基于DSP_FPGA的高速数字信号处理平台

合集下载

基于FPGA+DSP的高速基带信号处理平台的设计

基于FPGA+DSP的高速基带信号处理平台的设计
第1 4卷
第 3期
ห้องสมุดไป่ตู้
2 0 1 4年 1月







Vo 1 . 1 4 N o . 3 J a n .2 0 1 4
1 6 7 1 —1 8 1 5 ( 2 0 1 4 ) 0 3 — 0 2 3 9 — 0 5
S c i e n c e T e c h n o l o g y a n d E n g i n e e r i n g
出 了一种改进高速基 带信号处理平 台的硬件 设计方 案。该 方案采 用 F P G A+D S P的处理 架构 , 依托 高性 能 的器 件和 高速接 口, 搭建 了一个高性 能的通用 基带信号处理平 台。该平 台直接实现对 中频数 字信号 的处 理 , 融合数 字上 下变频 与基 带算法于

的处理器 , 其优势在于 : ①充分结合了 D S P和 F P G A 各 自的优点 , 更好地发挥 了性能 ; ②结构灵活、 通用 性强 、 适用 于模块化设计 ; ③对不同结构的算法都有 较强 的适应能力 , 尤其适合实时信号处理; ④算法执 行效 率高 、 开 发周 期短 、 系 统易 于维 护和 扩展 等 。 结合各类无线通信 系统实际算 法需求 , 低层信 号预处理算法的数据 为符号级数据 , 虽然数据量大 但运 算结 构 相对 比较 简单 , 适 于用 F P G A 进 行 硬 件 实现。高层处理算法的数据 为比特型数据 , 其特点

是数据量较少 , 但算法的控制结构复杂 , 适于用 D S P 来 实 现 。F P G A 具 有 明 显 的 并 行 处 理 优 势 和 灵 活 性, D S P运算 速度 快 、 寻址 方 式 灵 活 , 二 者 均 能 满 足 处 理 复 杂算 法 的要 求 , 这样以 F P G A +D S P的架 构 为核 心 , 借 助 于高性 能 的器件 和高 速接 口 , 设计 了一 个 高性 能 信 号 处 理 硬 件 平 台 J 。该 平 台具 有 灵 活 的处理 结构 , 对 不 同结 构 的算 法都 有 较 强 的适 应 能 力, 尤其适合实时信号的处理。

基于DSP和FPGA的数字信号处理系统设计

基于DSP和FPGA的数字信号处理系统设计

Vo 1 . 31 N o .1
J a n .2 O l 7
文 章 编 号 :2 0 9 5 — 6 9 9 1 ( 2 0 1 7 ) 0 1 ~ 0 0 6 5 — 0 3
基 于 DS P和 F P GA 的 数 字 信 号 处 理 系统 设 计
宋 劲松 , 杨 凯 。
( 1 . 宿 州 市 广 播 电视 台 , 安徽 宿州 2 3 4 0 0 0 ; 2 . 宿州 学 院 信 息工 程 学 院 , 安徽 宿州 2 3 4 0 0 0 )
变大 , 严 重 影 响了 电子设 备 的有效 运行 . 目前 , F P GA 和 DS P在 市 场上 广 泛用 于 高 速 处 理 器件 口 ] . F P GA 具 有 高 度 并行 体 系结 构 、 高 数 据率 以及 处 理 时 间可 控 等 优 点 , 但 其 不 能 实 现 很 复 杂 的算 法 . 而 DS P处 理 能 力 强 , 能 够 实 现 算
F P G A 的数字信号处理系统. 首先 设 计 了 系 统 的 总 体 结 构 和 工 作 流 程 , 然后对 系统 的主要硬 件 D S P和 F P GA 进 行 了设 计 , 最 后 设 计 了 系统 的软 件 部 分 . 经过测试 , 本系统能够正常工作 , 具 有较 好 的 信 号 处 理 能 力 . 关键词 : 数字信号处理 ; DS P ; F P GA
图 2 系 统 工 作 流 程 图
作者简介 : 宋劲 松 ( 1 9 6 9 一 ) , 男, 安徽 宿州人 , 工程师 , 主要 研 究 方 向为 多 媒 体 技 术 、 信号处 理. E - ma i l : 1 1 4 7 6 0 0 3 0 2 @
qq .c o n. r

