹣6.当b=2时,直线l为y=﹣x+2,由得,即点A的坐标是(﹣2,4),当b=6时,直线l为y=3x﹣6,由得,即点B的坐标是(6,12),如图1,过点M(2,0)作直线l⊥x轴,交抛物线于点C,则直线l为:x=2,公共点C为(2,4)综上所述:直线y=﹣x+2与抛物线有唯一公共点A(﹣2,4)直线y=3x﹣6与抛物线有唯一公共点B(6,12)直线x=2与抛物线有唯一公共点C(2,4);(3)答:在新的抛物线上有且仅有四个点P1、P2、P3、P4使其分别与(2)中的所有公共点A、B、C 所围成的四边形面积均为S.解:AB、BC、AC将抛物线分为三个部分,对于任意S在AB上方的抛物线上必存在两个P点.①当P在AC下方的抛物线上时,∵AC∥x轴,∴当P为(0,3)时,.②当P在BC下方的抛物线上时设P为由待定系数法得直线BC解析式为:y=2x作PD∥y轴交BC于D,则D为(t,2t),∴.∴∵它是一个开口向下,顶点为(4,2)的抛物线,∴当P为(4,7)时,S△PBC最大值=2.∴S△P AC最大值=S△PBC最大值.∴此时,P1(0,3),P2(4,7);∵AB为y=x+6,A、B两点的横坐标之差的绝对值为8,A、C两点的横坐标之差的绝对值为4,P到AC的距离为1.∴将直线AB向上平移个单位得l交抛物线于P3和P4两点,由,得,,此时P3(2+3,+3),P4(2﹣3,﹣3);综上所述,S=18,P1(0,3),P2(4,7),P3(2+3,+3),P4(2﹣3,﹣3).6.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴对折,点A落到点C处,过点A、B的抛物线y=﹣x2+bx+c与直线BC交于点B、D.(1)求直线BD和抛物线的解析式;(2)在直线BD上方的抛物线上求一点E,使△BDE面积最大,求出点E坐标;(3)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N 为项点的三角形与△BOC相似?若存在,求出点M的坐标:若不存在,请说明理由.【解答】解:(1)令y=0,则x=﹣1,令x=0,则y=2,∴点A、B的坐标分别是:A(﹣1,0),B(0,2),根据对折的性质:点C的坐标是:(1,0),设直线BD解析式为y=kx+b,把B(0,2),C(1,0)代入y=kx+b,得,解得:k=﹣2,b=2,∴直线BD解析式为y=﹣2x+2,把A(﹣1,0),B(0,2)代入y=﹣x2+bx+c得,解得:b=1,c=2,∴抛物线的解析式为y=﹣x2+x+2;(2)解方程组得:和,∴点D坐标为(3,﹣4),作EF∥y轴交直线BD于F设E(x,﹣x2+x+2),F(x,﹣2x+2)∴EF=(﹣x2+x+2)﹣(﹣2x+2)=﹣x2+3x,△BDE面积S=×EF×x D=×(﹣x2+3x)=﹣(x﹣)2+,当x=时,三角形面积最大,此时,点E的坐标为:;(3)存在.∵点B、C的坐标分别是B(0,2)、C(1,0),∴BO=2,CO=1,①如图1所示,当△MON∽△BCO时,∴,即,∴MN=2ON,设ON=a,则M(a,2a),将M(a,2a)代入抛物线的解析式y=﹣x2+x+2得:﹣a2+a+2=2a,解得:a1=﹣2(不合题意,舍去),a2=1,∴点M的坐标为(1,2);②当△MON∽△CBO时,同理可得:,即,∴MN=ON,设ON=b,则M(b,b),将M(b,b)代入抛物线的解析式y=﹣x2+x+2得:∴,解得:(不合题意,舍去),,∴点M的坐标为(,),∴存在这样的点M(1,2)或.7.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D在FA上,且DO平行于⊙O的弦MB,连接DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(﹣2,4),试求经过D、O、C三点的抛物线的解析式.(3)若坐标平面内的点P,使得以点P和三点D、O、C为顶点的四边形是平行四边形,求P点的坐标.【解答】解:(1)直线DC与⊙O相切.理由如下:连接OM,∴OM=OB,∴∠OMB=∠OBM.∵DO∥MB,∴∠AOD=∠OBM,∠MOD=∠OMB,∴∠AOD=∠MOD,且OA=OM,OD=OD,∴△AOD≌△MOD(SAS),∴∠OMD=∠OAD.∵DA⊥OA,∴∠OAD=90°,∴∠OMD=90°,即OM⊥CD,∴直线DC与⊙O相切.(2)设MC=x.∵∠OMC=∠DAC=90°,∠OCM=∠DCA,∴△OMC∽△DAC,∴=.∵OM=OA=2,DA=4,AC=OA+OC=2+OC,∴=,∴OC=2x﹣2.在Rt△OMC中,∵OM2+MC2=OC2,∴22+x2=(2x﹣2)2,解得x1=,x2=0(舍去),∴OC=2×﹣2=,∴C(,0).设抛物线的解析式为y=ax2+bx+c,且过点O(0,0)∴c=0∴抛物线的解析式为y=ax2+bx,将(﹣2,4),(,0)代入,得解得:.∴y=x2﹣x.(3)如图,若OCDP'是平行四边形,∴P'D∥OC,P'D=OC=,且点D(﹣2,4)∴点P'(﹣,4),若OCPD是平行四边形,∴PD∥OC,PD=OC=,且点D(﹣2,4)∴点P(,4),若OP''CD是平行四边形,∴OC与DP''互相平分,∴点P''(,﹣4)综上所述:点P(﹣,4)或(,4)或(,﹣4).8.