插值-matlab实验课件

合集下载

第二章 插值法及其matlab实现 (1)-文档资料

第二章 插值法及其matlab实现 (1)-文档资料

y = a a x a x 0 0 1 0
y = a a x a x 1 0 1 1
y = a a x a x 2 0 1 2
2 20 2 21 2 22
方程组的解是否存在? 若存在解,是否唯一?!
当 x0 , x1 , x2互异时,方程组的解存在且唯一.
注:显然有, 求n 次插值时, 由n +1个点可有n +1个方程, 联立方程组即可求出插值多项式的n +1个系数.
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求 规律而得到启发,就有了所谓的拉格朗日插值法(公式)和牛 顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式。
1.2.2 基函数法 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 1 x - x0 x - x1 y0 + y1 = l i ( x ) y i 两点式 P1 ( x ) =
x 0 - x1 x1 - x 0
i =0
l0(x) l1(x) 这里, l0(x)和l1(x)具有如下性质: l0(x0)=1, l0(x1)=0, l1(x0)=0, l1(x1)=1, 显然有l0(x)+ l1(x)≡1. )即是满足函数表 实质上 l( )和 l( 0 x 1 x
x
y
称为拉氏基函 数 ,满足 li(xj)=ij
x0
1
x1
x
y
x0
0
x1
0
1
的一次插值多项式 ,称l0(x)和l1(x)为以x0,x1为节点的基本插 值多项式,也称为线性插值的插值基函数 。 于是,线性插值即是用基函数的线性组合来构造的.

MATLAB数值实验一(数据的插值运算及其应用完整版)

MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。

二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。

5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。

6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。

(1)用这9个点作8次多项式插值8()L x 。

(2)用三次样条(第一边界条件)程序求()S x 。

7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。

四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。

MATLAB数据拟合与插值PPT课件

MATLAB数据拟合与插值PPT课件
% at a depth of 2 » zlinear=interp2(width, depth, temps, wi, d) ;
% linear interpolation » zcubic=interp2(width, depth, temps, wi,d, ' cubic ') ;
% cubic interpolation »plot(wi, zlinear, ' - ' , wi, zcubic)
spline ') • t =9.6734,30.0427,31.1755,25.3820
一个最常用的样条插值是对数据平滑。也就是,给定一组 数据,使用样条插值在更细的间隔求值。例如, » h=1:0.1:12;
% estimate temperature every 1/10 hour » t=interp1(hours, temps, h, ' spline ') ; »plot(hours, temps, ' - ' , hours, temps, ' + ' , h, t)
p =-9.8108 20.1293 -0.0317 polyfit 的输出是一个多项式系数的行向量。其解是
y = -9.8108x^2 +20.1293x-0.0317 为了将曲线拟合解与数据点比较,让我们把二者都绘成图。
» xi=linspace(0, 1, 100); % x-axis data for plotting » z=polyval(p, xi); » plot(x, y, ' o ' , x, y, xi, z, ' : ' ) » xlabel(' x '), ylabel(' y=f(x) '), title(' Second Order Curve Fitting ')

插值matlab计算方法

插值matlab计算方法

KeanL
数学模型外延广阔 潜在巨大意义
KeanL KeanL KeanL KeanL KeanL KeanL KeanL
KeanL
KeanL
KeanL i KeanL
7 =?
KeanL KeanL KeanL KeanL KeanL
KeanL 4
KeanL
x
4
9 16
4
KeanL 3
KeanL
KeanL KeanL
p4 ( x3 ) = y0l0 ( x3 ) y1l1 ( x3 ) y2l2 ( x3 ) y3l3 ( x3 ) y4l4 ( x3 ) = y3 p4 ( x4 ) = y0l0 ( x4 ) y1l1 ( x4 ) y2l2 ( x4 ) y3l3 ( x4 ) y4l4 ( x4 )
(x x )
lk ( x ) =
(x
j =0 jk
j =0 jk n
j
k
xj )
解 计 算 方 法
x y
0 2
1 3
2 0
3 -1
试求拉格朗日插值多项式。并求出 x=1.5时的值
计 算 方 法
已知函数y=f(x)的观测数据为
x y

