精选-线性代数期末考试试题(含答案)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试试题(含答案)

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题一、填空题(每空3分,共15分)1。

设矩阵,且,则______2.二次型是正定的,则t的取值范围__________3.为3阶方阵,且,则___________4.设n阶矩阵A的元素全为1,则A的n个特征值是___________5.设A为n阶方阵,为A的n个列向量,若方程组只有零解,则向量组()的秩为_____二、选择题(每题3分,共15分)6.设线性方程组,则下列结论正确的是()(A)当取任意实数时,方程组均有解(B)当a=0时,方程组无解(C)当b=0时,方程组无解(D)当c=0时,方程组无解7. A.B同为n阶方阵,则()成立(A)(B)(C)(D)8.设,,,则( )成立(A) (B)(C)(D)9.,均为n阶可逆方阵,则的伴随矩阵()(A)(B) (C)(D)10.设A为矩阵,<,那么A的n个列向量中()(A)任意r个列向量线性无关(B) 必有某r个列向量线性无关(C) 任意r个列向量均构成极大线性无关组(D)任意1个列向量均可由其余n-1个列向量线性表示三、计算题(每题7分,共21分)11.设.求12.计算行列式13.已知矩阵与相似,求a和b的值四、计算题(每题7分,共14分)14.设方阵的逆矩阵的特征向量为,求k的值15.设,,,(1)问为何值时,线性无关(2)当线性无关时,将表示成它们的线性组合五、证明题(每题7分,共14分)16.设3阶方阵,的每一列都是方程组的解(1)求的值(2)证明:17.已知为n维线性无关向量,设,证明:向量线性无关六、解答题(10分)18.方程组,满足什么条件时,方程组(1)有惟一解(2)无解(3)有无穷多解,并在此时求出其通解七、解答题(11分)19。

已知二次型,试写出二次型的矩阵,并用正交变换法化二次型为标准型. (一)1、202、 3 4 5、n(二)ACCDB(三)11、12、()13、()(四)14、(或) 15、()(五)16 ( 略) 17略(六)18、( (1)且;(2);(3),解略)(七)19、(,其余略)。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数期末试题及参考答案

线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,<)不是初等矩阵。

<A )001010100 (B>100000010 (C>10002001(D>100012012.设向量组123,,线性无关,则下列向量组中线性无关的是<)。

<A )122331,,<B )1231,,<C )1212,,23<D)2323,,23.设A 为n 阶方阵,且250AA E。

则1(2)A E <)(A> A E (B>EA (C>1()3A E (D>1()3A E 4.设A 为n m 矩阵,则有<)。

<A )若n m,则b Ax 有无穷多解;<B )若n m,则0Ax 有非零解,且基础解系含有m n个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax 有唯一解;<D )若A 有n 阶子式不为零,则0Ax仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似<B )AB ,但|A-B|=0<C )A=B<D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。

每小题2分,共10分>1.A 是n 阶方阵,R ,则有A A。

< )2.A ,B 是同阶方阵,且0AB ,则111)(A B AB 。

< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

( >4.若B A,均为n 阶方阵,则当B A 时,B A,一定不相似。

( >5.n 维向量组4321,,,线性相关,则321,,也线性相关。

< )三、填空题<每小题4分,共20分)1.0121n n。

2.A 为3阶矩阵,且满足A3,则1A=______,*3A。

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线性代数试题和答案(精选版)

线性代数试题和答案(精选版)

线性代数习题和答案第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A の伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ+λ2β2+…λsβs=01β1B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为( ) A.2334⎛⎝⎫⎭⎪B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

(完整word版)线性代数试题和答案(精选版)

(完整word版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)、单项选择题(本大题共 14小题,每小题2分,共28分)在每小题列出①四个选项中只有 一个是符合题目要求◎,请将其代码填在题后①括号内。

