现代测试技术习题解答 第二章 信号的描述与分析 - 副本
《测试技术》(第二版)课后习题标准答案--

解:(1) 瞬变信号-指数衰减振荡信号,其频谱具有连续性和衰减性。
(2) 准周期信号,因为各简谐成分的频率比为无理数,其频谱仍具有离散性。
(3) 周期信号,因为各简谐成分的频率比为无理数,其频谱具有离散性、谐波性和收敛性。
解:x(t)=sin2t f 0π的有效值(均方根值):2/1)4sin 41(21)4sin 41(21)4cos 1(212sin 1)(10000000000000202000=-=-=-===⎰⎰⎰T f f T T tf f T T dt t f T dt t f T dt t x T x T T T T rms ππππππ 解:周期三角波的时域数学描述如下:(1)傅里叶级数的三角函数展开:,式中由于x(t)是偶函数,t n 0sin ω是奇函数,则t n t x 0sin )(ω也是奇函数,而奇函数在上下限对称区间上的积分等于0。
故=n b 0。
因此,其三角函数展开式如下:其频谱如下图所示:T 0/2-T 0/21x (t ) t. . . . . .⎪⎪⎪⎩⎪⎪⎪⎨⎧+≤≤-≤≤-+=)(202022)(00000nT t x T t t T AA t T t T A A t x 21)21(2)(12/0002/2/00000=-==⎰⎰-T T T dt t T T dt t x T a ⎰⎰-==-2/00002/2/00000cos )21(4cos )(2T T T n dt t n t T T dtt n t x T a ωω⎪⎩⎪⎨⎧==== ,6,4,20,5,3,142sin 422222n n n n n πππ⎰-=2/2/0000sin )(2T T n dtt n t x T b ω∑∞=+=1022cos 1421)(n t n nt x ωπ∑∞=++=1022)2sin(1421n t n nπωπ(n =1, 3, 5, …)(2)复指数展开式复指数与三角函数展开式之间的关系如下:故有)( 21=212121n 22000=-===+====nn n e n m n n n n n a barctg C R C I arctg a A b a C a A C φ 0ωA (ω)ω0 3ω0 5ω0 0ωω0 3ω0 5ω0 ϕ (ω)24π294π2254π 21 2π C 0 =a 0C N =(a n -jb n )/2 C -N =(a n +jb n )/2 R e C N =a n /2 I m C N =-b n /2)(212122000n n n e n m n n n n n a barctg C R C I arctg A b a C a A C -===+===φ R e C N =a n /2⎪⎩⎪⎨⎧====,6,4,20,5,3,122sin 222222n n n n n πππI m C N =-b n /2 =0单边幅频谱 单边相频谱0 ωn φω0 3ω0 5ω0 -ω0 -3ω0 -5ω0 0 ωω0 3ω0 22π 21 292π2252π5ω0 -ω0 -3ω0 292π2252π-5ω0 22πnC0 ωI m C nω0 3ω0 5ω0 -ω0 -3ω0 -5ω0 0 ωR e C nω03ω0 22π21 292π2252π 5ω0 -ω0 -3ω0 292π 2252π-5ω0 22π虚频谱双边相频谱实频谱双边幅频谱解:该三角形窗函数是一非周期函数,其时域数学描述如下:用傅里叶变换求频谱。
现代测试技术习题解答第二章信号的描述与分析副本

第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===22Δ0Δ0000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x πx x →→<≤+====-x (t )正弦信号xx +ΔxΔtΔtt2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
测试技术部分课后习题参考答案

