高速数字信号处理概述共34页文档

合集下载

数字信号处理概述

数字信号处理概述

数字压缩: 数据压缩在一定条件下把原始信号所含信息数据进行压缩,如语音、声音、图像 信号中含有许多冗余信息,通过数字信号压缩算法最大限度地去除这些信号中的 冗余度,使压缩后信号带宽减小,提高传输效率。作数据存储时可降低所需存储介 质的容量。例如直径为120mm的CD光盘,本来存储的只是一套70分钟的Hi Fi立体声音乐,现在可将70分钟电视信号和音乐信号都压缩到120mm的光盘上, 即VCD光盘。 图像处理: 数字信号处理技术成功应用的图像处理方法有: 数据压缩 图像复原 清晰化与增强 由于单个数字图像以1兆个采样值的量级表示,所以要求高性能的处理机、高 密度的数据存储器。即要求高速度硬件。 会议电视和可视电话: 采用DSP完成视频图像信号的压缩,制成可通过公用电话交换网(PSTN) 传输的会议电视或可视电话。
自20世纪60年代以来,数字信号处理的应用已成为一种明显的趋 势,这与它突出优点分不开的。 数字信号处理大致可分为: 信号分析 信号滤波
典型信号处理实例 • 远程通信(多路技术、压缩、回声抑制) • 图象处理(医学影像、影像产品、图像增强、恢复)
语音处理: 它是最早采用数字信号处理技术的领域之一。 本世纪50年代提出语音形成数学模型,经过十多年对语音的分析、综合,证 明是正确的。 在语音领域现存在着三种系统: 语音分析系统:自动语音识别系统,它能识别语音,辨认说话的人是谁,而 且破译后,能立即作出决断。 语音综合系统:盲人的自动阅读机,声音响应的计算机终端,会说话玩具, 家用电器(CD,VCD,DVD)。 语音分析综合系统:语音存储和检索系统。应用于语音编码、语音合成、语 音识别、语音增强、说话人确认、语音邮件、语音存储等。 语音压缩 在GSM手机中用DSP可将语音压缩,在卫星电话中用DSP将语音压缩 仍具有良好的清晰度。在语音信箱、留言电话方面也都采用语音压缩技术和 DSP。

数字信号处理 名词解释-概述说明以及解释

数字信号处理 名词解释-概述说明以及解释

数字信号处理名词解释-概述说明以及解释1.引言1.1 概述数字信号处理(Digital Signal Processing,简称DSP)是一种广泛应用于信号处理领域的技术,它利用数字化的方式对连续时间信号进行处理和分析。