0 1
1 2
2 3
试求拉格朗日插值多项式。
p2 ( x ) = 1 ( x 1)( x 2) ( x 0)( x 2) 2 (0 1)(0 2) (1 0)(1 2) ( x 0)( x 1) 3 (2 0)(2 1)
=y
计 算 方 法
1 x = xi , k = i lk ( x) = else 0

Matlab插值法

Matlab插值法

Matlab插值法实验⽬的:1.Matlab中多项式的表⽰及多项式运算2.⽤Matlab实现拉格朗⽇及⽜顿插值法3.⽤多项式插值法拟合数据实验要求:1.掌握多项式的表⽰和运算2.拉格朗⽇插值法的实现(参见吕同富版教材)3.⽜顿插值法的实现(参见吕同富版教材)实验内容:1.多项式的表达式和创建;多项式的四则运算、导数与积分。

2.⽤Matlab实现拉格朗⽇及⽜顿插值法。

3.⽤多项式插值法拟合数据。

实验步骤: 1.多项式的表达式,MATLAB中使⽤以为向量来表⽰多项式,将多项式的系数按照降幂次序存放在向量中。

多项式P(x)的具体表⽰⽅法:的系数构成向量为:。

⽰例如下: 将向量表⽰的多项式⽤字符串输出的通⽤函数⽰例: 例⼦运⾏⽰例: 多项式的加法: 结果是 多项式乘法: 结果是 多项式除法: 多项式导数: 2.⽤Matlab实现拉格朗⽇,拉格朗⽇代码:1 function yi=Lagrange(x,y,xi)2 m=length(x);n=length(y);p=length(xi);3if m~=n4 error('向量x与y的长度必须⼀致');5 end6 s=0;7for k=1:n8 t=ones(1,p);9for j=1:n10if j~=k11 t=t.*(xi-x(j))./(x(k)-x(j));12 end13 end14 s=s+t.*y(k);15 end16 yi=s;17 endLagrange 运⾏⽰例: ⽜顿插值法代码:1 function yi=newtonint(x,y,xi)2 m=length(x);n=length(y);3if m~=n4 error('向量x与y的长度必须⼀致');5 end6 A=zeros(n);7 A(:,1)=y;8for j=2:n%j为列标9for i=1:(n-j+1) %i为⾏标10 A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));%计算差商表11 end12 end13 %根据差商表,求对应的⽜顿插值多项式在x=xi处的值yi14 N(1)=A(1,1);15for j=2:n16 T=1;17for i=1:j-118 T=T*(xi-x(i));19 end20 N(j)=A(1,j)*T;21 end22 yi=sum(N); %将x=xi带⼊⽜顿插值多项式,得到的yi的值23 %A 输出差商表24 endnewtonint 运⾏实例: 等距节点的⽜顿向后插值代码:1 function yi=newtonint1(x,y,xi)2 h=x(2)-x(1);t=(xi-x(1))/h;3 n=length(y);Y=zeros(n);Y(:,1)=y';4for k=1:n-15 Y(:,k+1)=[diff(y',k);zeros(k,1)];6 end7 yi=Y(1,1);8for i=1:n-19 z=t;10for k=1:i-111 z=z*(t-k);12 end13 yi=yi+Y(1,i+1)*z/prod([1:i]);14 endnewtonint1 运⾏实例: 等距节点的⽜顿向前插值代码:1 function yi=newtonint2(x,y,xi)2 n=length(x);h=x(n)-x(n-1);t=(x(n)-xi)/h;3 n=length(y);Y=zeros(n);Y(:,1)=y';4for k=1:n-15 Y(:,k+1)=[zeros(k,1);diff(y',k)];6 end7 h=x(n)-x(n-1);t=(x(n)-xi)/h;yi=Y(n,1);8for i=1:n-19 z=t;10for k=1:i-111 z=z*(t-k);12 end13 yi=yi+Y(n,i+1)*(-1)^i*z/prod([1:i]);14 endnewtonint2 运⾏⽰例: 3.使⽤4次⽜顿插值多项式插值,并作图: 解:由4次⽜顿插值多项式, 求上述多项式的系数:(修改newtonint.m代码,得到差商表),代码如下:1 function B=newtonint4(x,y)2 m=length(x);n=length(y);3if m~=n4 error('向量x与y的长度必须⼀致');5 end6 A=zeros(n);7 A(:,1)=y;8for j=2:n%j为列标9for i=1:(n-j+1) %i为⾏标10 A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));%计算差商表11 end12 end13 B=A;14 endnewtonint4 代⼊数据得到差商表:0.98-0.3-0.625-0.2083-0.52080.92-0.55-0.75-0.62500.81-0.85-1.125000.64-1.30000.380000 已知,第⼀⾏的便是插值多项式的系数,代⼊插值多项式: 并作出图像:1 x0=[0.20.40.60.81.0];2 y0=[0.980.920.810.640.38];3 plot(x0,y0,'b-o')4 hold on5 k=0:1:10;6 x=0.2+0.08*k;7for i=1:1:118 y(i)=0.98-0.3*(x(i)-0.2)-0.625*(x(i)-0.2)*(x(i)-0.4)-0.2083333*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.520833333*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)*(x(i)-0.8);9 end10 plot(x,y,'r-o');11 legend('原图像','4次插值图像');plot3⼩结: 在编写⽜顿插值的代码时,我遇到了超出元组索引的问题。