第1章 测试技术基础知识1.4 常用的测量结果的表达方式有哪3种?对某量进行了8次测量,测得值分别为:82.40、82.43、82.50、82.48、82.45、82.38、82.42、82.46。
试用3种表达方式表示其测量结果。
解:常用的测量结果的表达方式有基于极限误差的表达方式、基于t 分布的表达方式和基于不确定度的表达方式等3种1)基于极限误差的表达方式可以表示为0max x x δ=±均值为8118i x x ==∑82.44因为最大测量值为82.50,最小测量值为82.38,所以本次测量的最大误差为0.06。
极限误差max δ取为最大误差的两倍,所以082.4420.0682.440.12x =±⨯=±2)基于t 分布的表达方式可以表示为x t x x ∧±=σβ0标准偏差为s ==0.04样本平均值x 的标准偏差的无偏估计值为ˆx σ==0.014 自由度817ν=-=,置信概率0.95β=,查表得t 分布值 2.365t β=,所以082.44 2.3650.01482.440.033x =±⨯=±3)基于不确定度的表达方式可以表示为0x x x x σ∧=±= 所以082.440.014x =±解题思路:1)给出公式;2)分别计算公式里面的各分项的值;3)将值代入公式,算出结果。
第2章 信号的描述与分析2.2 一个周期信号的傅立叶级数展开为12ππ120ππ()4(cos sin )104304n n n n n y t t t ∞==++∑(t 的单位是秒) 求:1)基频0ω;2)信号的周期;3)信号的均值;4)将傅立叶级数表示成只含有正弦项的形式。
解:基波分量为12ππ120ππ()|cos sin 104304n y t t t ==+ 所以:1)基频0π(/)4rad s ω=2)信号的周期02π8()T s ω==3)信号的均值42a = 4)已知 2π120π,1030n n n n a b ==,所以4.0050n A n π=== 120π30arctan arctan arctan 202π10n n nn bn a ϕ=-=-=-所以有0011()cos()4 4.0050cos(arctan 20)24n n n n a n y t A n t n t πωϕπ∞∞===++=+-∑∑2.3某振荡器的位移以100Hz 的频率在2至5mm 之间变化。
机械工程测试技术课本习题及参考答案

第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。
根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。
不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt T ω-=⎰ ) 式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。
n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。
周期信号通过傅里叶级数复指数函数展开式可表示为:n C 是一个复数,可表示为:n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。
▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。
但可间接进行傅里叶变换。
参见书中第25页“正弦和余弦信号的频谱”。
【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得由此得到,幅频谱为:()A X ω= 相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式) 参考答案:周期三角波为: (2)20()(2)02A A t T t x t A A T tt T +-≤<⎧=⎨-≤≤⎩ 则 0221()T jn t n T C x t e dt T ω--=⎰ 积分得 02222204(1cos )(1cos )2n A T A C n n n T n ωπωπ=-=-即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩L L又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ== 所以,周期三角波傅里叶级数复指数形式展开式为:【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。
现代测试技术习题解答 第二章 信号的描述与分析 - 副本

第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===Δ0Δ000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x →→<≤+====正弦信号x2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图2.37所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
现代检测技术第二版课后习题

第二章课后习题作业2.1 为什么一般测量均会存在误差?解:由于检测系统不可能绝对精确,测量原理的局限,测量算法得不尽完善,环境因素和外界干扰的存在以及测量过程可能会影响被测对象的原有状态等因素,也使得测量结果不能准确的反映被测量的真值而存在一定误差。
2.2 什么叫系统误差?什么叫随机误差?它们产生的原因有哪些?解:在相同的条件下,多次重复测量同一被测参量时,其测量误差的大小和符号保持不变或在条件改变时,误差按某一确定的规律变化,这种测量误差称为系统误差。
产生系统误差的原因:①测量所用工具本身性能不完善或安装布置调整不当;②在测量过程中因湿度、气压、电磁干扰等环境条件发生变化;③测量方法不完善或测量所依据的理论本省不完善。
在相同条件下多次重复测量同一被测参量时,测量误差的大小与符号的大小均无规律变化,这类误差称为随机误差。
产生随机误差的原因:由于检测仪器或测量过程中某些未知无法控制的随机因素综合作用的结果。
2.3 什么叫绝对误差?什么叫相对误差?什么叫引用误差?解:绝对误差是检测系统的测量值X 与被测量的真值X 0之间的代数差值△x 。
0X -X x =△相对误差是检测系统测量值的绝对误差与被测量的真值的比值δ。
%100X x⨯=△δ 引用误差是检测系统测量值的绝对误差Δx 与系统量程L 之比值γ。
%100Lx⨯=△γ 2.4 工业仪表常用的精度等级是如何定义的?精度等级与测量误差是什么关系?解:工业检测仪器常以最大引用误差作为判断精度等级的尺度,最大引用误差去掉百分号和百分号后的数字表示精度等级。
2.5被测电压范围是0~5V ,现有(满量程)20V 、0.5级和150V 、0.1级两只电压表,应选用那只电表进行测量?解:两种电压表测量所产生的最大绝对误差分别是: |ΔX 1max |=|γ1max | * L 1=0.5% * 20=0.1V |ΔX 2max |=|γ2max | * L 2=0.1% * 150=0.15V 所以|ΔX 1MAX |<|ΔX 2mac | 故选用20、0.5级电压表。
测试技术课后题答案信号描述