基于DSP和FPGA的通用数字信号处理系统设计

基于DSP和FPGA的通用数字信号处理系统设计

p e r f o r m d a t a p r o c e s s i n g a n d a c c o mp l i s h t h e c o n t r o l o f US B i n t e r f a c e,ADC ,DA C,e t c .r e s p e c t i v e l y .Th e s y s t e m c a n i m— p l e me n t s p e c t r a l a n a l y s i s ,d i g i t a l f i l t e r d e s i g n a n d o t h e r c l a s s i c d i g i t a l s i g n a l p r o c e s s i n g a l g o r i t h ms .Ha r d wa r e d e b u g r e —
Ab s t r a c t :I n n o wa d a y s ,t h e f u n c t i o n a n d s t r u c t u r e o f e l e c t r o n i c e q u i p me n t a r e b e c o mi n g i n c r e a s i n g l y c o mp l i c a t e d .Th e r e —
s u h s s u g g e s t t h a t i t me e t s t h e d e s i g n r e q u i r e me n t s , a n d c o u l d b e i mp l e me n t e d t o r e a l p r o j e c t a n d d i g i t a l s i g n a l p r o c e s s i n g

基于DSP和FPGA的高速数据采集处理系统[实用新型专利]

基于DSP和FPGA的高速数据采集处理系统[实用新型专利]

专利名称:基于DSP和FPGA的高速数据采集处理系统专利类型:实用新型专利
发明人:凌雁波,刘宇芳,陈祥,张鹏宙,张茜,苗丰,李勇申请号:CN201220334118.4
申请日:20120711
公开号:CN202838339U
公开日:
20130327
专利内容由知识产权出版社提供
摘要:本实用新型提供一种基于DSP和FPGA的高速数据采集处理系统,包括传感器接口、模/数转换模块、DSP处理器、FPGA处理器、数字控制电路、通讯接口、屏幕键盘模块。

主要通过FPGA将模/数转换模块的数字结果送到FPGA内部构建的双口RAM中,再由DSP通过DMA的方式读取采样数据进行计算处理,并将计算结果写入双口RAM,再通过FPGA控制外部器件;传感器接口电路对采集的模拟量进行调理后再送入模/数转换模块进行转换;数字控制电路提供了状态量的24V干接点输入、24V继电器驱动电路和PWM驱动电路;通讯接口提供DSP和上位机的接口;提供了屏幕键盘接口,可以进行一些重要数据的实时显示和简单的现场操作。

申请人:南京国电环保科技有限公司
地址:210061 江苏省南京市高新技术开发区永锦路8号
国籍:CN
代理机构:南京汇盛专利商标事务所(普通合伙)
代理人:张立荣
更多信息请下载全文后查看。

基于DSP和FPGA的数字化中频处理平台

基于DSP和FPGA的数字化中频处理平台
数字化 中频 处理平 台中采 用的 D P芯片均 为 - 公 司的 数字 S r I
信号处理芯片, 在要求低功耗的便携式设备中, 主要使用低 功耗的T S2c0o M 30 50 系列芯片; 对功耗要求不高的设备中主
要使用 T S 2C 00系列 芯片 , S M 30 60 D P芯片主要 完成 各种 信号
通用的硬件平台, 以使各种相关 的通信任务能够用软件完 成, 从而构成一个具有高度灵活性 、 开放性 的通信系统。 采用 DP FG S 和 P A的数字信号处理平台显示出了其优越 性, 该平台可以把两者的优点结合在一起, 既兼顾速度和灵
活性 , 又具有较强的通用性 , 适于模块化设计 , 易于维护 系统 和扩展, 非常适合于高速信号处理。
bsdO ra adMD,1 I pe S dF G a iBodBn e l lg edD Pa P A,Sf a o ,ul so stui r l fx it adCm il s n ow r icr fl w nv s , eily n O — t es e yh i s e a l b i '
T NG l- n NI A l g pi U H AN /o d n Xa -o g
A s at hsppr noue iil F cs p tr ae isf aer i t ho g . " sp tr bt c T i ae tdcsad t es l o bs O owr a o e nl y 3 i l o r ir ga I a m f d l t d c o h a m f
图 1 以 D P和 F A为 中心的数字化 中频处理平 台 S W, 其中超大规模 FG I A芯片 和高速 的 D P芯片是 系统 的核 】 S

