线性代数模试题试题库
线性代数模拟试题

线性代数模拟试题1. 矩阵A的转置已知矩阵 A = [1 2 3; 4 5 6; 7 8 9],求其转置矩阵 AT。
解答:设矩阵 B 为 A 的转置矩阵,即 B = AT。
则矩阵 B 的第 i 行第 j 列元素等于矩阵 A 的第 j 行第 i 列元素,即 Bij = Aji。
根据以上规律,可以得到矩阵 A 的转置矩阵 B = [1 4 7; 2 5 8; 3 6 9]。
2. 矩阵相乘已知矩阵 A = [1 2; 3 4],矩阵 B = [5 6; 7 8],求矩阵 A 乘以矩阵 B的结果 AB。
解答:设矩阵 C 为 A 乘以 B 的结果,即 C = AB。
矩阵 C 的第 i 行第 j 列元素等于矩阵 A 的第 i 行与矩阵 B 的第 j 列的对应元素相乘再相加,即Cij = ∑(Aik * Bkj) (k=1 to n)。
根据以上规律,可以得到矩阵 A 乘以矩阵 B 的结果 C = [19 22; 43 50]。
3. 矩阵的逆已知矩阵 A = [2 -1; 4 3],求其逆矩阵 A-1。
解答:逆矩阵 A-1 的定义为 A * A-1 = I,其中 I 为单位矩阵。
设矩阵 B 为A 的逆矩阵,即 B = A-1。
可以通过求解线性方程组的方式来求解矩阵A 的逆矩阵。
首先,构造增广矩阵 [A I],其中 I 为 2 阶单位矩阵。
经过初等行变换,将矩阵 A 转化为单位矩阵的形式,此时 [I B] 的形式就是矩阵 A的逆矩阵。
经过计算,可以得到矩阵 A 的逆矩阵 B = [3 1; -4 2]。
4. 矩阵的特征值和特征向量已知矩阵 A = [3 -2; 1 4],求其特征值和对应的特征向量。
解答:特征值λ 是矩阵 A 满足方程 |A - λI| = 0 的根,其中 I 为单位矩阵。
特征向量 v 是非零向量 x 满足方程 (A - λI)x = 0。
首先,计算矩阵 A - λI 的行列式,即 |A - λI|。
线性代数模拟试卷及答案

线性代数(文)模拟试卷(一)参考答案一。
填空题(每小题3分,共12分)1.设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,⎪⎪⎪⎭⎫⎝⎛=333222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3332221113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=---=12=-B A .2。
已知向量)3,2,1(=α,)31,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-.解 注意到3321)31,21,1(=⎪⎪⎪⎭⎫ ⎝⎛=T βα,故n A =βαβαβαβαT n T T T 个)())((=ββαβαβααβαTn T T T T 个)1()())((-=A n T n 1133--=βα。
注 若先写出A ,再求2A ,…,n A 将花比前更多的时间.3。
若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-.解 由1α,2α,3α线性相关,则有321,,ααα=k k 0143011--=1043011--k k k =04)1(3143=--=-k k k k 。
由此解得3-=k .4。
若4阶矩阵A 与B 相似,矩阵A 的特征值为21,31,41,51,则行列式E B --1 =24.解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4。
故2443211=⋅⋅⋅=--E B . 注 本题解答中要用到以下结论:(1)若A 可逆,A 的特征值为λ,则1-A 的特征值为λ1。
(2)若λ是A 的特征值,则)(A f 的特征值为)(λf ,其中)(x f 为任意关于x 的多项式。
大学数学线性代数期末复习模拟测试试卷(含答案)

线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
线性代数模拟考试题(4套)

线性代数模拟考试题(4套)模拟试题⼀⼀、判断题:(正确:√,错误:×)(每⼩题2分,共10分)1、若B A ,为n 阶⽅阵,则 B A B A +=+. ……………………( )2、可逆⽅阵A 的转置矩阵T A 必可逆. ……………………………( )3、n 元⾮齐次线性⽅程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶⽅阵,且0=A ,则矩阵A 中必有⼀列向量是其余列向量的线性组合.…………………………………………………………( ) ⼆、填空题:(每空2分,共20分)1、,A B 为 3 阶⽅阵,如果 ||3,||2A B ==,那么 1|2|AB -= .2、⾏列式中元素ij a 的余⼦式和代数余⼦式,ij ij M A 的关系是 .3、在5阶⾏列式中,项5541243213a a a a a 所带的正负号是 .4、已知()??-==256,102B A 则=AB .5、若?--=1225A ,则=-1A . 6、设矩阵--2100013011080101是4元⾮齐次线性⽅程组b Ax =的增⼴矩阵,则b Ax =的通解为 .7、()B A R + ()()B R A R +.8、若*A 是A 的伴随矩阵,则=*AA .9、设=A-500210111t ,则当t 时,A 的⾏向量组线性⽆关.10、⽅阵A 的特征值为λ,⽅阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每⼩题8分,共16分) 1、已知4阶⾏列式1611221212112401---=D ,求4131211132A A A A +-+.2、设矩阵A 和B 满⾜B A E AB +=+2,其中=101020101A ,求矩阵B .四、(10分) 求齐次线性⽅程组=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元⾮齐次线性⽅程组b Ax =的增⼴矩阵为+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ,讨论当λ取何值时,b Ax =⽆解,有唯⼀解和有⽆穷多解,并在⽆穷多解时求出通解.六、(10分) 判断向量组---=? --=? =? -=1622,4647,3221,1123:4321a a a a A 的线性相关性,如果线性相关,求⼀个最⼤⽆关组,并⽤它表⽰其余向量. 七、综合计算:(本题14分)已知⼆次型31232221321422),,(x x x x x x x x f --+= (1)求⼆次型所对应的矩阵A ,并写出⼆次型的矩阵表⽰;(2)求A 的特征值与全部特征向量;(3)求正交变换PY X =化⼆次型为标准形, 并写出标准形;(4)判断该⼆次型的正定性。
线性代数期末模拟测试试卷(含答案)