数字信号处理可以实现信号的滤波、频谱分析、模拟与数字信号的转换、信息编码解码等功能,是现代通信、音视频处理、生物医学领域等各个领域中不可或缺的技术手段。

通过数字信号处理技术,我们可以更加精确和高效地处理各种类型的信号,包括声音、图像、视频等。

数字信号处理可以使信号的处理过程更加稳定可靠,同时也可以方便地与计算机等数字系统进行集成,实现更多复杂功能。

在本篇文章中,我们将深入探讨数字信号处理的定义、应用领域以及基本原理,以期让读者对这一重要领域有更加全面的认识和理解。

1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。

在引言部分,我们将对数字信号处理进行简要的概述,并介绍文章的结构和目的。

正文部分将详细讨论数字信号处理的定义、应用领域和基本原理。

最后,在结论部分,我们将总结数字信号处理的重要性,探讨未来数字信号处理的发展趋势,并做出最终的结论。

通过这样的结构安排,读者能够清晰地了解数字信号处理的基本概念、应用以及未来发展方向。

1.3 目的:本文旨在介绍数字信号处理的概念、应用领域和基本原理,旨在帮助读者更深入了解数字信号处理的重要性和作用。

通过对数字信号处理的定义和应用领域的介绍,读者可以了解数字信号处理在各个领域中的广泛应用和重要性。

同时,通过对数字信号处理的基本原理的讲解,读者可以更好地理解数字信号处理的工作原理和技术特点。

通过本文的阐述,希望读者能够全面了解数字信号处理的基本概念和工作原理,进而认识到数字信号处理在现代科学技术中的重要性和必要性。

同时,本文也将展望未来数字信号处理的发展趋势,希望能够启发读者对数字信号处理领域的进一步研究和探索。

最终,通过本文的阐述,读者可以更加深入地理解数字信号处理这一重要的科学技术领域。

数字信号处理绪论

数字信号处理绪论

模拟高通滤波器与数字高通滤波器的比较
c
x(n)
y (n)
xa (t)
R ya (t)
延时
a
信号处理的实现方法
基本上分为两种方法,一种是软件实现方法,另一种是 硬件实现方法。软件实现方法指的是按照原理和算法,自己 编写程序或者采用现成的程序在通用计算机上实现。硬件实 现指的是按照具体的要求和算法,设计硬件结构图,用乘法 器、加法器、延时器、控制器、存储器以及输入输出接口部 件实现的一种方法。前者灵活,但速度慢,达不到实时处理 要求;后者速度快,但是不够灵活。
模拟 y(t)
转换器
信号
转换器 滤波器
处理器
(1)前置滤波器
将输入信号xa(t)中高于某一频率(称折叠频率,等 于抽样频率的一半)的分量加以滤除。
(2)A/D转换器
由模拟信号产生一个二进制流。在A/D变换器中 每隔T秒(抽样周期)取出一次xa(t)的幅度,抽样后的信 号称为离散信号。
(3)数字信号处理器(DSP)
▪ 直方图是这样一张二维的坐标系,其横轴代表的是 图像中的亮度,由左向右,从全黑逐渐过渡到全白; 纵轴代表的则是图像中处于这个亮度范围的像素的 相对数量。当直方图中的黑色色块偏向于左边时, 说明这张照片的整体色调偏暗,也可以理解为照片 欠曝。而当黑色色块集中在右边时,说明这张照片 整体色调偏亮,除非是特殊构图需要,否则我们可 以理解为照片过曝。
▪ 雷达系统主要信号处理功能包括: ▪ 信号产生、匹配滤波、门限比较、目标参数(如射程、
方位和速度)估计。
雷达
通信
▪ 整个通信领域几乎没有不受数字信号处理技术影响 的地方。(占60%)
▪ DSP主要应用于通信的热门产品中。如:蜂窝电话 (Cellular phone)、ADSL调制解调器、线缆调制解 调器(Cable modem)、蓝牙技术(bluetooth)产品, 数字电话应答机(digital telephone answering device)、全球定位系统(global positioning system,GPS),卫星电话(satellite phone)、电话 会议(conference speaker phone)、电视电话会议编 译码器(video conferencing code )、IP电话(voice over IP)、IP传真(fax over IP)、ATM电话(voice over ATM)、智能天线(smart antenna)、PCS用户端 (subscriber set)。

数字信号处理概述

数字信号处理概述

• 高斯信号(钟形脉冲信号)
该信号在随机信号分析中有重要地位。正态分布的密度函
数就是一种高斯函数,我们在对语音信号处理的时候,会 大量接触这类信号。
f (t ) ke
t ( )2

系统的基本概念
• 系统是由若干个相互关联又相互作用的事物组合而成的, 具有某种或某些特定功能的整体。如通信系统、雷达系统 等。系统的概念不仅适用于自然科学的各个领域,而且还 适用于社会科学。如政治结构、经济组织等。 系统可以小到一个电阻或一个细胞,甚至基本粒子, 也可大或复杂到诸如人体、全球通信网,乃到整个宇宙, 它们可以是自然的系统,也可以是人为的系统。 • 但是,众多领域各不相同的系统也都有一个共同点,即所 有的系统总是对施加于它的信号(即系统的输入信号,也 可称激励)作出响应,产生出另外的信号(即系统的输出信 号,也可称响应)。系统的功能就体现在什么样的输入信 号产生怎样的输出信号。
模拟信号
数字信号处理系统的特点
• 优点: 与连续时间系统相比,离散系统的主要优点如下: 1.精度高 离散系统的精度尚,更确切地说是精度可控制。因为精度 取决于系统的字长,字长越长,精度越高:根据实际情况 适当改变字长,可以获得所要求的精度。 2.灵活 数字处理系统的性能主要由乘法器的各系数次定。只要改 变乘法器的系数,系统的性能就改变了,对一些自适应系 统尤为合适 3.稳定性及可靠性好 离散系统的基本运算是加、乘法,采用的是二进制所以工 作稳定,受环境影响小.抗干扰能力强,旦数据可以存储: 4.数字系统的集成化成度高,体积小、功耗低、功能强、 价格越来越便宜。
时间系统,也称数字系统。普通的电视机是典型的连续时 间系统 • 连续时间系统:系统输入与输出都是连续时间信号 • 离散时间系统:系统输入与输出都是离散时间信号 • 数字信号系统:系统输入与输出都是数字信号