第5讲MATLAB多项式及插值

第5讲MATLAB多项式及插值
第5讲MA上的较大元素构成的 新矩阵p。
第5讲MATLAB多项式及插值
5.1.2 求和与求积
数据序列求和与求积的函数是sum和prod,其使用方 法类似。设X是一个向量,A是一个矩阵,函数的调用格 式为:
sum(X):返回向量X各元素的和。 prod(X):返回向量X各元素的乘积。 sum(A):返回一个行向量,其第i个元素是A的第i列的元素和。 prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。 sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时, 返回一个列向量,其第i个元素是A的第i行的各元素之和。 prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时, 返回一个列向量,其第i个元素是A的第i行的各元素乘积。
为解决Rung问题,引入分段插值。 第5讲MATLAB多项式及插值
算法分析:所谓分段插值就是通过插值点用折线或低次曲线 连接起来逼近原曲线。
MATLAB实现 可调用内部函数。 ➢ 命令 interp1
功能 : 一维数据插值(表格查找)。该命令对数据点之 间计算内插值。它找出一元函数f(x)在中间点的数值。其 中函数f(x)由所给数据决定。
t = 1900:10:1990; p = [75.995 91.972 105.711 123.203 131.669...
150.697 179.323 203.212 226.505 249.633]; 对应于美国从1900年到1990年的每10年的人口数,求 1975年的人口。由此推断美国1900年到2000年每一年的 人口数,并画出图形。
k1
j1
xxj ) xk xj
jk
MATLAB中没有直接实现拉格朗日算法的函数,我们已经介 绍过该函数的书写:

matlab插值法

matlab插值法

和牛顿(Newton)插值为代表的多项式插值最有特点,常
用的插值还有Hermite插值,分段插值和样条插值。
插值法的定义
设 f(x)为[a,b]上的函数,在互异点x0 , x1, ... , xn 处的
函数值分别为 f(x0) , f (x1) , … , f (xn) ,构造一个简单函数 (x) 作为函数 f(x) 的近似表达式y= f(x) (x),使
二次插值的误差 定理 设L2(x)为二次Lagrange插值函数, 若 f (x) ∈C3[a,b] , 则任给x∈(a ,b),至少存在一点ζ=ζ(x) ∈(a,b),使
R 2 ( x ) f ( x ) L2 ( x ) f ( ) ( x x 0 )( x x1 )( x x 2 ) (1.5) 3!
(xi)=f(xi) , i=0, 1, 2, …,n
(1.0)
则称(x) 为关于节点x0 , x1, ... , xn的插值函数;称 x0 , x1, ... , xn 为插值节点;称(xi, f (xi)), i=1,2,… , n 为插值点;f(x)
称为被插值函数。
(1.0)式称为插值条件。这类问题称为插值问题。
提示:因为R2(x0)=R2(x1)=R2(x2)=0,可设
R2 ( x) k ( x)( x x0 )( x x1 )( x x2 ).
作辅助函数
(t ) f (t ) L2 (t ) k ( x)(t x0 )(t x1 )(t x2 ),
易知,x0, x1, x2, x为Ψ(t)的4个零点,在4个点两两组成的区
l1 ( x) ( x x0 )( x x2 ) ( x x0 )( x x1 ) , l 2 ( x) . ( x1 x0 )( x1 x2 ) ( x2 x0 )( x2 x1 )