一种基于DSP和FPGA的实时信号处理平台设计

一种基于DSP和FPGA的实时信号处理平台设计
1TS1 1性 能 简 介 . 0
T 1 1是 A I 司推 出的一款 高性能浮点 D P处理器 . s0 D公 S 采用超级 哈佛结构 , 可直接构成 分布式并行 系统 和共享存储式并 行系统, 主要性 能 指 标 如 21 F1 : - 3 () 1内部核时钟频 率可达 30 z 即指令周 期为 33 s 内核 具有 双运算模 块——x和 Y, 条相互 独立 的 18 i内部数 3 2 bt 据 总线 ; () 3支持 81/26 bt /63/4 i 定点和 3 /4 i 26 bt 浮点数据格式 ; ()4 46 位数据线 和 3 位 地址线, 2 可提供4 G的统一寻址空 问; ()4 DMA通道 , 51 个 提供 了处理 核零开销数据传输 ; () 6支持 慢速 设 备和 流水 协议 两种 外设 访 问模式 , 芯片 内部 集成 SR D AM 控 制 器 ; ()通 道全双T链路 V , 74 I单个链路 V最大通信速率 20 ye/, I 5 MB ts 总 s
用到 雷 达 信 号 处 理 系统 中。
[ 关键词 ] 雷达信 号处理
O 引 言 .
DS T 11 F G P S 0 P A D P通过 F G S P A来进行 S M的读写控制 ; RA ()P 6F GA实现 处理板与外 部的通讯 和控制 , 如串 口 、 系统 状态输 出 及 控 制 输 入 、 出接 口 。 输 22 路 口 电路 设 计 .链
T 1 1物 理 引 脚 D P行 地 址 S0 S
A0
A1
21 .信号处理平 台原理框 图 信 号 处 理 板 硬 件 架 构 如 图 1 示 。信 号 处 理 平 台 采 用 A 所 D— s — s 0 为 主 处 理 芯 片 , 簇 4片 T 1 1 内 核 时 钟 3 0 P T l1 一 S0 , 0 MHz簇 总 线 速 , 度 为 7 M, 内包 含 2 6 yeS AM及 1MB t F A H。4片 A 5 簇 5 MB t DR 6 ye L S D— S — SIl P T 之间通过共享总线 的方式实现 紧耦合 。 O

基于DSP和FPGA的高速数据采集处理系统

基于DSP和FPGA的高速数据采集处理系统

125105,China)
on
Abstract:In order to acquire the data accurately and rapidly,a multi—channel real-time acquisition system based programmable gates
DSP,field controlled
words:data

prospect of application.
acquisition;DSP;FPGA;ADS8364
0引言
许多场合需要高速数据采集系统,如雷达、通讯、机器人、
语音图像处理等领域,也有的行业则需要高速度高精度数据采 集系统,如伺服电机定位,自动焊接机定位等…。如何在保证 数据采集的高速化的同时提高数据的精度,使数据采集的效果 更好是研究的出发点。文中介绍的数据采集系统是采用多个 传感器测量同一个待测量,数据预处理时采用自适应加权数据 融合算法,在保证速度的前提下增加精确度。在硬件结构上系 统采用ADS8364完成A/D数据转换,利用FPGA电路设计灵 活、集成度高、速度快的优点,实现多路数据选择器、存储器及 外围的一些控制电路。再把接收到的数字信号传输给DSP。 DSP对数字信号进行预处理后,通过CAN总线传至上位机进行 存储、显示和分析等。也可以作为其他大型系统的输入或者反 馈进行工作。 1系统原理 数据采集系统主要包括多路传感器、前端信号调理电路、

