大一线性代数期末试题及答案
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。
2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。
四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。
答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。
大学线代期末试题及答案

大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。
答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。
答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。
答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。
答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。
答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。
然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。
最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。
大一线性代数期末试题及答案

诚信应考,考试作弊将带来严重后果!线性代数期末考试试卷及答案注意事项: 1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上);3.考试形式:开(闭)卷; 4.本试卷共五大题,满分100分,考试时间120分钟。
题号一二三四五总分得分评卷人一、单项选择题(每小题2分,共40分)。
1.设矩阵22, B 23, C 32A 为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【】A . BAC B.ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2+E =0,其中E 是n 阶单位矩阵,则必有【】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=13.设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【】A. 2-B.n2- C.n2- D. 14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中【】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是【】A .133221,,a a a a a a B.212132,,a a a a C.32322,2,a a a a D. 1321,,a a a a -_____________________名学号学院专业座位号(密封线内不答题)………………………密………………………………………………封………………………………………线……………………………………6.向量组(I):)3(,,1ma a m 线性无关的充分必要条件是【】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111mm m a k a k k k 使7.设a 为n m 矩阵,则n 元齐次线性方程组0Ax存在非零解的充分必要条件是【】A .A 的行向量组线性相关B .A 的列向量组线性相关C. A 的行向量组线性无关D.A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组0332211332211x b x b x b x a x a x a 的基础解系含2个解向量,则必有【】A.03221 b b a a B.02121 b b a a C.332211b a b a b a D.2131 b b a a 9.方程组1231231232121 3 321x x x x x x x x x a 有解的充分必要的条件是【】A. a=-3B. a=-2C. a=3D. a=1 10.设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是【】A.可由η1,η2,η3线性表示的向量组B.与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1 D.η1,η1-η3,η1-η2-η311.已知非齐次线性方程组的系数行列式为0,则【】A.方程组有无穷多解B.方程组可能无解,也可能有无穷多解C.方程组有唯一解或无穷多解D.方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个【】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13.下列子集能作成向量空间R n的子空间的是【】A.}0|),,,{(2121a a a a a nB.}0|),,,{(121ni i n a a a a C.},,2,1,|),,,{(21n iz a a a a in D.}1|),,,{(121n i in a a a a 14.若2阶方阵A 相似于矩阵3-201B,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【】A.4101 B.4-101- C.42-00 D.4-2-01-15.若矩阵802001a a A正定,则实数a 的取值范围是【】A .a < 8 B. a >4C .a <-4 D.-4 <a <4二、填空题(每小题2分,共20分)。
线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。
7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。
8. 一个向量空间的一组基的向量数量至少是_________。
9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。
10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。
三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。
12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。
四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。
14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。
线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,<)不是初等矩阵。
<A )001010100 (B>100000010 (C>10002001(D>100012012.设向量组123,,线性无关,则下列向量组中线性无关的是<)。
<A )122331,,<B )1231,,<C )1212,,23<D)2323,,23.设A 为n 阶方阵,且250AA E。
则1(2)A E <)(A> A E (B>EA (C>1()3A E (D>1()3A E 4.设A 为n m 矩阵,则有<)。
<A )若n m,则b Ax 有无穷多解;<B )若n m,则0Ax 有非零解,且基础解系含有m n个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax 有唯一解;<D )若A 有n 阶子式不为零,则0Ax仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似<B )AB ,但|A-B|=0<C )A=B<D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。
每小题2分,共10分>1.A 是n 阶方阵,R ,则有A A。
< )2.A ,B 是同阶方阵,且0AB ,则111)(A B AB 。
< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( >4.若B A,均为n 阶方阵,则当B A 时,B A,一定不相似。
( >5.n 维向量组4321,,,线性相关,则321,,也线性相关。
< )三、填空题<每小题4分,共20分)1.0121n n。
2.A 为3阶矩阵,且满足A3,则1A=______,*3A。
线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
大一线性代数期末考试试卷+答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。
① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ ααα,,, 中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。
① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 32322,2,a a a a +
D. 1321,,a a a a -
6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】
A.(I)中任意一个向量都不能由其余m-1个向量线性表出
B.(I)中存在一个向量,它不能由其余m-1个向量线性表出
C.(I)中任意两个向量线性无关
D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使
7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是
【 】
A .A 的行向量组线性相关
B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨
⎧=++=++00
332
211332211x b x b x b x a x a x a
的基础解系含2个解向量,则必有 【 】 A.