数值分析实验二(matlab)插值法

数值分析实验二(matlab)插值法

实验二插值法实验2.1(多项式插值的振荡现象) (3)实验要求1: (3)程序: .................................................................................................................................................. 3 主函数: .............................................................................................................................................. 3 实验结果: .......................................................................................................................................... 5 实验要求2: .. (6)(1)对:4()1xh x x=+ .................................................................................................................... 6 程序: .................................................................................................................................................. 6 主函数: .............................................................................................................................................. 6 实验结果: .......................................................................................................................................... 8 实验分析 .............................................................................................................................................. 8 (2)对g (x )=arctan x .................................................................................................................... 8 程序: .................................................................................................................................................. 8 实验结果: ........................................................................................................................................ 10 实验分析 .............................................................................................................................................11 实验要求3: . (11)程序: .................................................................................................................................................11 实验结果: ........................................................................................................................................ 13 实验分析: . (14)实验2.2(样条插值的收敛性) (15)实验要求(一) (15)程序: ................................................................................................................................................ 15 数值实验结果 .................................................................................................................................... 15 实验分析 ............................................................................................................................................ 17 实验要求(二): .. (17)程序: ................................................................................................................................................ 17 实验总结: . (19)实验2.3 (20)程序: ................................................................................................................................................ 20 运行结果: . (20)实验2.1(多项式插值的振荡现象)实验要求1:程序:M文件:lagrange.mtest1p1.mLagrange函数:%lagrange insertfunction y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;end主函数:x1=[-1:1:1];y1=1./(1+25*x1.^2);x2=[-1:0.5:1];y2=1./(1+25*x2.^2);x3=[-1:0.4:1];y3=1./(1+25*x3.