数字信号处理_第一章_概述

数字信号处理_第一章_概述

第 26 页
1.序列
�离散时间信号又称作序列。 �离散时间信号的间隔为T,且均匀采样,可用x(nT) 表示在时刻nT的值。当T隐含时,可表示为x(n)。 �为了方便,通常用直接用x(n)表示序列{x(n)}。
x(0) x(-1) x(1) x(-2) x(2) -2 -1 0 1 2 n
:x ( n)
第 6 页
数字信号-镭射唱片
�数字信号是通过0和1的数字串所构成的数字流来 传输的,幅度变化是跳变的。 �离散+量化
镭射唱片,又名雷射唱片、压缩盘,简称CD。是一种用以储 存数码资料的光学盘片,在1982年面世,是商业录音的标准 储存格式。 声音镭射唱片包括一条或以上的立体声轨(在CD母盘感光材 料上照出了很多凹凸的位置,这样凸表示1,凹表示0,按照 2进读法读出来之后解码即可读到数据了),以16比特PCM编 码技术,采样率为44.1 kHz。标准镭射唱片的直径为120 毫 米或80 毫米,120 毫米镭射唱片可储存约80分钟的声音。 80 毫米的镭射唱片,可储存约20分钟的声音资料。 镭射唱片技术被用作储存资料,称为CD-ROM。可录式光盘随 后面世,包括只可录写一次的CD-R及可重复录写的CDRW,,成为个人电脑业界最为广泛采用的储存媒体之一。镭 射唱片及其衍生格式取得极大的成功,2004年,全球声音镭 射唱片、CD-ROM、CD-R等的合计总销量达到300亿只。
�关系
RN ( n )
0
1
n N-1
N −1
RN ( n ) = u ( n) − u ( n − N ) = ∑ δ ( n − m)
m =0
第 32 页
实指数序列
�定义为:
x(n) = a u (n)
n

数字信号处理概述

数字信号处理概述

第1章数字信号处理概述本章概述了后续章节中将要进一步讲述的内容。

本章内容包括:¾区别模拟信号和数字信号¾给出模/数转换的基本步骤¾给出数/模转换的基本步骤¾介绍信号与其频谱的关系¾阐明滤波的基本概念¾讨论数字信号处理的应用1.1 信号与系统计算机所使用的是数字信号。

随着计算机应用的普及,对数字信号进行高效处理的需求日益迫切,并且,现代计算机的高速处理能力引起了数字信号的广泛应用,进一步促进了数字信号技术的发展。

数字信号处理(或简称DSP),对于许多应用来讲都是必需的,图1.1中列出了其中一些应用。

y按键电话y图像边缘检测y数字信号及图像滤波 y地震分析y文字识别y语言识别y磁共振成像(MRI)扫描y音乐合成y条形码阅读器y声纳处理y卫星图像分析y数字测绘y蜂窝电话y数字摄像机y麻醉剂及爆炸物检测 y语音合成y回波抵消y耳蜗移植y抗锁制动y信号及图像压缩y降噪y压扩y高清晰度电视 y数字音频y加密y马达控制y远程医疗监护 y智能设备y家庭保安y高速调制解调器图1.1 DSP的应用实例DSP内部存在着要进行处理的信号。