03221= b b a a B.02121≠ b b a a C. 332211b a b a
b a == D. 02
131= b b a a
9.方程组123123
12321 21 3 321
x x x x x x x x x a ++=⎧
⎪++=⎨⎪++=+⎩
有解的充分必要的条件是
【 】
A. a=-3
B. a=-2
C. a=3
D. a=1
10. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】
A. 可由η1,η2,η3线性表示的向量组
B. 与η1,η2,η3等秩的向量组
C.η1-η2,η2-η3,η3-η1
D. η1,η1-η3,η1-η2-η3 11. 已知非齐次线性方程组的系数行列式为0,则
【 】
A. 方程组有无穷多解
B. 方程组可能无解,也可能有无穷多解
C. 方程组有唯一解或无穷多解
D. 方程组无解
阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】
A.互不相同的特征值
B.互不相同的特征向量
C.线性无关的特征向量
D.两两正交的特征向量
13. 下列子集能作成向量空间R n
的子空间的是 【 】
A. }0|),,,{(2121=a a a a a n
B. }0|),,,{(121∑=
=n
i i
n a a a a
C. },,2,1,|),,,{(21n i z a a a a i n =∈
D. }1|),,,{(121∑==n i i
n
a
a a a
14.若2阶方阵A 相似于矩阵⎥
⎦
⎤⎢
⎣⎡=3- 20
1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵
【 】
A. ⎥⎦⎤⎢⎣⎡4 10 1
B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-
C. ⎥⎦⎤⎢⎣⎡4 2-0 0
D. ⎥⎦
⎤⎢⎣⎡4- 2-0 1-
15.若矩阵⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4
二、填空题(每小题2分,共20分)。
16.设矩阵,1
00 2,1 0 23 1- 1⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢
⎣⎡=B A 记T A 为A 的转置,则B A T
= 。
17.设矩阵 1 22 1A ⎡⎤=⎢⎥
⎣⎦
则行列式det(T
AA )的值为 . 18.行列式 3 4 8
5 9 1 7 2 6
的值为 .
19.若向量组123123824001a (, , ), a (, t, ), a ( , , )===线性相关,则常数
t = .
20.向量组(10,20),(30,40), (50,60)的秩为 .
21.齐次线性方程组12312
3 0230x x x x x x --=⎧⎨+-=⎩ 的基础解系所含解向量的个数为
22.已知T
, , x )201(1=、T
, , x )54(32=是3元非齐次线性方程组b Ax =的两个解向
量,则对应齐次线性方程0=Ax 有一个非零解ξ= .
23.矩阵 1 2 30 2 30 0 3A ⎡⎤
⎢⎥=⎢⎥⎢⎥⎣⎦
的全部特征值为 。
24.设λ是3阶实对称矩阵A 的一个一重特征值,T 1) 3 1, 1, (ξ=、T
2) 12 a, 4, (ξ=是A 的属于特征值λ的特征向量,则实常数a= .
25.二次型222
1231122133(,,)448f x x x x x x x x x x =-+++对应的实对称矩阵A= .
三、计算题(,共50分)
26.设111 011001A ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,且E AB 2=-A ,其中E 是三阶单位矩阵,求矩阵B 。
27.a 取何值时,方程组⎪⎩
⎪
⎨⎧=-=++=+a x x x x x x x 3232121 107432
有解在有解时求出方程组的通解。
28.设向量组321,,a a a 线性无关。
试证明:
向量组332123211,,a a a a a a =-=++=βββ线性无关。
29.试证向量组123(1,0,1),(1,1,0),(0,1,1)a a a ===为3
R 的一组基,并求向量(2,2,2)
x =在该组基下的坐标。
2007线性代数考试试题B
----------参考答案及评分标准
一、单项选择题(本大题共20小题,每小题2分,共40分)
14. C
15. D
二、填空题(本大题共10空,每空3分,共30分)
16. 0 30 0 0 4⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
17. 9 18. -360 19. 16 20. 2 21. 1 22.(2,4,3)T
(或它的非零倍数) 23. 1、2、3
24. 4 25. 1 -2 4-2 4 04 0 1⎡⎤
⎢⎥⎢⎥⎢⎥⎣⎦
三、计算题(每小题6分,共30分)
26. 2
96 02220 01435
430--=
D 2
9 62- 2 25
4 33=…………4分 .96=…………8分
27. 解:由于E AB 2
=-A ,因此E AB 2
-=A ,又A 10=≠,故A 可逆, ……2分
所以1111111022B A 0110
11002001001000A ---⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪
=-=--= ⎪
⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭
……8分
28. ,200021103021⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡→ a- - -
A 故当且仅当a=2时,有解。
…………2分
当2=a 时,得x x x x x ( 22323
2
1⎩⎨
⎧+-=-=是任意)
, 所以)( 112203是任意常数k k x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=…………8分 或 ⎩⎨
⎧+=--=),( 22133
231任意x x x x x 即).( 112021是任意常数k k x ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-+⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=…………8分 29.证一:设有一组数321,,x x x 使,0332211=++βββx x x …………2分
即0)()()(331221121=++-++a x x a x x a x x 由321,,a a a 线性无关,有
⎪⎩⎪
⎨⎧=+=-=+0 0
31
2121x x x x x x …………2分 该方程组只有零解0321===x x x 故321,,βββ线性无关。
…………6分
证二:因321,,a a a 线性无关,321,,βββ用321,,a a a 线性表出的系数行列式
021
- 11
11
0 00 1- 11 1 1≠-==
=∆故线性无关。
(若只证明△≠0,不强调321,,a a a 线 性无关这一条件,就得出321,,βββ线性无关的结论,扣2分)。
故命题得证。
…8分
30.证明:令
110011101
∆=,则11011001101120101
002
∆===≠,故向量组 123(1,0,1),(1,1,0),(0,1,1)a a a ===为3R 的一组基,…………4分
又设332211αααx x x x ++=,得线性方程组1223
1
32
2 2
x x x x x x +=⎧⎪+=⎨⎪+=⎩
解之得向量(2,2,2)x =在该组基下的坐标为(1,1,1)x =。
…………8分。