^2);x4=[-1:0.25:1];y4=1./(1+25*x4.^2); x5=[-1:0.2:1];y5=1./(1+25*x5.^2); x6=[-1:0.1:1];y6=1./(1+25*x6.^2); x0=[-1:0.01:1];subplot(4,2,1)y7=1./(1+25*x0.^2);plot(x0,y7,'-b')y0=lagrange(x1,y1,x0);y1=1./(1+25*x0.^2);subplot(4,2,2)plot(x0,y0,'--b')y0=lagrange(x2,y2,x0);y2=1./(1+25*x0.^2);subplot(4,2,3)plot(x0,y0,'-g')y0=lagrange(x3,y3,x0);y3=1./(1+25*x0.^2);subplot(4,2,4)plot(x0,y0,'--g')y0=lagrange(x4,y4,x0);y4=1./(1+25*x0.^2);subplot(4,2,5)plot(x0,y0,'-r')y0=lagrange(x5,y5,x0);y5=1./(1+25*x0.^2);subplot(4,2,6)plot(x0,y0,'--r')y0=lagrange(x6,y6,x0);y6=1./(1+25*x0.^2);subplot(4,2,7)plot(x0,y0,'-y')数值实验结果及分析:图一为原函数曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
‘nearest’:临近点插值 ‘linear’:线性插值 ‘spline’:三次样条插值 ‘pchip’:保持形状的三次样条插值 ‘cubic’:和‘pchip’ 一样 ‘v5cubic’:MATLAB 5 所用的三次插值
一维插值实例-1 (II)
例1:interp101.m
x = 0:1:4*pi; y = sin(x).*exp(-x/5); xi = 0:0.1:4*pi; y1 = interp1(x, y, xi, 'nearest'); y2 = interp1(x, y, xi, 'linear'); y3 = interp1(x, y, xi, 'spline'); y4 = interp1(x, y, xi, 'cubic'); plot(x, y , 'o', xi ,y1 ,'g-' ,xi ,y2 ,'r:' ,xi ,y3 ,'k-.', xi, y4, 'b--'); legend('Original', 'Nearest', 'Linear', 'Spline', 'Cubic');
在上述图形窗口中,拖放每个插值点,就可以 看到插值曲线的变化,也同时知道各种插值方 法的特性。
一维插值实例-2 (I)
Interpft命令,可进行基于 FFT(Fast Fourier Transform,快速傅立叶变换)的插 值法
先计算给定插值数据的傅立叶变换,再用 更密集的插值点来进行反傅立叶变换
使用语法为 y = interpft(yi, n)
向量 yi 是一个等距取点的函数值 n 则是等距插值的节点个数
一维插值实例-2 (II)
例2:interpft01.m
x = linspace(0, 2*pi, 11); y = sin(x).*exp(-x/5); xi = linspace(0, 2*pi, 21); yi = interpft(y, 21); plot(x, y, 'o', xi, yi); legend('Original', 'Curve by interpft')
X坐标对其指标(Index)的插值 Y坐标对其指标(Index)的插值
一维插值实例-3 (II)
七个插值点,散布在二维空间,我们可以 用interp1 的 spline 方法,来画出连续光滑 的图形
例3:interp102.m
x = [0 2 4 3 1 2 1]; y = [4 1 1 4 5 2 0]; index = 1:length(x); index2 = linspace(1, length(x), 101); x2 = interp1(index, x, index2, 'spline'); y2 = interp1(index, y, index2, 'spline'); plot(x, y, 'o', x2, y2, '-'); legend('Origianl data', 'Interpolated data');
一维插值实例-3 (III)
原有的7个插值点,插 值产生光滑连续的曲线
在计算机图形学 (Computer Graphics) 中最常见的做法
以少数控制点(Control Points)来代表一个物 体,然后在用插值得到 物体的细节
6 Origianl data Interpolated data
化)的插值法
一维插值实例-1 (I)
Interp1命令,其原理是利用多项式来进行插值 运算
使用语法为 yi = interp1(x, y, xi, method)
向量 x 是插值数据 x 坐标(输入值) 向量 y 是插值数据 y 坐标(输出值) xi 是插值点(输入值,对应输出值值位置) 字串 method 指定使用的方法
一维插值实例-1 (III)
由图可看出, Spline 和 Cubic 所产生的曲线较 光滑,但它们的 计算量比较大
1
Original
Nearest
0.8
Linear
Spline
0.6
Cubic
0.40.20Fra bibliotek-0.2
-0.4
0
2
4
6
8
10
12
14
四种插值方法比较
计算时间
Nearest
1(短)
Linear
2
曲线光滑度 1(差)
2
所用内存
1(少)
2
Cubic
3
Cubic Spline
4(长)
3
4(好)
4(多)
3
注记
使用 interp1命令
向量 x 必须是严格递增或者递减 元素之间不必等距 xi 的范围必须落在 x 的范围内
如果xi 的范围在 x 范围外, 可用yi = interp1(x, y, xi, method, ‘extrap’) 的方式来 进行外插(Extrapolation),来得到范围外的xi 元 素对应的 yi 值
一维插值实例-1 (IV)
可以拖放插值点,插值曲线会跟着变化
实例 interpAnim01.m Animation of various methods for interpolation 11
10
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9
10
Click and drag a sample point to change the curves.
插值法
一维插值
一维插值(1-D Interpolation)
根据一组已知的数据点(包含输入与输出,其中输 入是一维数据,输出也是一维数据)
构造一个连续的函数 算出任意节点的函数值
一维插值的方法很多,MATLAB 提供了两种基 本的方法:
基于多项式的插值方法 基于FFT(Fast Fourier Transform,快速傅立叶变
一维插值实例-2 (III)
插值曲线必须经 过每一个已知的 插值节点
回归曲线则不需 要通过插值节点
插值法适用于噪 音很小的数据
1 Original Curve by interpft
0.8
0.6
0.4
0.2
0
-0.2
-0.4
0
1
2
3
4
5
6
7
一维插值实例-3 (I)
根据平面上的有限的数据,来描绘出一个 物体的外形,可用一维插值,此时插值数 据会分成两组
5
4
3
2
1
0
-1
0
0.5
1
1.5
2
相关文档
最新文档