线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t 2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-AC.n A r =)(D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则 111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11 。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 的线性关系是 。
线性代数模试题试题库(带答案)

,
A= 2−1
1 1
−2 −1
1
=
13
−1
3
2 3
1
3
解:
= A−1
= A01−1 A02−1
1
−2
0
0
−2 5 0 0
0 0 13 −1 3
0
0
2 3
1 3
四、证明题(每小题 5 分,共 10 分)
19、设 n 阶方阵 A 满足 ( A + E )3 = 0 ,证明矩阵 A 可逆,并写出 A 逆矩阵的表达式。
即行列式 D 的每一行都有一个(-1)的公因子,所以 D = (−1)n D 。
3、设
A
=
1 0
1 1 ,
则
A100
=
1 0
100
1
。
= A2
1 0
= 11 10 11
= 10 12 , A3
1 0
= 12 10 11
因为: A∗ =A A−1 =−2A−1 ⇒ 4A−1 + A∗ =4A−1 − 2A−1 =2A−1 =8 A−1 =−4 。
1 0 2 2、 A 为 5×3 矩阵,秩( A )=3, B = 0 2 0 ,则秩( AB )= 3 。
0 0 3 因为 B 可逆, AB 相当于对 A 作列初等变换,不改变 A 的秩。
C.5
D.6
1 2 1 0 1 2 1 0
通过初等变换,由秩为 2 可得: 3
−1 0
2
0
−7
−3
线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、若12335544ija aa a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********AA ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,TAAE =且=+<E A A 则,0 0 。
由已知条件:211,1T T T AA E AA A A A E A A =⇒====⇒=±⇒=-,而 :0TT A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y应满足条件32x y ≠。
可逆,则行列式不等于零:20002(32)032023A xy x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a a a a a ,则行列式=---------232221333231131211222222222a a a a a a a a aA 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M aa a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数模拟试题及答案