信号是将信息从一处携带到另一处的变化。

例如,外界具有人们可感受到的压力或光强度的变化,人们所听到的声音就是耳膜感觉到的压力变化,所看到的图像就是视网膜感受到的光强度(亮度)变化。

这些信号都是模拟信号(analog signal),它们在任意时刻都有值,且可取连续值范围内的任意值。

声音是一维模拟信号:压力变化的大小(或幅度)随时间改变;还有,北美地区电线上的输出电压在其最大值和最小值之间平滑变化,每秒60次。

图1.2给出了一些一维信号的例子。

图像是二维模拟信号:亮度在图像的水平方向和垂直方向上均发生变化。

图1.3给出了一幅黑白图像,图1.4给出了高速数字图像序列中的4帧。

要对信号进行处理,必须首先(主要通过传感器)获取信号。

例如,声音信号可通过麦克风将声信号转变为电信号。

数字信号处理讲义--绪论

数字信号处理讲义--绪论

第1章绪论[教学目的]1.介绍数字信号课程的应用、历史、发展趋势2.复习信号与系统中的相关知识点[教学重点与难点]重点:前沿领域的介绍。

难点:概述性的介绍和知识的回顾,无难点。

一、本课程简介数字信号处理(DSP )是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。

数字信号处理在理论上的发展推动了数字信号处理应用的发展。

反过来,数字信号处理的应用又促进了数字信号处理理论的提高。

而数字信号处理的实现则是理论和应用之间的桥梁。

数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

数字信号处理(DSP)是一门正在生气勃勃迅速发展的学科。

随着超大规模集成电路(VLSI)的出现和迅猛发展,DSP在理论和应用方面不断地发展和完善,在越来越多的应用领域中迅速取代传统的模拟信号处理方法,并且还开辟出许多新的应用领域。

基于高速数字计算机和超大规模数字集成电路的新算法、新实现技术、高速器件、多维处理和新的应用成为DSP学科发展方向和研究热点。

由于DSP应用非常广泛(如,生物医学工程,声学,雷达,地震,通信等),各个领域都需要大量高素质的DSP研究开发人才,所以数字信号处理课程得到学术界和大专院校的高度重视,并达到高度发展和逐步完善的水平。

第一章 数字信号处理概述汇编

第一章 数字信号处理概述汇编
(1) 保密性差 模拟通信,尤其是微波通信和有线明线通信,很容易 被窃听。只要收到模拟信号,就容易得到通信内容。 (2) 抗干扰能力弱 电信号在沿线路的传输过程中会受到外界的和通信系 统内部的各种噪声干扰,噪声和信号混合后难以分开, 从而使得通信质量下降。线路越长,噪声的积累也就 越多。
模拟信 号

从模拟信号到数字信号
取样
模拟信号
取样数据 信号
量化编码
数字信号
对连续信号每隔一定时间间隔取一 数值,则得到一个数据序列,得到的数 字信号在时间上是离散的,称为取样数 据信号;将取样数据信号量化编码,采 用二进制码表示,即得到时间上和数值 上都离散的数字信号
1.1.2 数字信号处理

1、 数字信号处理的概念:用数字或符号序列来
3、灵活性强
数字信号处理采用了专用或通用的数字系 统,其性能取决于运算程序和乘法器的各系数 ,这些均存储在数字系统中,只要改变运算程 序或系数,即可改变系统的特性参数,比改变 模拟系统方便得多。 还可以利用一套计算设备同时处理多路相 互独立的信号,即所谓“时分复用”。
表示信号及对这些序列进行处理的学科。

2、 数字信号处理的方法:既然是数列,其处理
当然是各种数学运算。

3、 数字信号处理的途径:软件处理,编程计算,
灵活方便。硬件处理,加法器、乘法器、延时器及它们的 组合,适时快捷。软硬结合,用数字处理芯片及存储器来 组成硬件电路,通过程序语言来实现所需运算
1.1.3 数字信号处理的主要优、缺 点
精度高 可靠性高(抗干扰性强) 灵活性强 便于大规模集成化 数字信号便于加模拟系统的电路中,元器件精度要达 到10-3以上已经不容易了,而数字系统 17 位字长可以达到 10-5 的精度,这是很 平常的。例如,基于离散傅里叶变换的 数字式频谱分析仪,其幅值精度和频率 分辨率均远远高于模拟频谱分析仪。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档