错选或未选均无分。

A. -6 C. 24. 设A 是方阵,如有矩阵关系式 AB =AC ,则必有( A. A = 0C. A =0 时 B =C5. 已知3X 4矩阵A O 行向量组线性无关,则秩( A. 1 C. 3 D.46.设两个向量组a 1, a 2,…,a s 和B 1, 3 2,…,3 s 均线性相关,则()A. 有不全为0 O 数入1,入2,…,入s 使入1 a 什入2 a 2+…+入s a s =0和入1 3什入2 3 2+…入s 3 s =0B. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1+ 3 1) +入2 ( a 2+ 3 2) +…+入s ( a s + 3 s ) =0C. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1- 3 1) +入2 ( a 2- 3 2)+…+入s ( a s - 3 s ) =0D. 有不全为0 O 数入1,入2,…,入s 和不全为0 O 数卩1 ,卩2,…,卩s 使入1 a 计入2a 2+…+入 s a s =0 和卩 1 3 1+ 卩 2 3 2+ …+ 卩 s 3 s =0 7. 设矩阵A O 秩为r ,则A 中( )A. m+n C. n-a11a12a13a11=m ,a 21 a 22a 23 a 21a11 a 12 ' a13a 21 a 22 亠a 23B. - (m+n)D. m- n等于(2•设矩阵A =3.设矩阵 ■‘3 -1 21 0 -1 V-2 14丿中位于 (1 , 2)0兀素是(B. 6 D.-)B. B = C 时 D. | A0 时 B =C A T)等于( )B. 2 1•设行列=n ,则行列式(10 2 VP 0 A. C.0,则A -1等于(3丿,A *是A ①伴随矩阵,则 A A =A.所有r- 1阶子式都不为0C.至少有一个r阶子式不等于08.设Ax=b是一非齐次线性方程组,n 1,A. n什n 2是Ax=0 O—个解B.所有r- 1阶子式全为0D.所有r阶子式都不为0n 2是其任意2个解,则下列结论错误O是1 1B. —n 1+ n 2是Ax=b O—个解C. n i -n 2 是 Ax=O ①一个解D.2 n 1- n 2 是 Ax=b ①一个解 9•设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n- 1 C. A=0 D.方程组Ax=0只有零解 10•设A 是一个n (>3)阶方阵,下列陈述中正确①是( )A. 如存在数入和向量a 使A a =入a,则a 是A ①属于特征值 入①特征向量B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A ①特征值C. A O 2个不同①特征值可以有同一个特征向量D. 如入1,入2,入3是A O 3个互不相同①特征值, a 1, a 2, a 3依次是A ①属于入i ,入2,入3①特征向量,贝U a 1, a 2, a 3有可能线性相关 11. 设入o 是矩阵A ①特征方程①3重根,A ①属于入°①线性无关①特征向量①个数为 k ,则必有( ) A. k < 3B. k <3C. k=3表示|A |中元素a j ①代数余子式(i,j=1,2,3 ),则2 218. 设向量(2, -3, 5)与向量(-4, 6, a )线性相关,贝y a= 一 . 19. ______________ 设A 是3X 4矩阵,其秩为3,若n 1, n 2为非齐次线性方程组 Ax=b O 2个不同①解,则它 ◎通解为 .20.设A 是m x n 矩阵,A ①秩为r (<n ),则齐次线性方程组 Ax=0①一个基础解系中含有解①个 数为D. k>312. 设A 是正交矩阵,则下列结论错误①是(A.| A|2必为 1 -1 ■ T C. A = A13. 设A 是实对称矩阵,C 是实可逆矩阵,A. A 与B 相似B. A 与B 不等价C. A 与B 有相同①特征值D. A 与B 合同 14.下列矩阵中是正定矩阵①为()i'2 3:A. I I 母4丿'1 0 0C. 0 2-3©-35」)B.| A 必为1D. A ①行(列)向量组是正交单位向量组 B =C AC .则()4 6」、1 12 0第二部分 、填空题(本大题共 10小题,每小题 小题①空格内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西理工大学《线性代数》考题
一、 填空题(每空3分,共15分)
1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222
111
c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333
222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________
3. A 为3阶方阵,且2
1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________
5. 设A 为n 阶方阵,n βββΛ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββΛ,,21)的
秩为 _____
二、选择题(每题3分,共15分)
6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-032231
3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解
(C) 当b =0时,方程组无解 (D)当c =0时,方程组无解
7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A
8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221
131211
a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=33133212311113121123
2221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12
9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( )
(A) **B A (B) 11--B A AB (C) 11--A B (D)*
*A B
10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中( )
(A )任意r 个列向量线性无关
(B) 必有某r 个列向量线性无关
(C) 任意r 个列向量均构成极大线性无关组
(D) 任意1个列向量均可由其余n -1个列向量线性表示
三、计算题(每题7分,共21分)
11. 设⎪⎪⎪⎭
⎫ ⎝⎛=300041003A 。

求1)2(--E A
12. 计算行列式1111111
1111
1111
1--+---+---x x x x
13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002a A 与⎪⎪⎪⎭
⎫ ⎝⎛-=b B 00020001相似,求a 和b 的值
四、计算题(每题7分,共14分)
14. 设方阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量为⎪⎪⎪⎭
⎫ ⎝⎛=11k ξ,求k 的值
15. 设⎪⎪⎪⎭⎫ ⎝⎛=111λα,⎪⎪⎪⎭⎫ ⎝⎛=1102α,⎪⎪⎪⎭⎫ ⎝⎛=λα113,⎪⎪⎪⎭
⎫ ⎝⎛=111β(1)问λ为何值时,321,,ααα线性无关(2)当321,,ααα线性无
关时,将β表示成它们的线性组合
五、证明题(每题7分,共14分)
16. 设3阶方阵0≠B ,B 的每一列都是方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321
321321x x x x x x x x x λ的解
(1)求λ的值(2)证明:0=B
17. 已知4321,,,αααα为n 维线性无关向量,设
⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0,1,0,144332211αβαβαβαβ,证明:向量4321,,,ββββ线性无关 六、 解答题(10分)
18.方程组⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321
321321)1(3)1(0)1(x x x x x x x x x ,满足什么条件时,方程组
(1) 有惟一解(2)无解(3)有无穷多解,并在此时求出其通解
七、解答题(11分)
19. 已知二次型32212322213214432),,(x x x x x x x x x x f --++=,试写出二次型的矩阵,并用正交变换法化二次型为标准型。

(一)1、20 2、44ππt - 3
2716- 40,21====n n λλλΛ 5、 n
(二)ACCDB
(三)11、⎪⎪⎪⎪⎭
⎫ ⎝⎛-10002121001 12、(4x ) 13、(2,0-==b a ) (四)14、(2-=k 或0=k ) 15、(3212
1)1(2121)2(1)1(ααλαβλ+--=-≠) (五)16 ( )2(1)1(=λ略 ) 17略
(六)18、( (1)3-≠λ且0≠λ;(2)0=λ;(3)3-=λ,解略)
(七)19、(5,2,1-=λ,其余略)
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档