1.1 求题图 1-2 双边指数函数的傅里叶变换, 双边指数函数的波形如图
所示, 其数学表达式为
0t
题图 1-2 双边指数函数
解:
x(t) 是一个非周期信号,它的傅里叶变换即为其频谱密度函数,按定义式求
解:
1.2 求题图 1-1 周期三角波的傅里叶级数(三角函数形式和复指数形式),并
画出频谱图。周期三角波的数学表达式为
解
90 70 50 30 0 0 0 30 50 70 90
90 70 50 30 0 0
- - - - -
题图 1.2(c)
取 x(t) Asin at
有 d x Aa cos at d t 1.4 求被矩形窗函数截断的余弦函数 cos0t (题图 1.4)的频谱,并作频谱图。 解 题图 1.4 或者, 1.5 单边指数函数 x(t) Aet ( 0, t 0) 与余弦振荡信号 y(t) cos0t 的乘积 为 z(t)=x(t)y(t),在信号调制中,x(t)叫调制信号,y(t)叫载波,z(t)便是 调幅信号。若把 z(t)再与 y(t)相乘得解调信号 w(t)=x(t)y(t)z(t)。 求调幅信号 z(t)的傅里叶变换并画出调幅信号及其频谱。 求解调信号 w(t)的傅里叶变换并画出解调信号及其频谱。 解: 首先求单边指数函数 x(t) Aeat (a 0,t 0) 的傅里叶变换及频谱 余弦振荡信号 y(t) cos 2πf0t 的频谱 利用δ函数的卷积特性,可求出调幅信号 z(t) x(t) y(t) 的频谱 AA/a 0t0f aa’ x(t) Y( f ) 0t f0 0 f0 f bb’
计算傅里叶系数
0 0 30 50 70 90
《测试技术》(第二版)课后习题参考答案