CAN通信模块设计 系统可利用TMS320F2812 DSP内部自带的CAN控制器,
无需另外添加。只需另加一个CAN收发器就能组成CAN总线 网络,选用PCA82C250,该器件对总线提供差动发送能力并对 CAN控制器提供差动接收能力,是使用最广泛的CAN收发器。 CAN总线通讯模块主要作用是将上位机的命令传输给DSP,并 且将采集到的数据传输给上位机,用于数据存储和处理。 3系统软件设计 系统软件采用模块化、结构化的编程方法。包括数据采集 模块、DSP处理模块、CAN总线接口的通讯模块。 3.1数据采集模块软件设计 数据采集模块主要是FPGA控制,FPGA内部编程有时钟 脉冲产生器、控制器、FIFO存储器等设计。在软件设计中可设 置FIFO的参数、各种标志和控制位,如深度、宽度,空满、半满 全满、可编程满等标志位,写使能、读使能等控制位,以便实现 与DSP的逻辑接口H1。当接到DSP信号后,初始化各个子程 序模块和ADS8364,包括AD采样的速率、参考电压的设定、时 钟的初值和分频比以及控制器的初值。 初始化完成后,FPGA输出时钟信号给AD8364并且提供 HOLD保持信号,启动转换。等待AD8364转换完成后产生中断

基于FPGA的高性能数字信号处理器设计与实现

基于FPGA的高性能数字信号处理器设计与实现

基于FPGA的高性能数字信号处理器设计与实现随着科技的不断发展,数字信号处理(Digital Signal Processing,DSP)在各个领域得到了广泛的应用,例如通信、音频处理、图像处理等。

为了满足高性能和低功耗等需求,基于FPGA(Field-Programmable Gate Array,可编程门阵列)的数字信号处理器(DSP)逐渐受到关注和采用。

本文将介绍基于FPGA的高性能数字信号处理器的设计与实现。

一、引言随着移动通信、无线网络、人工智能等技术的迅速崛起,对数字信号处理器的性能要求越来越高,传统的通用处理器已经无法满足需求。

而FPGA作为一种可编程硬件设备,可以通过重新编程来实现各种不同的功能,因此成为了设计高性能数字信号处理器的重要选择。

二、FPGA的特点与优势1. 可编程性:FPGA采用可编程逻辑单元,可以根据应用的需要进行重新编程,实现各种功能。

2. 并行处理能力:FPGA内部拥有大量的可编程逻辑单元和片上存储器,可以同时处理多个数据流,提高运算效率。

3. 低功耗:相比于传统的通用处理器,FPGA在相同运算量下具有更低的功耗。

4. 实时性能:FPGA采用硬件并行处理方式,具有优异的实时性能,适用于对于响应时间要求较高的应用场景。

三、基于FPGA的数字信号处理器设计与实现的关键技术1. 数据流架构设计:数字信号处理器的核心是对数据流的处理,需要将各个功能模块进行合理的设计与连接,实现数据的流动。

2. 算法优化:针对不同的应用场景,需要对算法进行优化,减少计算复杂度和资源占用,提高处理性能。

3. 存储器设计:数字信号处理器需要使用大量的存储器来存放数据和中间结果,在FPGA中,需要合理分配片上存储器和外部存储器。

4. 时序约束与时钟分配:在FPGA中,设计时需要考虑时序约束和时钟分配,保证各个模块在时钟信号的控制下正常运行。

5. 性能评估与优化:设计完成后,需要进行性能评估,对于不满足要求的地方进行优化,提高数字信号处理器的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