3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555n n A A +==。
5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。
由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分)7、设0333231232221131211≠=M a a a a a aa a a ,则行列式 A 。
A . B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
A .n D 中有两行(或列)元素对应成比例B .n D 中有一行(或列)元素全为零C .nD 中各列元素之和为零 D .以n D 为系数行列式的齐次线性方程组有非零解 9、对任意同阶方阵,A B ,下列说法正确的是 C 。
A.111)(---=B A AB B.B A B A +=+ C. T T T A B AB =)( D.AB BA =10、设,A B 为同阶可逆矩阵,0λ≠为数,则下列命题中不正确的是 B 。
A.11()A A --= B.11()A A λλ--= C.111()AB B A ---= D.11()()T T A A --=由运算法则,就有111()A A λλ--=。
11、设A 为n 阶方阵,且0A a =≠,则A *= C 。
A .a B .1aC .1n a -D .n a 因为11111n n n A A A A A A A A A AA--*-*--=⇒===⋅=。
12、矩阵12103102122a ⎛⎫⎪- ⎪ ⎪--⎝⎭的秩为2,则a = D 。
A. 2B. 3C.4通过初等变换,由秩为2可得:12101210310207321220500a a ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭:三、计算题(每小题7分,共42分)13、计算行列式:4111141111411114。
解:341117111111111111411741114110300========7=====7=73=18911417141114100301114711411140003⨯各列加到第一列提第一行乘-1到外面第一列上加到各行上。
14、计算行列式:44332211000000a b a b b a b a 。
解:先按第一行展开,再按第三行展开,有:4433221100000000a b a b b a b a =22221333314142323441()()a b a b a b a b b a a a b b a a b b a b -=--。
15、问λ取何值时,齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解。
解:齐次线性方程组有非零解,则系数行列式为零:()()231321232(1)124034(1)0=231=====011+232,0,2,3111111r r r r λλλλλλλλλλλλλλ-----------=---⇒===-- 16、设矩阵2011,3125A B -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,计算2211()B A B A ---。
解:因为2,7A B ==-,所以都可逆,有22112212311152()()1425919B A B A B A A B B AB B A B -----⎛⎫⎛⎫⎛⎫-=-=-=-==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭。
17、解矩阵方程AX B X +=,求X ,其中A =⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---350211,101111010B 。
解:1()()AX B X A E X B X A E B -+=⇒-=-⇒=--,102313()1231301313A E ---⎛⎫ ⎪⇒-=--⇒ ⎪ ⎪-⎝⎭ 131()2011X A E B --⎛⎫ ⎪=--= ⎪⎪-⎝⎭。
18、设5200210000120011A ⎛⎫ ⎪⎪= ⎪- ⎪⎪⎝⎭,利用分块矩阵计算1A -。
解:111111221111205212121323,021251113112002500000132300011AA A A A A A A ---------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⇒==== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪-⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪ ⎪-⎝⎭四、证明题(每小题5分,共10分)19、设n 阶方阵A 满足()30A E +=,证明矩阵A 可逆,并写出A 逆矩阵的表达式。
证明:因为()3322330(33)A E A A A E A A A E E +=+++=⇒++=-,从而212(33)33A A A E EA A A E ----=-⇒=---。
20、若矩阵TA A =-,则称矩阵A 为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵。
证明:设A 为n 阶反对称矩阵,n 为奇数,则 (1)0TT n T A AA A A AA =-⇒=-=-=-⇒=,所以A 不可逆,即A 不是满秩矩阵。
第二套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 A 为3阶方阵,且2,A =-*A 是A 的伴随矩阵,则1*4A A -+= -4 。
因为:11111112442284A A A AA A A A A A *---*----==-⇒+=-===-。
2、A 为5×3矩阵,秩(A )=3,B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则秩(AB )= 3 。
因为B 可逆,AB 相当于对A 作列初等变换,不改变A 的秩。
3、12123,,,,ααβββ均为4维列向量,1123(,,,)A αβββ=,2123(,,,)B αβββ=,1A =,4B = ,则A B += 40 。
()12123121231212311232123(,2,2,2)(,2,2,2)8,,,)8,,,,,,8(14)40A B A B ααβββααβββααβββαβββαβββ+=+⇒+=+=+=+=+=。
4、121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,32t β⎛⎫⎪= ⎪ ⎪⎝⎭,且4Tαβ=,则t = -4 。
()121362442Tt t t αβ⎛⎫⎪==++=⇒=- ⎪ ⎪⎝⎭。
5、如果n 元非齐次线性方程组AX B =有解,()R A r =,则当 n 时有唯一解;当 < n 时有无穷多解。
非齐次线性方程组有解的定义。
6、设四元方程组AX B =的3个解是123,,ααα。
其中1231213,1415ααα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,如()3R A =,则方程组AXB =的通解是01112131k ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
因为()3R A =,所以0AX =的基础解系含4-3=1个解向量;又2131,αααα--都是0AX =的解,相加也是0AX =的解,从而可得0AX =的一个解为:()()()213123121031122412513ξααααααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+-=+-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是AX B =的通解为:101112131X k k ξα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
二、单项选择题(每小题4分,共24分) 7、对行列式做 D 种变换不改变行列式的值。
A.互换两行 B.非零数乘某一行C.某行某列互换D.非零数乘某一行加到另外一行8、n 阶方阵,,A B C 满足ABC E =,其中E 为单位矩阵,则必有 D 。
A.ACB E = B.CBA E = C.BAC E = D.BCA E =矩阵乘法不满足变换律,而D 中11ABC E A ABCA A EA BCA E --=⇒=⇒=。
9、矩阵121031021122t ⎛⎫ ⎪- ⎪ ⎪---⎝⎭的秩为2,则t = D A. 3 B. 4 C.5通过初等变换,由秩为2可得:121012103102073211220600t t ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭:。
10、若方阵n n A ⨯不可逆,则A 的列向量中 C 。
A. 必有一个向量为零向量B. 必有二个向量对应分量成比例C. 必有一个向量是其余向量的线性组合D. 任一列向量是其余列向量的线性组合 方阵n n A ⨯不可逆,则A 的列向量线性相关,,由定义可得。
11、若r 维向量组m αααΛ21,线性相关,α为任一r 维向量,则 A 。
A. αααα,,21m Λ线性相关 B. αααα,,21m Λ线性无关C. αααα,,21m Λ线性相关性不定D. m αααΛ21,中一定有零向量 由相关知识可知,个数少的向量组相关,则个数多的向量组一定相关。
12、若矩阵54⨯A 有一个3阶子式为0,则 C 。
A.秩(A )≤2B. 秩(A )≤3C. 秩(A )≤4D. 秩(A )≤5由矩阵秩的性质可知:()45min{4,5}R A ⨯≤,而有一个3阶子式为0,不排除4阶子式不为0。