《测试技术》(第二版)课后习题参考答案解:(1) 瞬变信号-指数衰减振荡信号,其频谱具有连续性和衰减性。
(2) 准周期信号,因为各简谐成分的频率比为无理数,其频谱仍具有离散性。
(3) 周期信号,因为各简谐成分的频率比为无理数,其频谱具有离散性、谐波性和收敛性。
解:x(t)=sin2t f 0π的有效值(均方根值):2/1)4sin 41(21)4sin 41(21)4cos 1(212sin 1)(100000000000002020000=-=-=-===⎰⎰⎰T f f T T tf f T T dt t f T dt t f T dt t x T x T T T T rms ππππππ 解:周期三角波的时域数学描述如下:(1)傅里叶级数的三角函数展开:,式中由于x(t)是偶函数,t n 0sin ω是奇函数,则t n t x 0sin )(ω也是奇函数,而奇函数在上下限对称区间上的积分等于0。
故=n b 0。
因此,其三角函数展开式如下:其频谱如下图所示:⎪⎪⎪⎩⎪⎪⎪⎨⎧+≤≤-≤≤-+=)(202022)(0000nT t x T t t T AA t T t T A A t x 21)21(2)(12/0002/2/00000=-==⎰⎰-T T T dt t T T dt t x T a ⎰⎰-==-2/00002/2/00000cos )21(4cos )(2T T T n dt t n t T T dt t n t x T a ωω⎪⎩⎪⎨⎧==== ,6,4,20,5,3,142sin 422222n n n n n πππ⎰-=2/2/0000sin )(2T T n dtt n t x T b ω∑∞=+=1022cos 1421)(n t n nt x ωπ∑∞=++=1022)2sin(1421n t n nπωπ(n =1, 3, 5, …)(2)复指数展开式复指数与三角函数展开式之间的关系如下:)( 21=212121n 22000=-===+====nn n e n m n n n n n a barctg C R C I arctg a A b a C a A C φ A ϕ单边幅频谱 单边相频谱0 ωn φω0 3ω0 5ω0 -ω0 -3ω0 -5ω00 ωI m C nω0 3ω0 5ω0 -ω0 -3ω0 -5ω0虚频谱双边相频谱解:该三角形窗函数是一非周期函数,其时域数学描述如下:用傅里叶变换求频谱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以
所以x(t+)=y(t++T)
令t1=t++T,代入上式得
x(t1- T)=y(t1),即y(t) =x(t- T)
结果说明了该系统将输入信号不失真地延迟了T时间。
2-12已知信号的自相关函数为Acos,请确定该信号的均方值x2和均方根值xrms。
解:Rx()=Acos
根据以上分析结论,便可由自相关函数图中确定均值(即常值分量)和周期分量的周期及幅值,参见下面的图。例如:如果 ,则 。
所以
解法3:直接按Rxy()定义式计算(参看下图)。
参考上图可以算出图中方波y(t)的自相关函数
2-11某一系统的输人信号为x(t)(见图5-25),若输出y(t)与输入x(t)相同,输入的自相关函数Rx()和输入—输出的互相关函数Rx()之间的关系为Rx()=Rxy(+T),试说明该系统起什么作用?
2- 19假定有一个信号x(t),它由两个频率、相角均不相等的余弦函数叠加而成,其数学表达式为x(t)=A1cos(1t+1)+A2cos(2t+2)求该信号的自相关函数。
解:设x1(t)=A1cos(1t+1);x2(t)=A2cos(2t+2),则
因为12,所以 , 。又因为x1(t)和x2(t)为周期信号,所以
x2=Rx(0)=A
2-13已知某信号的自相关函数,求均方值、和均方根值 。
2-14已知某信号的自相关函数,求信号的均值 、均方根值、功率谱。
2-15已知某信号的自相关函数,求信号的自功率谱。
解:采样序列x(n)
2-18对三个正弦信号x1(t)=cos2t、x2(t)=cos6t、x3(t)=cos10t进行采样,采样频率fs=4Hz,求三个采样输出序列,比较这三个结果,画出x1(t)、x2(t)、x3(t)的波形及采样点位置,并解释频率混叠现象。
同理可求得
所以
2-20试根据一个信号的自相关函数图形,讨论如何确定该信号中的常值分量和周期成分。
解:设信号x(t)的均值为x,x1(t)是x(t)减去均值后的分量,则
x(t) =x+x1(t)
如果x1(t)不含周期分量,则 ,所以此时 ;如果x(t)含周期分量,则Rx()中必含有同频率的周期分量;如果x(t)含幅值为x0的简谐周期分量,则Rx()中必含有同频率的简谐周期分量,且该简谐周期分量的幅值为x02/2;
2-5求指数函数 的频谱。
解:
2-6求被截断的余弦函数 (见图1-26)的傅里叶变换。
解:
w(t)为矩形脉冲信号
所以
根据频移特性和叠加性得:
可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f0,同时谱线高度减小一半。也说明,单一频率的简谐信图1-2)的傅立叶变换。
采样输出序列为:1,0,-1,0,1,0,-1,0,
采样输出序列为:1,0,-1,0,1,0,-1,0,
采样输出序列为:1,0,-1,0,1,0,-1,0,
从计算结果和波形图上的采样点可以看出,虽然三个信号频率不同,但采样后输出的三个脉冲序列却是相同的,这三个脉冲序列反映不出三个信号的频率区别,造成了频率混叠。原因就是对x2(t)、x3(t)来说,采样频率不满足采样定理。
2-1求图示2.36所示锯齿波信号的傅里叶级数展开。
补充题2-1-2求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|cn|–ω和
φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为
积分区间取(-T/2,T/2)
所以复指数函数形式的傅里叶级数为
, 。
没有偶次谐波。其频谱图如下图所示。
第二章信号的描述与分析
补充题2-1-1求正弦信号 的均值 、均方值 和概率密度函数p(x)。
解答:
(1) ,式中 —正弦信号周期
(2)
(3)在一个周期内
2-8求余弦信号 的绝对均值 和均方根值 。
2-1求图示2.36所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图2.37所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
解
2-7求指数衰减信号 的频谱
解:
所以
单边指数衰减信号 的频谱密度函数为
根据频移特性和叠加性得:
2-9求h(t)的自相关函数。
解:这是一种能量有限的确定性信号,所以
2-10求方波和正弦波(见图5-24)的互相关函数。
解法1:按方波分段积分直接计算。
解法2:将方波y(t)展开成三角级数,其基波与x(t)同频相关,而三次以上谐波与x(t)不同频不相关,不必计算,所以只需计算y(t)的基波与x(t)的互相关函数即可。