术,该平台还具有一定的开放性和可
示意图与图2相似,只是核电压不同。
程序与数据存储器 F L A S H 采用 扩展性,可以很好地满足设计的完善、
由超大规模FPGA芯片和高速的DSP芯 Intel公司的E28F320,其存储容量为 功能的扩充及程序的更改。
片组成系统的核心,是为了发挥两者 32Mbit。由 DSP 的供电芯片TPS70348
图2 DSP芯片的供电示意图
表 1 FPGA 芯片与 DSP 芯片的比较
F P G A 芯片
编程方式
V H D L 、A H D L 语言及图形编程等,
实现容易
资源重复利用性
通过外部处理器动态配置
硬件资源结构
可实现并行的乘法器/加法器操作
处理速度
并行运算速度快,只受硬件结构限制
适合的信号处理运算 高速并行处理
的优势。FPGA 芯片与 DSP 芯片相比, 为其一起供电,TPS70348芯片的复位
系统的软件设计流程
由于其结构上的优势,FPGA芯片更适 信号 /RESET为 FLASH 和 DSP的共同复
本文设计的平台通过动态配置可
w w w . e e p w . c o m . c n 电子产品世界 2004.10 /下半月 91
式中:SNR为输出信号的信噪比; B 为比特分辨数,即A/D 的转换位数; 为采样速率;输入模拟信号的最高频
理技术已在通信、信息、电子、自动控
总体硬件框架
制、航天及军事等领域中得到广泛应
图1为本文要介绍
用。
的高速数字信号处理平
以现代通信理论为基础,以数字 台的硬件框图,主要包
信号处理为核心的软件无线电技术是 括五个功能块:高速A/
D S P 芯片 C、汇编语言编程等, 实现容易 改变 M E M O R Y 内容重复利用 M A C 单元的重复操作 受 MAC 单元操作速度的限制 串行顺序操作
超大规模 FPGA 芯片
合完成并行处理、重复性强、速度要求 位信号。
本文设计高速数字信号处理平台 高的数字信号处理运算;而DSP芯片更
高速 A/D 及 D/A 变换
ቤተ መጻሕፍቲ ባይዱ
FPGA+DSP 的结构来实现高速数字信号处理。该方案采用先进的FPGA
高速的数字信号处理需要A/D器
和 DSP芯片,借鉴了软件无线电的思想,通过DSP 芯片对 FPGA芯片的 件具有较高的采样速率和工作带宽,
动态配置来实现具有通用性、可扩充性的硬件平台,并对其硬件结构和 同时为适应复杂的电磁环境和特殊的
的 FPGA 芯片均采用ALTERA 公司 APEX 适合完成串行顺序处理。两者比较如
动态配置技术
系列。其中用于完成数字信号处理算 表 1所示。
由 DSP+FPGA 芯片及总线的结构
法的芯片为EP20K400E,由它完成DSP
组成高速数字信号处理平台,可以充
芯片前端高速、复杂的数字信号处理。
接口 FPGA 及 FLASH 模块
对信息的需求越来越大,对信息的处 来构造一个具有通用性、可扩充性、灵 下式:
理速度也越来越快。信号处理理论与 活的多功能高速数字信号处理平台。
技术的飞速发展直接导致 A/D、D/A、 FPGA及DSP等电子集成产品的高速发 展与更新,使许多复杂、高速的信号处 理运算的实现成为可能。数字信号处
该平台通过动态配置可以进行多模式 工作,能够应用在无线接收、卫星接收、 图象处理和信号分析等多个领域。
初始化,DSP 通过初始 程序对 FPGA 芯片进行 配置,系统开始进行数 据的收发,并送往计算 机或主控设备。当计算 机或主控设备需要更改 工作模式时,将变换工 作模式的命令送DSP 芯 片,DSP 芯片接收到该 命令后,通过预置在 FLASH 的程序对 FPGA 芯片进行重新配置,并 转换工作模式,系统重 新开始数据的收发。其 软件流程如图3所示。
计。动态配置技术为同一硬件平台上 实现不同的功能需求、不同的工作模 式提供了可能。
本文介绍一种高速数字信号处理
是系统的核心,用来完成高速数字信 号处理算法。下面就如图所示的各部 分作介绍。
率。本文介绍的高速数字信号处理平 台的 A/D转换器采用AD9235芯片,转 换位数为 12 比特,采样率最高可达 65MSPS;D/A转换器采用AD9765芯片,
结语 本文介绍一种高速数字信号处理 平台的实现方案,借鉴了软件无线电 技术,通过FPGA 和 DSP芯片来构造一 个具有通用、可扩充、灵活的多功能高
速数字信号处理平台。该平台可以在 软定义无线电结构、图象处理和信号 分析等多个领域进行应用。■