如图1,抛物线y=ax2与直线y=2x﹣3有唯一公共点P.(1)求抛物线解析式;(2)与y轴平行的直线交抛物线于D,交y=2x﹣3于E,若△PDE的面积为,求直线解析式;(3)如图2,抛物线和直线y=kx+3(k<0)交于A、B,过B作x轴的平行线,交抛物线于点C,在线段BC下方抛物线上有一动点Q,过Q作QM⊥BC,垂足为M,连接AC并延长交y轴于K,求的值.【解答】解:(1)∵抛物线y=ax2与直线y=2x﹣3有唯一公共点P.∴ax2=2x﹣3,∴△=4﹣12a=0,∴a=∴抛物线解析式:y=x2;(2)∵抛物线y=x2与直线y=2x﹣3有唯一公共点P,∴x2=2x﹣3,∴x=3,∴点P(3,3)设与y轴平行的直线为x=m,设D(m,m2),E(m,2m﹣3),==,∴S△PDE∴|m﹣3|3=8,∴m=5或1,∴与y轴平行的直线为x=5或x=1;(3)设B(n,n2),C(﹣n,n2),Q(p,p2),∴==,设AC:y=k1x+b1,和y=x2联立,∴x2﹣k1x﹣b1=0,由根与系数关系﹣nx A=﹣3b1,同理nx A=﹣9,∴﹣3b1=9,∴b1=﹣3,∴OK=3,∴=×3=1.9.已知,抛物线y=m与y轴交于点C,与x轴交于点A和点B(其中点A在y轴左侧,点B在y轴右侧).(1)若抛物线y=m的对称轴为直线x=1,求抛物线的解析式;=,(2)如图1,∠ACB=90°,点P是抛物线y=m上的一点,若S△BCP 求点P的坐标;(3)如图2,过点A作AD∥BC交抛物线于点D,若点D的纵坐标为﹣m,求直线AD的解析式.【解答】解:(1)∵抛物线y=m的对称轴为直线x=1,∴对称轴直线为,∴m=1,∴抛物线解析式为.(2)∵,∴当y=0时,x1=1,x2=m,∴点A(m,0),点B(1,0),∴AB=1﹣m,∵C点坐标为(0,),点A(m,0),点B(1,0),∴AB2=(m﹣1)2,=1+m2,∵∠ACB=90°,∴AB2=AC2+BC2,∴1+m2=(m﹣1)2,∴m=﹣4,∴抛物线解析式为,A(﹣4,0),B(1,0)C(0,﹣2),∴,如图1,在y轴上选取点Q(0,3),则,过Q作PQ∥BC,则直线与抛物线的交点就是点P,∵B(1,0)C(0,﹣2),∴直线BC解析式为:y=2x﹣2,则直线PQ解析式为:y=2x+3,∴,解得,,∴P坐标为(,)或(,)(3)由题意知>0,∴m<0,∴A(m,0),B(1,0),且点C(0,m),∴直线BC解析式为:y=﹣mx+m,∴AD解析式为:,∴解得:x1=1﹣m,x2=m(舍,这是A点的横坐标),∴点D(1﹣m,﹣)∴,解得m=,∴AD解析式为.10.如图,在直角坐标系中有Rt△AOB,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.【解答】解:(1)∵OB=1,tan∠ABO=3,∴OA=3,OC=3,即点A,B,C的坐标分别为(0,3),(﹣1,0),(3,0),则二次函数表达式为:y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),即:﹣3a=3,解得:a=﹣1,故函数表达式为:y=﹣x2+2x+3,点P(1,4);(2)将二次函数与直线l的表达式联立并整理得:x2﹣(2﹣k)x﹣k=0,设点M,N的坐标为(x1,y1),(x2,y2),则x1+x2=2﹣k,x1x2=﹣k,则:y1+y2=k(x1+x2)﹣2k+6=6﹣k2,同理:y1y2=9﹣4k2,①y=kx﹣k+3,当x=1时,y=3,即点Q(1,3),S△PMN=2=PQ×(x2﹣x1),则x2﹣x1=4,|x2﹣x1|=,解得:k=±2;②点M、N的坐标为(x1,y1),(x2,y2),点P(1,4),∴MN2=(x1﹣x2)2+(y1﹣y2)2,MP2=(x1﹣1)2+(y1﹣4)2,NP2=(x2﹣1)2+(y2﹣4)2,∵MP2+NP2=(x1﹣1)2+(y1﹣4)2+(x2﹣1)2+(y2﹣4)2=x12+x22﹣2(x1+x2)+2+y12+y22﹣8(y1+y2)+32=x12+x22﹣2x1x2+2﹣4+y12+y22﹣2y1•y2+18﹣48+32═(x1﹣x2)2+(y1﹣y2)2=MP2,∴∠MPN=90°,故PM⊥PN,即:△PMN恒为直角三角形.11.如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(点B在点A的右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣∴抛物线的解析式为y=﹣x2+x+4当y=0时,解得:x=﹣2或6,故点A的坐标为(﹣2,0),点B的坐标为(8,0);(2)当x=0时,y=4,则点C的坐标为(0,4);由点B、C的坐标得,设直线BC的解析式为y=﹣x+4;假设存在,设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,交x轴于点E,则点D的坐标为(x,﹣x+4),如图所示.PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x=S△PDC+S△PDB=PD×OE+DP×EP=8×(﹣x2+2x)=﹣(x﹣4)2+16;∴S△PBC∵﹣1<0∴当x=4时,△PBC的面积最大,最大面积是16.。

相关文档
最新文档