参考文献: 1.David B‘. Performance of an IF Sampling ADC in Receiver Applications. International IC -China-Conference Proceedings’,2001. 2.Cummings M, Haruyama.‘FPGA in the software radio’,‘IEEE Communications Magazine’, 1999,37(2) 3.杨小牛等.‘ 软件无线电原理与 应用’,北京,电子工业出版社,2001. 4. 徐以涛,沈良,王金龙.‘FPGA 技术在软件无线电中的应用’,电信科学, 2001,17(11). 5.张雄伟,曹铁勇‘. DSP芯片的原理 与开发应用’,北京,电子工业出版社,2000.
近几年通信与电子领域最引人注目的 D 及 D/A 变换、超大规
话题。软件无线电技术突破了以功能 模 FPGA 芯片、高速DSP
单一、可扩充性差的硬件为核心的设 芯片、程序与数据存储
计局限性,强调以开放性、扩充性和软 器、FPGA完成的接口模
件编程硬件为通用平台,利用系统可 块。其中超大规模FPGA 升级、可重复配置来实现多功能的设 芯片和高速的DSP芯片 图1 高速数字信号处理平台的硬件框图
分发挥软件的重要作用。该平台可以
ALTERA 公司的 EP20KE 系列芯片核电
接口 FPGA 芯片采用 EP20K100E, 通过 DSP的控制,发挥FPGA芯片的动
压为1.8V,采用的I/O电压为3.3V,也 由它完成高速数字信号处理平台与计 态配置技术,实现了硬件资源动态分
需要双电压供电。设计中采用的供电 算机或其它主控设备的连接。该芯片 配。在同一个硬件平台上,通过动态地
上接 89 流,把 VREF 与 VBIAS 之 间的差被除以 RG便可。注意:要使电 路正常工作,VBIAS 必须小于 VREF。 对于 10µA 的光电二极管电流,RG 为 20.0K½。PN200A PNP 晶体管的基极电 流受到一个 4.7K½ 的电阻器限制,将 电流限制设定约为 1mA。 该晶体管具有 约为 100 的电流放大系数, 所以晶体管 能提供的最大电流约为 100mA,这将 超过微型 SOT-23 封装的热耗散。为防 止晶体管中的热逸散,与 LED 或激光 二极管串连的电阻器将集电极电流限 制为二极管的最大工作值。如果需要 更多的电流,应该联合使用具有较大
图 2 原型控制电路 图 3 控制电路的具体实施方式
92 2004.10 /下半月 电子产品世界 w w w . e e p w . c o m . c n
集电极电流的晶体管和诸如 SOT-223 的 较大封装。为了限制电路的带宽从而 保持稳定,可使用一个与光电二极管 电容(大约为 15pF,VBIAS 为 1.2)并 联的 15pF 电容,使放大器在约 250KHz 处工作。
软件工作流程进行了阐述。
系统要求,器件还应具有较大的信噪
关键词: 软件无线电;动态配置;FPGA;DSP
比动态范围。这就要求A/D器件同时具
有高的采样速率和大的比特分辨数,
引言
平台的实现方案,该方案借鉴了软件 因为这两项性能指标直接影响输出信
随着科学技术的快速发展,人们 无线电的思想,通过FPGA 和 DSP芯片 号的信噪比动态范围,三者的关系如
芯片为TI公司的TPS70351芯片,该芯 的核电压为1.8V,采用的I/O电压为 调用不同的软件程序,来实现多功能、
片 5V输入,1.8V和 3.3V双电压输出, 3.3V,采用的供电芯片也为TI公司的 多模式工作。由于采用了动态配置技
专为 DSP和 FPGA等需求设计。供电的 TPS70351芯片。
90 2004.10 /下半月 电子产品世界 w w w . e e p w . c o m . c n
E m b e d d e d S y s t e m s 嵌入式系统
输入数据率可达125MSPS,转换位数为 12比特。
高速 DSP 芯片 本文设计的高速数字信号处理平 台中采用的DSP芯片为——TI公司的 T M S 3 2 0 C 6 2 0 3 B 芯片,由于 TMS320C6000系列芯片的开发环境比 较完善,特别是C语言的编译可以达到 很高效率,因此对缩短软件开发周期 很有利;同时 TMS320C6000 系列芯片 速度高,可以应付复杂的数字信号处 理技术。TMS320C6203B芯片的核电压 为1.5V,采用的I/O电压为3.3V,需要 双电压供电。设计中采用的供电芯片 为TI公司的TPS70348芯片,该芯片5V 输入,1.5V和 3.3V双电压输出,专为 DSP 和 FPGA等需求设计。供电的示意 图如图2所示。
E m b 嵌入式系统 e d d e d S y s t e m s
基于 DSP+FPGA 的高速数字信号处理平台
High-Speed Digital Signal Processing Platform Based on DSP and FPGA
总参第六十三研究所 陈勇 李桂伦
摘 要: 本文介绍了一种高速数字信号处理平台的实现方案,主要是基于
E m b 嵌入式系统 e d d e d S y s t e m s
相关文档
最新文档